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ABSTRACT 
Surface rain rate is an important climatic variable and many entities are interested in obtaining 
accurate rain rate estimates. Rain rate, however, cannot be measured directly by currently 
available instrumentation.  A hierarchical Bayes model is used as the framework for estimating 
rain rate parameters through time, conditional on observations from multiple instruments such as 
rain gauges, ground radars, and distrometers. The hierarchical model incorporates relationships 
between physical rainfall processes and collected data.  A key feature of this model is the 
evolution of drop-size distributions (DSD) as a hidden process.  An unobserved DSD is modeled 
as two independent component processes: 1) an AR(1) time-varying mean with GARCH errors 
for the total number of drops evolving through time, and 2) a time-varying lognormal 
distribution for the size of drops.  From the modeled DSDs, precipitation parameters of interest, 
including rain rate, are calculated along with associated uncertainty.  This model formulation 
deviates from the common notion of rain gauges as “ground truth”; rather, information from the 
various precipitation measurements is incorporated into the parameter estimates and the estimate 
of the hidden process.  The model is implemented using Markov chain Monte Carlo methods. 
 
INTRODUCTION 
Surface rainfall is an important environmental variable that is incorporated across many areas of 

study, including meteorology, climatology, agriculture, land use, and hydrology, for example.  

The various fields of study require estimation of precipitation at a range of temporal and spatial 

scales.  Hydrologists and land use planners may be interested in short-term rainfall in relatively 

small regional areas for studies involving flood and flash flood forecasting. Researchers in 

climatology or agriculture may be interested in climatic studies that focus on weekly, monthly, or 

annual totals over large spatial extents. 

 Although of considerable interest, surface precipitation rates and amounts are difficult to 

estimate.  Unlike other atmospheric variables, rainfall can display extreme heterogeneity in space 

and time.  Both the occurrence of precipitation and the rate at which it falls may be highly 

variable, even within a single rain event.  As such, due to the importance of and difficultly with 

estimation, there has been much research in the area of precipitation measurement and 

estimation. 

 Precipitation is measured using many different instruments.  Some instrumentation 

measures rainfall directly, while others make indirect measurements of quantities that can be 

related to rainfall.  All of the instrumentation, however, make indirect measurements of the usual 
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quantity of interest, namely, rain rate.  The most common instruments include rain gauges and 

ground-based scanning radar.  Distrometer in situ measurements and satellite deployed 

instrumentation are also used, although less commonly.  Each of the instruments has inherent 

strengths and weaknesses, which affect the observed measurements and subsequent estimation of 

surface rainfall. 

 There exist many algorithms, each with its own set of assumptions, for calculating 

rainfall related parameters from the instrumental observations.  Many times the observations 

obtained from one instrument are used in the calculation of estimates based on the observations 

from another instrument.  Rain gauge data are often considered to be “ground truth” and are used 

to adjust the estimates based on other instruments.  This is done despite the known fact that 

observations from rain gauges are inherently prone to errors and that they are no more “true” 

than the observations from other instruments. 

 Surface precipitation can be defined by a population of falling drops.  The distribution of 

the size diameters of the drops characterizes the population behavior; thus, the drop-size 

distribution (DSD) forms a basic descriptor in the modeling of rain microphysics.  The DSD is 

used to compute a variety of “derived” properties of rainfall through mathematical relationships; 

common computed properties include water content, rain rate, and reflectivity.  DSD data, 

however, are not collected on a routine basis due to the expense of distrometer instruments and 

the limited spatial coverage of an individual instrument.  Rain gauge measurements and ground 

radar images are much more readily available. 

 The literature is full of modeling approaches for the estimation of surface rainfall, 

including empirical statistical models (Stern and Coe 1984; Skaugen et al. 1996, for example) 

and a variety of stochastic models (Bell 1987; Rodriguez-Iturbe and Eagleson 1987; Cox et al. 

1988; Rodriquez-Iturbe et al. 1988; Smith 1993, for example).  More recently, hierarchical 

Bayesian models have been used in a number of environmental applications (Royle et al. 1998, 

Wikle 1998, Berliner 2000, Berliner et al. 2000a, Wikle et al. 2001, Hrafnkelsson 2003).  In this 

article we present a generalized model for surface rainfall that accommodates data from multiple 

instruments and produces estimates of precipitation parameters and associated uncertainties.  

Using a hierarchical Bayesian approach, the evolution of DSDs are modeled as an unobserved 

process, while also incorporating information from data gathered through commonly deployed 

instruments.  This formulation does not depend on having expensive DSD data and departs from 
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the notion of gauge data as being “ground truth”.  Rather, an estimate of the drop-size 

distribution at each point in time, with attendant uncertainty measures, can be used to calibrate 

all the instruments simultaneously. 

HIERARCHICAL MODEL 
Surface rainfall parameters through time are estimated using a flexible five-stage hierarchical 

Bayesian formulation that is based on a model for generating rainfall drop-size distributions.  

Estimates of the unobserved process, denoted by N(D), are the primary quantity of interest.  The 

first stage of the hierarchy specifies a measurement error model for the observational data, 

denoted by Z and G, both of which are observations of functions of N(D), with error.  The second 

stage of the hierarchy allows for a time series formulation of the unobserved DSD process.  Time 

series parameters and temporal dynamic terms of the DSD evolution process are modeled in the 

third stage.  The hierarchical Bayes formulation is completed in stages four and five by 

specifying priors on model parameters. 

Empirical Analysis of DSD Data 
Exploratory data analysis was conducted on a set of one-minute drop size spectra collected using 

a Joss-Waldvogel distrometer (JWD) from a site in Eureka, California from January through 

March 1999.  Rain rates were calculated for each of the one-minute spectra to identify rainfall 

events.  Seven events ranging from 12 to 24 hours in duration were chosen for evaluation.  

Barplots of the binned drops and time series of the total number of drops/minute were evaluated 

for each event.  Two general observations were made:   

1. The distributions of drop-sizes were generally unimodal and right-skewed.  Based on 
visual inspection and five number summaries, the distributions of the shapes of the one-
minute DSD data were similar both within and across rainfall events.  Figure 1 shows 
barplots for some one-minute DSDs. 

