ON THE USE OF HIERARCHICAL MODELS IN METHOD COMPARISON STUDIES

Alessandra R. Brazzale LADSEB-CNR

alessandra.brazzale@ladseb.pd.cnr.it

- Alberto Salvan (LADSEB-CNR, LIA-ISS)
- Stefano Roletti (ARPA-Piemonte)
- SETIL study
- Funding: AIRC, MIUR

1) Background

- a) The SETIL project
- b) The EMDEX[™] calibration data

2) Hierarchical modeling approach

- $\rightarrow~\mbox{Applied}$ to the EMDEX^{\mbox{\tiny M}} calibration data
- 3) Conclusion, discussion & ongoing research

- epidemiological multi-centric case-control study
- investigates risk factors for childhood leukemia, non-Hodgkin's lymphoma and neuroblastoma

<u>Material</u>: EMDEX[™] dosimeters

(Enertech Consultants Ltd., USA)

- 1) *spot* measurements: EMDEX II[™]
- 2) *long-term* exposure: EMDEX Lite[™]

Technical specifications

RMS dosimeters

■ EMDEX II[™]:

range	: 0.01-300 µT
accuracy	: 1% (± 0.01 µT)

■ EMDEX Lite[™]:

range	: 0.01-70 µT
accuracy	: 2% (± 0.01 µT)

- Are the instruments used reliable?
- Do the two instrument types agree?

method comparison studies (approximate & gold standard)

[Lewis et al., 1991]

Calibration study

Helmholtz coil facility

[Borsero et al., 2001]

- 23 EMDEX II[™], 20 EMDEX Lite[™] meters
- nominal values: 0.1, 0.2, 0.4, 0.8, 1.0 µT (50 Hz)
- true MF density derived from current measurements
- in turn one of the three sensing coils pointed in the direction of the MF vector
- two sessions

data record

namematrcoil hzB.gxyzB.mdatetime"EMDEX LITE"1044301500.110.110.030.010.11"17/08/01"12.45

Method comparison studies

<u>Two main approaches</u> \rightarrow do not apply to our case!

- 1. Bland & Altman (1986)
 - > graphical representations
 - > measures of agreement
- 2. Lewis et al. (1991)
 - > one-way random-effects model
 - intra-class correlation coefficient

Hierarchical modeling approach

- linear mixed-effects models with nested random coefficients [Goldstein, 1995]
- widely used to describe relationships between variables that are grouped according to one or more classification factors
- also used to model interactions between covariates associated with random effects

The EMDEX[™] calibration data

reference magnetic flux density

absolute measurement error

The EMDEX[™] calibration model

Baseline formulation

$$\begin{split} d_{ijkm} &= a + \beta x_{ijkm} + \sigma_{ij} \epsilon_{ijkm} \\ \rightarrow & d_{ijkm} = B.m_{ijkm} - B.g_{ijkm} \\ \rightarrow & x_{ijkm} = B.g_{ijkm} \\ \rightarrow & \epsilon_{ijkm} \sim N(0,1) \end{split}$$

i=1,2 (type), j=1,2,3 (coil orientation) k=1,...,43 (serial number), m=1,2 (session)

The EMDEX calibration model (cont.)

Extension

$$d_{ijkm} = (\alpha + a_i + a_{ij} + a_{ijk}) + (\beta + b_i + b_{ij} + b_{ijk}) x_{ijkm} + \sigma_{ij} \varepsilon_{ijkm}$$

$$1. (a_i, b_i) \sim N(\underline{0}, \Sigma_1)$$

$$2. (a_{ij}, b_{ij}) \sim N(\underline{0}, \Sigma_2),$$

$$3. (a_{ijk}, b_{ijk}) \sim N(\underline{0}, \Sigma_3)$$

• $\sigma_{ij} = \sigma |x_{ijkm}|^{\delta_{ij}}$

- **a**: systematic error component
- β: relative measurement error

The EMDEX calibration model (cont.)