2. The total number of drops from one-minute to the next was highly variable both within 
and across events.  Log-transformed time series data suggested an underlying auto-
regressive process.  Figure 2 shows some time-series plots for total number of drops. 

Unobserved Process 

A DSD, denoting the number of drops per mm diameter bin interval and per 3
m  of air is well 

defined as  

 

( )
( )

( )
i t

i t

i i

n D
N D

AtV D D
=

!
     (1) 
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where ( )i t
n D  is the observed number of drops (raw counts) in each diameter bin interval 

i
D  for 

sampling interval t; A is the sample surface area in 2
m ; t is the length of sample collection in 

seconds; ( )iV D  is the terminal fall speed in still air in m/s; and, D!  is the drop diameter 

interval in mm. 

 
Now we define the number of drops over diameters D  as  
 

( ) ( )tt t
n D n P D= !       (2) 

 
where 

t
n  is the total number of raw counts over all drop diameters for the time interval t and is 

assumed independent of ( )
t

P D , a probability density function defining the shape of the DSD 

over the interval t; ( )
t

P D  gives the probability of finding a drop within a diameter D to D dD+ . 

 
Substituting equation 2 into equation 1 yields 
 

( )
( )

( )
t i t

i t

i i

n P D
N D

AtV D D

!
=

"
     (3) 

 
Next, define 

t
N  as the total number of drops per 3

m  of air.  Substitution into equation 3 gives 

the DSD formulated in terms of total counts as 

 

( )
( )t i t

i t

i

N P D
N D

D

!
=

"
     (4) 

 
For a rainfall event of duration T, the unobserved states ( )

t
N D  are estimated through models for 

t
N  and ( )

t
P D ;    t = 1,…,T .  To be consistent with commonly collected distrometer data, each t 

represents a one-minute interval. 

 
Model for Total Number of Drops, 

t
N  

Let 
t
N  denote the total number of drops at time t minutes,    t = 1,2,…,T .  To account for the 

serial correlation and burst variability observed in many of the time series of total number of 

drops in contiguous DSD spectra, we introduce a model composed of a time-varying mean 

process integrated with a GARCH(1,1) conditional variance process.  Let ln
t

t t N t
TN N µ != = + . 
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The 
t

! ’s are an independent sequence of correlated errors from an unknown distribution.  The 
t

!  

values, conditional on all previous values are assumed to be normally distributed:  

   
!

t
!

t"1
,!

t"2
,…! N 0,#

!
t

2( ) .  Under a GARCH(1,1) model 
1

2 2 2

0 1 1 1
t t

t
a a b

! !
" ! "

#
#

= + +  where the 

parameters 
0 1 1
, ,  and a a b  are subject to the constraints 

0 1 1 1 1 1
0, , 0,  1, and 1a a b a a b> ! < + "  

(Alexander 1998).  By substitution, 

 

   

!
1
!

0
! N 0,a

0
+ a

1
!

0

2
+ b

1
"

!
0

2( )
!

2
!

1
,!

0
! N 0,a

0
+ a

1
!

1

2
+ b

1
"

!
1

2( )
"

!
t
!

t#1
,!

t#2
,…,!

1
,!

0
! N 0,a

0
+ a

1
!

t#1

2
+ b

1
"

!
t#1

2( )

 

 
Given the conditional distribution of 

   
!

t
!

t"1
,!

t"2
,…,!

1
,!

0
, the joint probability for !  is: 

 

   

!
t
,!

t"1
,…,!

0
#$ %& = !

t
!

t"1
,!

t"2
…,!

0
#
$

%
& !

t"1
!

t"2
,!

t"3
…,!

0
#
$

%
&… !

0
#$ %&

                      = !
t+1" i

!
t" i

,!
t" i"1

,!
t" i"2

,…,!
0

#
$

%
&

i=1

t

'
#

$
(

%

&
) !

0
#$ %&

                      =
1

2*+
!

t+1"i

exp "
1

2+
!

t+1"i

2
!

t+1" i

2( )
,
-
.

/.

0
1
.

2.i=1

t

'
#

$

(
(

%

&

)
)

1

2*
exp "

1

2
!

0

2( )
,
-
/

0
1
2

 

 
Assume that conditional on 

t
N

µ  and the parameters { }
0

2

0 1 1
, , ,

N
a a b

!
" #= , the ln

t
N ’s are 

independent and are distributed as ( )2,
t t
N

N
!

µ " .  Then the joint distribution of lnN  is: 

   

TN!" #$ = TN
1
,…,TN

T
µ

N
1

,…,µ
N

T

;%
&

1

2
,…,%

&
T

2!
"'

#
$(

        =
1

2)%
&

t

exp *
1

2%
&

t

2
TN

t
* µ

N
t

( )
2+

,
-

.-

/
0
-

1-t=1

T

2
!

"

'
'

#

$

(
(
3

1

2)%
&

0

exp *
1

2%
&

0

2
TN

0
* µ

N
0

( )
2+

,
-

.-

/
0
-

1-

 

 

Set 
0

0 N
TN µ= .  This reduces ( )0P !  to the constant term 

0

1

2
!

"#
 and yields: 

  

1

2!"
#

t

exp $
1

2"
#

t

2
TN

t
$ µ

N
t

( )
2%

&
'

('

)
*
'

+'t=1

T

,
-

.

/
/

0

1

2
2
3

1

2!"
#

0
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Priors on GARCH parameters 
Since the GARCH parameters are constrained to be greater than zero, each coefficient is assigned 

a lognormal prior: 

( )

( )

( )

0

1

1

2

0 0

2

1 1

2

1 1

Lognormal ,

Lognormal ,

Lognormal ,

a

a

b

!

!

"

! #

! #

" #

:

:

:

 

 
The hyperparameters 

0 1 1

2 2 2

0, 1, 1
, , ,  and ! ! "! ! " # # #  are taken as fixed, with values that may vary by 

application. 

 
Mean process for number of drops 

The mean for 
t

TN , 
t
N

µ , is modeled as a first-order autoregressive process.  Let 

1t t t
N N N N

aµ µ !
"

= +  where 
t
N

!  is an independent random normal process with mean 0 and 

variance 2

!
" .  The parameters are { }2,

N
aµ !" #= .  Conditional on 

1

 and 
t

N N
a µ

!

,  

 

   
µ

N
t

a
N
µ

N
t!1

"
#$

%
&'
! N a

N
µ

N
t!1

,()
2( );   ()

2
! IG µ) ,*)

2( )  

 
The parameter 

N
a  is estimated assuming 

   
a

N
! N !

N
,"

!
N

2( ) .  The hyperparameters 

2 2

,
, ,  and 

N
N ! " "

! # µ #  are taken as fixed, with values that may vary by application. 

 
DSD shape, ( )

t
P D  

The DSD shape is modeled as a lognormal distribution with time varying parameters 2
 and 
t t

! " .  

Conditional on 2
 and 
t t

! " , the 
t
D ’s are assumed independent yielding the joint distribution for D 

as 

( )
2

2

2
1

ln1
, exp

22

T

t t

t tt t

d
D

d

!
! "

"# "=

$ %&' '( ) = &* +, -
' '. /

0  

 
where 

   
!

t
! N µ

!
,"

!

2( );   #t

2
! IG $

#
,%

#( ) .  The hyperparameters 2

,
, ,  and ! ! " "µ # $ %  are taken as 

fixed, with values that may vary by application. 
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Data Components 
The hierarchical model incorporates two common data sources, namely, rain gauge and ground 

radar observations.  Since given a DSD the instantaneous (true) rain rate and a derived (true) 

radar reflectivity can be calculated, we develop a measurement error model for both the rain 

gauge and radar observations. 

 
Gauge Observations, G 
Rain gauges measure the amount of rainfall accumulating over time at a fixed location in space.  

If the amount of rainfall measured at a point is measured without error, the gauge measurement, 

G, can be equated to the appropriate time integral of rain rate.  The predominant error in gauge 

measurements is a systematic bias induced by winds, which often results in an underestimate of 

the surface rainfall.  Thus, define a measurement error model for gauges as a function of the true 

rain rate and wind speed (taking other systematic biases as negligible).  Define a gauge 

observation as  

 

( )
t

t

t t s G

t t

G c w R ds !
"#

$ %& &
= +' (
& &) *

+  

 
where 

t
R  is the derived instantaneous rain rate at time t; ( )

t
c w  are gauge type-specific 

coefficients ( 1c ! ) primarily based on wind speed, w; and 
t
G

!  are independent measurement 

errors modeled as ( )20,
G

N ! ; ( )2 2
,

G G G
IG! µ ": . 

 
Given a DSD, the instantaneous rain rate can be derived based on meteorological principles as a 

function of the third power of drop diameter (Battan 1973).  The rain rate, R, for a given t, is 

estimated as  

 

( ) ( )3

0
6

t R t
R c D V D N D dD

! "

= #  

where D is the drop diameter in mm; V(D) is a deterministic function for the terminal velocity 

for drops with diameter D; ( )
t

N D  is the DSD giving the number of drops per mm diameter D 

per 3
m  at time t; and 

R
c  is an additional constant to account for units. 
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Given the model for ( )i t
N D  (equation 4), summing over all D!  and substituting ( )t t

N P D! for 

( )
t

N D  yields: 

( ) ( )3

0
6

t R t t
R c D V D N f D dD

! "

# $= % &'     (5) 

where 
t
N  is the total drop concentration at time t and ( )

t
f D  is the pdf for 

t
D  defined through 

( )
t

P D . 

 
Assuming an independent Gaussian measurement error model, and conditional on rain rate as 

derived from a DSD and parameter { }2G G
! "= , the elements of G are independent and in each 

case ( )2,
t

t G G
G N m !:  where 

t
G
m  is the integral over the time interval between gauge 

measurements, of the instantaneous rain rate defined above. 

Ground Radar Observations, Z 
The equivalent radar reflectivity observations from ground radar, Z, are a function of the average 

returned power and range of the radar scan (Battan 1973).  If there are no measurement errors, Z 

will conform to the reflectivity derived from a DSD.  To accommodate various factors that can 

lead to errors when estimating Z, we construct a simple measurement error model for equivalent 

radar reflectivity as a function of the derived reflectivity and random errors; 
t t

t D Z
Z Z != +  where 

t
D
Z  is the meteorologically derived reflectivity at time t and 

t
Z

!  are independent measurement 

errors modeled as ( )20,
Z

N ! ; ( )2 2
,

Z Z Z
IG! µ ": . 

The treatment of derived reflectivity, 
D
Z , is similar to that for rain rate.  Given a DSD, 

D
Z  can be derived as the sixth moment of the DSD (Battan 1973).  Derived reflectivity at time t 

is estimated as  

( )6

0

t
D Z t
Z c D N D dD

!

= "  

where D is the drop diameter in mm; ( )
t

N D  is the current drop spectra giving the number of 

drops per mm diameter D per 3
m  at time t; and 

Z
c  is a constant related to sample volume and 
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equals one for a one- 3
m  sample.  As for gauge observations, summing over all D!  and 

substituting ( )t t
N P D!  for ( )

t
N D  yields: 

( )6

0

tD Z t t
Z c D N f D dD

!

" #= $ %&  

where variables are as previously defined.  In practice, 
t
D
Z  is estimated as a sum over binned 

drop sizes.  Assuming this independent Gaussian measurement error model, and conditional on 

D
Z  derived from a DSD and parameter { }2Z Z

! "= , the elements of Z are independent and in 

each case 
   
Z

t
! N Z

D
t

,!
Z

2( ) . 