Model fit

- maximum likelihood (REML), BLUP
- conditional t-tests and F-tests

variance function \rightarrow random effects \rightarrow fixed effects

R library nlme [Pinheiro & Bates, 2000]
 SAS PROC MIXED [SAS Institute Inc., 2001]

Final model

• $d_{ijkm} = (a_i + a_{ijk}) + (\beta + b_{ij} + b_{ijk})x_{ijkm} + \sigma_i \epsilon_{ijkm}$ $a_i \sim N(0, \sigma_a^2), \quad b_{ij} \sim N(0, \sigma_b^2)$ $(a_{ijk}, b_{ijk}) \sim N(\underline{0}, diag[\sigma_{aa}^2, \sigma_{bb}^2])$ $i=1,2 (type), \quad j=1,2,3 (coil orientation)$ $k=1,...,43 (serial number), \quad m=1,2 (session)$ • $\sigma_2 = \delta \sigma_1$

Results (cont.)

Parameter	β	σ _a	σ_{b}	σ _{aa}	σ_{bb}	σ1	δ	
lower	0.0157	0.0027	0.0095	0.0026	0.0058	0.0168	0.816	
MLE	0.0296	0.0074	0.0170	0.0041	0.0081	0.0177	0.886	
upper	0.0436	0.0204	0.0304	0.0066	0.0115	0.0188	0.961	
Random effect	a ₁ *	a ₂ *	b ₁₁ *	b ₁₂ *	b ₁₃ *	b ₂₁ *	b ₂₂ *	b ₂₃ *
lower	-0.0126	-0.0045	-0.0068	-0.0137	-0.0082	-0.0186	0.0072	-0.0474
BLUP	-0.0101	-0.0021	0.0078	0.0009	0.0064	-0.0040	0.0218	-0.0328
upper	-0.0076	0 0003	0.0224	0.0155		0.0106	0.0364	-0.0182

TIES 2002

Bias and accuracy

- systematic error of -0.01 μ T for EMDEX IITM meters [-0.013 μ T, -0.007 μ T]
- relative error of 3% for both instrument types
 [1.6%, 4.4%]

	coil 1	coil 2	coil 3
EMDEX II™	3.7% [2.9,4.5]	3.1% [2.3,3.8]	3.6% [2.8,4.4]
EMDEX Lite™	2.6% [1.8,3.6]	5.1% [4.3,5.9]	-0.3% [-1.1,0.5]

TIES 2002

Results (cont.)

TIES 2002

Genova, June 18-22, 2002

Conclusions

reliability

- similar findings in literature for overall bias and relative error [UKCCS (2000)]
- good agreement with technical specifications by manufacturer [0.01 µT, 1%-2%]

agreement

- ▷ EMDEX II[™] possibly biased
- relative error depends on the level considered
 - \rightarrow needs further investigation!

"Perplexities"

- random effects for instrument type and coil orientation factors
- model does not obey to weak heredity principle
- generated magnetic flux density measured without error

- extension of one-way random-effects model
 - > complex experimental assets
 - > parsimony and ease of interpretation
- *epidemiologically* relevant influence on the final outcome
 - > work in progress ...

References

- Bland, J.M. and Altman, D.G. (1986). Statistical methods for assessing agreement between two methods of clinical measurement. *The Lancet i*(8476), 307-310.
- Borsero, M. et al. (2001). Calibration and evaluation of uncertainty in the measurement of environmental electromagnetic fields. *Radiation Protection Dosimetry*, **97**, 363-368.
- Goldstein, H. (1995). *Multilevel Statistical Models*. Halstead Press, New York.
- Lewis, P.A. et al. (1991). The problem of conversion in method comparison studies. *Applied Statistics*, **40**, 105-112.
- Pinheiro, J.C. and Bates, D.M. (2000). *Mixed-Effects Models in S and S-PLUS*. Springer-Verlag, New York.
- SAS Institute Inc. (2001). SAS/STAT[®] Software, Release 8.2. Cary, NC, USA.
- UKCCS (2000). The United Kingdom Childhood Cancer Study: Objects, materials and methods. *British Journal of Cancer*, 82, 1073-1102.