Model Summary 
We use the components presented above to construct the hierarchical model formulation.  At the 

highest level we assume, based on a series of conditional independence assumptions, that given a 

DSD ( ( )N D ), the gauge (G) and radar (Z) observations are conditionally independent with the 

following factorization:  

 
( ) ( ) ( )

( ) ( ) ( )

, , ,

                      

N D G Z N D G Z N D

N D G N D Z N D

! "! " ! "=# $ # $ # $

! " ! "! "= # $ # $ # $

 

 
The components ( ) ( ) and G N D Z N D! " ! "

# $ # $  represent likelihoods based on the gauge and radar 

data, respectively.  The first component, ( )N D! "# $  represents the prior probability for the DSD 

process.  The conditional probabilities for the full model, including the parameters and 

hyperparameters, are summarized in Table 1. 
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Table 1.  Hierarchical Model Summary. 
Variables Conditional Probabilities for Model Componentsa 

Observational Data 
( )

b

t Gt
G N D !" #
$ %  

( )t Zt
Z N D !" #
$ %  

Hidden Process 
,
t

c

t N N
TN µ !" #
$ %

 

t D
D !" #$ %  

Temporal 
Dynamics for 
mean of TN 

t
N µµ !" #

$ %  

Model Parameters 
, , , ,

G Z N D
G Z N D H G H Z H N H H D Hµµ µ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !" #" # " #" # " #" # =$ % $ % $ %$ % $ % $ %

 

where 
H

!  is a collection of hyperparameters and 

{ }2 2 2
;

G G G G G
! " " µ #$ %= = & '  

{ }2 2 2
;

Z Z Z Z Z
! " " µ #$ %= = & '  

{ }
0 0 1 1 0

2 2 2 2 2

0 1 1 0 0 1 1 1 1
, , , ; ; ;

N
a a b a a! " " # !$ % " & " & # # & %' ( ' ( ' ( ' (= = ) *) * ) *) *  

{ }2 2 2 2
, ; ;

t N t
N N N
a aµ ! " ! ! !# $ " % $ µ %& ' & '= = ( )( )  

{ }2 2 2
, ; ;

D t t t t! ! " "# ! " ! µ $ " % &' ( ' (= = ) *) *  

Hyperparameters { }
0 1 1

2 2 2 2 2 2 2 2

0 1 1
, , , , , , , , , , , , , , , , ,

N
H G G Z Z N! ! " ! # # $ $ % %& µ ' µ ' ! ! " ' ' ' ! ' µ ' µ ( ! "=  

 

 a The bracket notation 
 
i i!
"

#
$ is used as a short hand for denoting conditional distributions. 

 b ( )
t

N D  is general notation for ( )t t
N P D! . 

 c
ln

t t
TN N= . 
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Parameter Estimation 
We used a Markov Chain Monte Carlo (MCMC) implementation to sample from the posterior 

distribution of the hierarchical model.  The appropriate Markov chain is constructed using a 

single-component Metropolis-Hastings algorithm based on the hierarchical structure of the 

model, and on the conditional probabilities associated with the various model components. 

Starting values, hyperparameter values, the length of burn-in, and the number of 

iterations must be determined for each application.  Starting values are random, based on the 

prior distributions of the parameters; the distributions can be altered by the choice of the fixed 

hyperparameters.  The required number of iterations for a given application depends on the 

length of the burn-in, the autocorrelation of the parameters, and the number of samples needed 

for parameter characterization.  Convergence is monitored using visual analysis of plotted 

parameters in two ways: 1) by performing multiple runs using different random starts; and 2) 

running multiple chains using the same starting values. 

APPLICATION TO EUREKA RAINFALL 

Data 
The Eureka site consists of three sources of data: distrometer, rain gauge, and ground radar data.  

The distrometer data were collected using a JWD instrument.  The distrometer was located near 

the Eureka radar site at   40
!

48'N/124
!

09'W .  Each data file contained one hours worth of raw 

bin counts collected at one-minute intervals. The raw bin counts were converted to one-minute 

DSD spectra counts 
t
D
N ( 3 1

m mm
! ! ) by adjusting raw counts for the instrument collection area, 

time, terminal fall speed, and drop diameter. 

A set of processed 10-minute distrometer data was also available.  The 10-minute data 

are drop spectra that have been averaged over 10 contiguous one-minute periods.  The observed 

10-minute drop spectra were used to calculate rain rates and reflectivity values to use in place of 

gauge and radar observations for model verification. 

Hourly gauge accumulation data (TD-3240) were obtained from the National Climatic 

Data Center (NCDC) on-line service.  The data included measurements from 14 gauging stations 

in the vicinity of Eureka, California over the period 1 January 1999 through 31 March 1999, of 

which nine stations were in the vicinity of the radar and distrometer.  Data were collected using 

Fischer-Porter precipitation gauges with automated readouts. Precipitation data from the NCDC 

database are quality checked and edited, as necessary, by an automated and a manual edit 
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(Hammer and Steurer 1998).  To coincide with the time domain only implementation of the 

model, gauge data were limited to measurements from the gauging station located closest to the 

distrometer at   40
!

49'N/124
!

10'W .  

Level II WSR-88D radar scans were ordered from NCDC for the Eureka radar site, which 

is located at   40
!

29'54''N/124
!

17 '31''W , for periods coinciding with rainfall events identified by 

gauge and distrometer data.  There was a radar scan approximately every six minutes for several 

elevation increments.  The spherical coordinate Level II data were interpolated to a 2km x 2km 

Cartesian coordinate system of equivalent reflectivity (dBZ) values using standard programs for 

NEXRAD radar. The interpolated data were only available for one of the identified rainfall 

events; the availability of radar data defined, and limited, the time period over which the model 

was implemented.  

Appropriate reflectivity values needed to be extracted from the 2km x 2km gridded 

values to correspond with the fixed spatial location of the distrometer and closest rain gauge. 

Reflectivity in the time domain was extracted from the spatial data by first identifying the closest 

pixel located vertically above the distrometer and nearby rain gauge. Given the uncertainty in the 

vertical flow of rainfall above the surface of the earth to a point on the ground, an equivalent 

reflectivity was calculated as the aerial average of first and second order neighbors using the 

identified pixel and the eight neighboring pixels.  Issues of beam blockage along the path of the 

radar to the location of the distrometer were considered to be negligible due to the gradually 

increasing nature of the coastal terrain of Northern California.  Therefore, the reflectivity values 

were extracted from the lowest radar beam (tilt elevation of 0.5o). 

We implemented the hierarchical Bayes model using data from a nine hour (550 minutes) 

rainfall event on 6 February 1999.  For the course of the model run there were nine hourly gauge 

readings and 92 ground radar observations. 

Specification of Hyperparameters, Initial Values, and Constraints on Parameters 
We used exploratory analysis of distrometer data from five February rainfall events to come up 

with informative means and variances for the fixed hyperparameters.  The constant 

hyperparameter values are summarized in Table 2 with model results. 
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In addition to the hyperparameter values, we specified several t = 0 starting values as 

follows:  
0

2

0
0,  0.001,  and 3.0

t
N!

! " µ= = = .  We based initial conditions for the remaining 

parameters on random draws from the appropriate prior distributions. 

We introduced cutoffs for two types of constraints; namely, constraints due to rainfall 

dynamics/instrumentation and constraints due to statistical considerations.  Constraints based on 

rainfall dynamics included upper bounds for three parameters: 

1. We limited the total number of drops in a one-minute interval to 6.0, about 2.5% above 
the maximum value observed from the distrometer data.  This corresponds to a total of 

( )exp 6 403!  raw count drops when summed over the 20 drop diameter bins.  We 
applied this cutoff to the parameters  and 

t
t N

TN µ . 

2. We limited the upper bound for drop diameter size such that ( )5 0.000001P D ! " .  This 
limitation was imposed since the rain event of interest represented light rainfall.  The 
distrometer data had no raw counts beyond a mean drop diameter of 3.15 mm. 

 

Proposals for parameter updating are drawn from uniform distributions centered at the 

current parameter values.  This implementation made it possible to draw negative-valued 

proposals, depending on the current value of the parameter.  Constraints based on statistical 

considerations thus included lower bounds on variance parameters ( )0>  and 0
t

! > .  Required 

model constraints were also placed on the three GARCH coefficients. 

Estimating 
G
m  and 

D
Z  

At each time period for which there were gauge or radar observations, the data components of 

the model required computation of the two quantities 
G
m  and 

t
D
Z , the true equivalent gauge 

value and the true derived reflectivity, respectively.  Both of these values are deterministic 

quantities based on the current state of the parameters that define the hidden DSD process. 

We calculate the true equivalent gauge value as the sum over the previous 60 minutes of each of 

the instantaneous rain rates in mm/min derived from the state of the DSD before each point in 

time.  The instantaneous rain rates defined by equation 5 are approximated by summing over the 

20 drop diameter bins that would typically be observed using a JWD instrument as follows: 

{ } ( )
( )

20
3

1

exp3.6

6000

t i t

t i i i

i i

TN P D
R D V D D

D

!

=

" #$
= %& '

%& '( )
*  
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where ( )i t
P D  is based on the cdf of a lognormal distribution with parameters 2

 and 
t t

! " .  The 

terminal fall speed, ( )iV D , was calculated as 0.67
3.78

i
D  (Smith 1993), where 

i
D  is the mean 

drop diameter for bin i.  Then 

60 1

60
t

t

i

i t

G

R

m
= ! +

=

"
 

True derived reflectivity is calculated as an average, over the previous 10 minutes, of the 

sixth moment of the DSD.  As with the equivalent gauge calculation, we approximate derived 

reflectivity by summing over the 20 drop diameter bins using 

{ } ( )20
6

1

exp
t i t

t i i

i i

TN P D
Z D D

D=

! "#
= $% &

$% &' (
)  

Then 

10 1

10
t

t

i

i t

D

Z

Z
= ! +

=

"
 

t
D
Z , in units of 6 3

mm m
! , are converted to dBZ as ( )1010 log

t
D
Z . 

Tuning, Thinning, and Convergence 

Tuning the chain was optimized by making many small runs (5000 to 15000 iterations in length) 

and monitoring the acceptance rates for each of the parameters.  Adjustments to the acceptance 

rates were made by either increasing or decreasing the upper and lower bounds on the uniformly 

distributed parameter proposals.  After much experimentation, bounds on the uniform proposals 

were adjusted to yield acceptance rates ranging from about 0.42 on the low end to about 0.85 on 

the high end.  Most parameters had acceptance rates in the range of 0.60 – 0.65.  While these 

values exceed the commonly recommended values of 0.1 to 0.5 for updating multidimensional 

components (Roberts 1996), we found that mixing and convergence performed better at these 

higher levels. 

We used thinning to obtain roughly independent samples from the joint posterior 

distribution.  We used gibbsit (Raftery and Lewis 1995) to get estimates of the ideal spacing 

between iterations and the number of burn-in iterations, as well as the number of iterations for a 

desired precision.  In most cases a thinning value of 150 was more than sufficient to obtain 
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approximately independent samples, although on occasion, a parameter thinning value would hit 

300 or so. 

We monitored convergence by visual inspection of plotted output.  The number of burn-

in iterations recommended by gibbsit was generally low and always < 5000.  Convergence was 

also assessed by looking at the path of several runs using both the same and different starting 

values. 

Results 
Model Verification 
There is no way to specifically validate the model in terms of comparing outputs to “true” 

values.  Prior to running the fully implemented model, however, we conducted model 

verification by assessing the ability of the model to realistically reproduce targeted signals and 

integrated parameters associated with surface rainfall.  We replace NEXRAD radar observations 

with derived reflectivity calculated from 10-minute distrometer data.  Rain gauge data are 

omitted for this assessment.  To maximize the inputs we use a 10-minute time step, thus insuring 

a data value at each time step. 

The verification run includes 49 derived reflectivity observations computed from the one 

set of distrometer data.  The MCMC run was ended after 280,000 iterations following 100,000 

burn-in iterations.  Based on graphical output, all parameters converged within the 100,000 burn-

in period.  Results for a typical model verification run showing time independent parameter 

estimates and time varying parameter estimates (using the 800 MCMC samples generated after 

applying a thinning value of 350) are shown in Tables 2 – 3, respectively.  Further, using the 

posterior parameter estimates for the hidden process we can compare calculated integrated 

rainfall parameters with values obtained from the 10-minute distrometer data.  Figures 3 and 4 

show the comparisons for rain rate and reflectivity.  Note that although we compare the model 

output with quantities derived from distrometer data, we do not consider the distrometer data as 

ground truth.  Distrometer data are subject to measurement errors. 

The posterior means of the three GARCH coefficients are all lower than those specified 

for the prior distributions.  The variability for the 
1 1
 and a b  coefficients is slightly less than that 

for the priors.  The mean of the AR(1) coefficient is slightly higher than that specified in the 
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prior.  The variance parameter for the AR(1) errors, 2

!
" , is considerably higher than that 

specified in the prior, as is the measurement error variance for radar ( 2

Z
! ). 

The mean values for TN and 
N

µ  are about the same and posterior estimates of TN are 

close to expected counts although the model tends to underestimate the counts.  In general, the 

DSD distribution parameters 2
 and 
t t

! "  are more variable than estimates based on the distrometer 

data.  On average, the posterior estimates of 
t

!  are similar to the values estimated from the 

distrometer data.  The model tends to slightly underestimate 2

t
! . 

The posterior estimates for both integrated parameters (rain rate and reflectivity) are more 

variable than values calculated from the distrometer data realization.  This is expected since 

these estimates include the distrometer data realization with some uncertainty.  Aside from the 

extra variability, the model estimates are a good match with the integrated quantities calculated 

from distrometer observations.  The model does a good job of capturing the overall means and 

the signals present in the time series. 

Full Model Run 

The full model run includes 9 hourly rain gauge observations and 92 effective reflectivity 

observations from ground radar.  The MCMC run was ended after 245,000 iterations following a 

burn-in period of 135,000 iterations.  After applying a thinning value of 350, there were 700 

MCMC samples for posterior estimates.  Convergence for the full model run is much slower than 

that for the verification run, taking up to about 60,000 iterations for a few parameters.  With the 

exception of the AR(1) variance term, 2

!
" , all parameters appear to converge by 60,000 

iterations.  The 2

!
"  variance hardly moves until 60,000 iterations, at which point the value starts 

bouncing around and then settles down at about 0.5, followed by more intermittent bouncing.  

This pattern could be due to slow mixing or identifiability issues. 

Results for a typical full model run showing time independent parameter estimates and 

time varying parameter estimates are shown in Tables 2 – 3, respectively, along side the 

verification run results.  Time series results for integrated parameters calculated from the 

estimated parameters for the hidden DSD process are shown in Figures 5 – 8.   

Except for 
0
a , the posterior estimates for the GARCH parameters are similar to those 

from the verification run.  The generally larger standard errors reflect the greater uncertainty in 
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the one-minute model, which does not have data at every time step.  The mean error terms, 
t

! , 

are not significantly different from zero based on 95% confidence intervals for the means.  The 

posterior distributions are relatively symmetric and approximately normal, which is in line with 

the GARCH model for 
t

! .  The within time posterior means for 
t

TN  and 
t
N

µ  are essentially the 

same.  The posterior distributions for 
t

TN  are nearly symmetrical and appear to be 

approximately normally distributed. 

The representative 
t

!  distributions all have means close to the mean for the prior 

distribution.  The posterior distributions are fairly symmetric; values for 
t

!  are variable, ranging 

from -1.82 to 1.01 and do contain the observed estimates based on the one realization of 

distrometer data.  The representative 2

t
!  distributions all have means close to 0.18, the mean of 

the prior distribution.  The posterior distributions are right-skewed; values for 2

t
!  are variable, 

ranging from 0.05 to 1.03 and do contain the observed estimates calculated from the distrometer 

data. 

The in-series variability for 
t

TN , 
t

! , and 2

t
!  is greater than that for the observed 

distrometer data.  Except for 2

t
! , the time series values estimated from the distrometer data are 

nearly centered in the posterior model results.  As with the verification run, the full model 

underestimates the DSD shape parameter, 2

t
! . 

From the posterior parameter estimates for the hidden DSD process, we can estimate the 

integrated values for rain rate and derived reflectivity.  The time series of calculated rain rates 

show higher variability than that produced from the one realization of distrometer data.  The 

large variability makes it difficult to compare the signals, though there appears to be some 

amount of agreement in the gross signal features for rain rate (Figure 5). 

The time series plots of derived reflectivity also show higher variability than that 

produced from one realization of distrometer data, though not to the same extent as for rain rate 

(Figure 6).  The model output consistently overestimates distrometer derived values.  A mean 1 

normalized plot for reflectivity (Figure 7) removes the bias and clearly shows some similarity in 

the signals compared with the distrometer based calculations.  While the cause of the bias is 

unknown, it’s possible that the observed bias indicates poor calibration of the radar. 
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An alternate visualization of the calculated rain rate parameter based on model output 

displays histograms for rain rates from 12 points along the time series (Figure 8).  Corresponding 

values calculated from the distrometer data are also shown.  The individual histograms contain 

the distrometer-based rain rates, although the distrometer-based values are in the lower ends of 

the distributions for most time points.  

Table 2.  MCMC Summary Statistics for Time Independent Parameters. 
   MCMC Posterior Mean (SE) 

Model 
Parameter 

Prior 
Mean 

 
Prior SD 

Verification 
Run 

 
Full Run 

GARCH 
Coefficients 

0
a  

 
 

0.023 

 
 

0.0062 

 
 

0.0080 
(0.00012) 

 
 

0.049 
(0.0012) 

1
a  0.242 0.1007 0.200 

(0.00082) 
0.164 

(0.0020) 
1
b  0.742 0.1119 0.677 

(0.00099) 
0.684 

(0.0031) 
AR(1) 

Process 
N
a  

 
0.95 

 
0.04 

 
0.981 

(0.00018) 

 
0.990 

(0.0002) 
2

!
"  0.005 0.0007 0.418 

(0.0023) 
0.478 

(0.0033) 
Measurement 

Errors 
2

G
!  

 
 

5.0 

 
 

1.02 

 
 

--- 

 
 

5.82 
(0.044) 

2

Z
!  2.86 1.429 31.68 

(0.132) 
104.01 
(0.865) 
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Table 3.  MCMC Summary Statistics for Time Varying Parameters for three time points.  For the 
verification run, times are t = 9, 24, 39.  For the full run, t = 90, 235, 391. 

 Verification Run Full Model Run 
Model Parameter Observed 

Value 
Posterior Mean 

(SE) 
Observed 

Value 
Posterior Mean 

(SE)n 
Total # drops 

1t
TN  

2t
TN  

3t
TN  

 
6.41 

7.59 
6.64 

 
6.00 (0.026) 

6.36 (0.029) 
6.29 (0.028) 

 
4.37 

5.90 
5.08 

 
5.00 (0.056) 

5.28 (0.055) 
5.04 (0.051) 

 
Mean # drops 

1t
N

µ  

2t
N

µ  

3t
N

µ  

 
--- 
--- 

--- 
 

 
6.00 (0.026) 
6.34 (0.028) 

6.30 (0.026) 

 
--- 
--- 

--- 
 

 
5.01 (0.052) 
5.25 (0.049) 

5.05 (0.048) 

Errors for 
t

TN  

1t
!  

2t
!  

3t
!  

 
--- 

--- 
--- 

 

 
-0.0001 (0.008) 

-0.005 (0.008) 
-0.012 (0.010) 

 
--- 

--- 
--- 

 

 
-0.017 (0.0214) 

-0.016 (0.0221) 
 0.023 (0.0217) 

Error Variance 

1

2

t
!

"  

2

2

t
!

"  

3

2

t
!

"  

 
--- 
--- 

--- 
 

 
0.050 (0.0025) 
0.071 0.0036) 

0.0800 (0.0040) 

 
--- 
--- 

--- 
 

 
0.320 (0.0077) 
0.329 (0.0084) 

0.319 (0.0075) 

Lognormal Scale 
Parameter 

    Prior mean:  -0.50 
    SD:  0.400               

1t
!  

2t
!  

3t
!  

 
 

-0.54a 
-0.59 

-0.63 

 
 

-0.68 (0.009) 
-0.46 (0.009) 

-0.49 (0.009) 

 
 

-0.56b 
-0.61 

-0.63 

 
 

-0.49 (0.015) 
-0.54 (0.015) 

-0.53 (0.015) 
Lognormal Shape 

Parameter 
    Prior mean:  0.182 

    SD:  0.0857             2

1t
!  
2

2t
!  
2

3t
!  

 
 

0.316a 

0.338 
0.371 

 
 

0.155 (0.0018) 

0.176 (0.0023) 
0.166 (0.0023) 

 
 

0.26b 

0.34 
0.37 

 
 

0.18 (0.003) 

0.19 (0.003) 
0.19 (0.004) 

a Estimated from 10-minute distrometer data. 
b Estimated from 1-minute distrometer data. 
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DISCUSSION 

The model results for the Eureka rainfall are promising.  Using hierarchical Bayes methods we 

are able to integrate information from multiple data sources for purposes of estimating rain rate 

and related parameters.  While we are unable to validate the posterior estimates of 
2

, ,  and 
t t t

TN ! " , the main parameters for the unobserved DSD process, we can compare their 

values with the one available distrometer realization.  For 
t

TN , many of the MCMC realizations, 

though not all, produce time series signals similar to that observed for the distrometer realization 

with model output that is always more variable.  This higher variability is due, in part, to the 

higher uncertainty that is introduced when observations from two different data sources are 

considered.  The DSD scale and shape parameters capture the gross features of the drop spectra, 

but the time series for 
t

!  and 2

t
!  are many times more variable than those produced from 

distrometer estimates.  A comparison of autocorrelations for these parameters based on 

distrometer data versus model output suggests that there is more structure in the time evolution 

of the DSD shape than what is accounted for in the current model. 

 Ultimately the estimated DSD parameters are used to produce estimates of the integrated 

quantities rain rate and derived reflectivity.  The verification runs do a good job of capturing the 

features of these quantities; the full model runs capture the gross features, but again produce 

higher variable time series output and overestimates of derived reflectivity.  The bias seen in 

derived reflectivity could be due to a number of factors; most notably, differences may be related 

to sampling errors associated with distrometer data.  Derived reflectivity is more adversely 

affected by small differences in drop-size distributions since 
D
Z  is a function of 6

D  while R is a 

function of 3
D .  Either overestimation of larger drops by the model, or under recording of larger 

drops by the distrometer could lead to these observed differences.  Verification runs produced 

better consistency between model derived reflectivity and distrometer derived values; use of 10-

minute distrometer data helps compensate for distrometer sampling errors that arise due to the 

small sample volume collected in a one-minute interval. 

 There is no measurable truth when it comes to determining rain rates at the earth’s 

surface.  For each instrument deployed in the field, there are claims and beliefs as to how well 

they perform their respective tasks, in light of uncertainty.  Instead of using rain gauge data as 

“ground truth”, the posterior model distributions capture multiple sources of uncertainty that 
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reflect uncertainty associated with one or more sources such as:  the inability to directly measure 

quantities of interest; measurement and sampling errors associated with the multiple instruments; 

sparse gauge data; and, incorrect or inadequate assumptions and specifications related to 

equations used to represent the underlying physical processes. 

 As a proof of concept, the hierarchical Bayes model is able to generate reasonable 

estimates for most of the modeled parameters when applied to the Eureka data set.  Using 

existing model runs as baselines we can further characterize the observed uncertainties by 

making stepwise modifications to model stages or by incorporating additional data.  In the short 

term, a temporal dynamic stage should be developed for the evolution of DSD through time.  

Also, we should run the model for other rainfall events.  The particular Eureka event consisted of 

relatively light rainfall.  Determining how well the model performs for heavier rainfall events 

will provide some idea as to the portability/usability of this model under a variety of rainfall 

scenarios.  In the longer term, some ideas for expanding and using this modeling approach 

include: 

1. If applicable, incorporate wind corrections for gauge observations in future model runs.  
Gauge catchments are inherently affected by winds; a wind effect would be one 
component of the overall uncertainty observed in the model output. 

2. Incorporate a vertical correction model component for radar reflectivity observations, 
based on an underlying process model, to compensate for the fact that ground-based radar 
provides information about precipitation above the earth’s surface.  Include data from 
vertical pointing radar to augment the vertical correction model component. 

3. Expand the time only model to a space-time model.  Such a model could provide a tool 
that allows for the creation of spatial rainfall maps with uncertainty estimates, while also 
providing the opportunity for more expanded analysis of the component uncertainties. 

4. Use model output to estimate better Z-R relationships dynamically. 

5. Use model output to assess the value added by using other types of precipitation 
measurements (or by removing some instruments). 

 
ACKNOWLEDGEMENTS 
We would like to thank Dr. Sandra Yuter, who provided the distrometer and NEXRAD radar 
data sets, for her help with data pre-processing and her invaluable insights related to 
instrumentation, meteorological properties of precipitation, and relationships between the two. 
 
REFERENCES 
Alexander C. Volatility and correlation:  measurement, models, and applications.  In Alexander 

C, editor, Risk Management and Analysis. Vol. 1:  Measuring and Modelling Financial Risk. 
John Wiley Sons Ltd, 1998. 



 22 

Battan LJ. Radar observation of the atmosphere. University Chicago Press, Chicago, revised 
edition, 1973. 

Bell TL. A space-time stochastic model of rainfall for satellite remote-sensing studies. Journal of 
Geophysical Research, 92(D8):9631-9643, 1987. 

Berliner LM. Hierarchical Bayesian modeling in the environmental sciences. Allgemeines 
Statistishe Archiv, 84:141-153, 2000. 

Berliner LM, Levine RA, and Shea DJ. Bayesian climate change assessment. Journal of Climate, 
13(21):3805-3820, 2000a. 

Cox DR, S. RF, and IshamV. A simple spatial-temporal model of rainfall.  Proc. R. Soc. Lond., 
415:317-328, 1988. 

Hammer G and Steurer P. Data documentation for hourly precipitation data TD-3240. Technical 
report, National Climatic Data Center, February 11, 1998. 

Hrafnkelsson B. Hierarchical modeling of count data with application to nuclear fall-out.  
Journal of Environment and Ecological Statistics, 10:179-200, 2003. 

Raftery A and Lewis S. Implementing MCMC. In Gilks W, Richardson S, and Spiegelhalter D, 
editors, Markov Chain Monte Carlo in Practice, pages 115-130. Chapman Hall, London, 
1996. 

Roberts GO. Markov chain concepts related to sampling algorithms. In Gilks W, Richardson S, 
and Spiegelhalter D, editors, Markov Chain Monte Carlo in Practice, pages 45-57. Chapman 
Hall, London, 1996. 

Rodriguez-Iturbe I, Cox DR, F.R.S., and Isham V. A point process model for rainfall: further 
developments. Proc. R. Soc. Lond., 417(283-298), 1988. 

Rodriguez-Iturbe I and Eagleson PS.  Mathematical models of rainstorm events in space and 
time.  Water Resources Research, 23(1):181-190, 1987. 

Royle JA, Berliner LM, Wikle CK, and Milliff R.  A hierarchical spatial model for constructing 
wind fields from scatterometer data in the Labrador Sea.  In Case Studies in Bayesian 
Statistics IV, pages 367-382. Springer-Verlag, 1998. 

Skaugen T, Creutin JD, and Gottschald L. Reconstruction and frequency estimates of extreme 
daily areal precipitation. Journal of Geophysical Research, 101(D21):26287-26295, 1996. 

Smith JA. Marked point process models of raindrop-size distributions. Journal of Applied 
Meteorology, 32:284-296, 1993. 

Stern R and Coe R. A model fitting analysis of daily rainfall data. Journal of the Royal Statistical 
Society A, 147(Part 1):1-34, 1984. 

Wikle CK, Milliff RF, Nychka D, and Berliner M. Spatiotemporal hierarchical Bayesian 
modeling: tropical ocean surface winds. Journal of the American Statistical Association, 
96(454):382-397, 2001. 

Wikle CK. Hierarchical Bayesian space-time models. Environmental and Ecological Statistics, 
5:117-154, 1998. 



 23 

 
Figure 1.  Barplots for nine consecutive minutes of distrometer DSD data from a Eureka rainfall 
event; n is the total number of drops in each one-minute interval. 

 
Figure 2.  Time series of the one-minute total number of drops (left) and log transformed total 
number of drops (right) for each of five Eureka rainfall events. 



 24 

Sample:  100

time (minutes)

lo
g
1
0
(R

R
) 

(m
m

/h
r)

0 10 20 30 40 50
-1

.5
-0

.5
0
.5

Sample:  250

time (minutes)

lo
g
1
0
(R

R
) 

(m
m

/h
r)

0 10 20 30 40 50

-2
.0

-0
.5

1
.0

Sample:  300

time (minutes)

lo
g
1
0
(R

R
) 

(m
m

/h
r)

0 10 20 30 40 50

-1
.5

-0
.5

Sample:  450

time (minutes)

lo
g
1
0
(R

R
) 

(m
m

/h
r)

0 10 20 30 40 50

-1
.5

-0
.5

0
.5

Sample:  500

time (minutes)

lo
g
1
0
(R

R
) 

(m
m

/h
r)

0 10 20 30 40 50

-2
.0

-1
.0

0
.0

Sample:  700

time (minutes)

lo
g
1
0
(R

R
) 

(m
m

/h
r)

0 10 20 30 40 50
-1

.5
-0

.5
0
.5

 
Figure 3.  Times series plots of posterior 10log  rain rate estimates calculated for some 
representative samples from the validation run (light lines) with rain rate estimates from the 
distrometer data (heavy lines). 
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Figure 4.  Times series plots of posterior reflectivity estimates calculated for some representative 
samples from the validation run (light lines) with reflectivity estimates from the distrometer data 
(heavy lines). 
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Figure 5.  Time series plots of full model run posterior 10log  rain rate estimates calculated for 
selected samples (light lines) with logged rain rate values based on distrometer data (heavy 
lines). 
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Figure 6.  Time series plots of full model run posterior reflectivity estimates calculated for 
selected samples (light lines) with reflectivity values based on distrometer data (heavy lines). 
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Figure 7.  Time series plots of full model run posterior reflectivity (normalized to mean 1) 
estimates calculated for selected samples (light lines) with reflectivity values based on 
distrometer data (heavy lines). 
 
 
 

 
Figure 8.  Frequency histograms of the full model run posterior distribution of 10log  rain rate 
estimates for selected time points within the 550 minute modeled event.  All histograms are 
scaled with equivalent y-axes.  The white circles correspond to the values of rain rate calculated 
from one realization of distrometer data. 
 




