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The small area problem in the environmental context 
 

Simultaneous estimation of parameters related to different subpopulations 
(domains) of a more general population  
 
Desired property: additivity 

 
Example 1 

 
Erosion from agricultural land in a watershed (Opsomer, Botts, Kim, 
2001) 
 
Population of areas (160 acres plot) 
 
Auxiliary variables available 
 
Mixed effect linear model  
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Example 2 
 

Emissions inventories  
(CORINAIR project in EU) 

 
national estimates of emission volumes (by pollutant) 
 
many domain estimates 
  spatial  

economic sectors 
time evolution 

 
Building inventories  
 Census of major pollution sources  
 Indirect estimation of small and very diffuse sources 
   Activity indicators 
   Emission factors 
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Hierarchical classification of emission activities 
SNAP system (Selected Nomenclature for Air Pollution) 
 

, , , ,p a t a t p aE A� F  
 

,a tA : volume of activity a in period t subject to sampling random 
variation;  : emission factor for pollutant p in activity a; seldom 
estimated on a sample basis. 

,p aF

 

, , ,
1

N

p t a p t
a

E E
�

��  

 
Approach: bottom up. 
 
Suggestion: ANOVA model is a realistic proposal for ,a tA  since it does 
not use auxiliary information which is very heterogeneous and suffers 
from problems of spatio-temporal definition. 
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Theoretical framework 
 
Typical of the finite population context 
 
It can be solved within  
 
 The design based approach 
 
  parameters: unknown characteristics of the subpopulations 
 
 The model based approach 
 
  where hyperparameters are considered 
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We discuss: 
 
 Model based approach 
 
 Hierarchical modeling 
 

stressing Bayesian solutions 
 
Two main motivations  
 
A natural way of building and solving models 
 
Managing different aggregation level of the information 
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The linear hierarchical model 
 
It is a structural model for the population 
 

2 2    , : 1       Z :         : 1Z N N p p� � � � � �� � � � �  

1 0 1 0     :        : 1        : 1Z Z p q q q� � � � �� � � � �  
 
where 

� �2 NkZ diag i�  
 

is the small area indicator matrix and the incidental parameter  is the 
vector of small area means object of inference. 

�
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Assumptions on the model (only on the first two moments of the 
distributions): 
 

� �1 2, , 0C Z Z� �� �  
 

� � � �2 2
2 , , 0E Z E

� �
� � � � �� �  

� � � �2 2 2
2 , ,V Z V

� � �
� � � � � �� � V  

 

� � � �2 2
1 0, , 0E Z E

� �
� � � � �� �  

� � � �2 2 2
1 0 0, ,V Z V

� � �
� � � � � �� � B  

 
A set of assumptions of conditional independence is able to simplify the 
model. 
 
Many small area models are special cases of this general model. 
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Role of covariates 
 
a) At the individual level 
 
The slightly different Battese et. al. (1988) model 
 

 X� � �� �  
 

2Z� � �� �  
 

0 1N p pV I B i i Z I�� � p�   
 

with a  value on the whole population and small area random effects  �
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b) At the area level 
 

N p�  
 

2   , : 1       Z         : 1pp I p� � �� � �  
 
Fay and Herriott (1979) model adds distributional assumptions 
 
 � �~ 0, ,         1,...,k ke N D k p�  
 

  � �~ 0, ,           1,...,k N A k p� �  
 

Frequentist solutions 
 
Empirical Best Linear Unbiased Prediction. 
 

Estimating  and , and introducing the estimates in the Best Linear 
Unbiased Predictor of . 

2
�

�
2
�

�

�
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Special case: ANOVA model 
 
Some basic simplifications 
 

NV I�  
 

2 1 NZ Z i�  
 

A comprehensive statistical model 
 
A sampling model can be added to the structural model 
 
 � � � �1,..., ' :s snS e e n N� �� �  
 
where sie  is the  column of is NI . 
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Approximating criterion: least squares 
 
The general least squares principle 
 
Approximation to a normal distribution with the same first two moments 
of the exact one.  
 

Finite populations: this approximation is conditional on � �,Z S . 
 

Normal approximation on � �, ,t Z S�  and not on the whole  � �, , ,t Z S� . 
 
TYPE OF INFERENCE: Bayesian 
 
Why approximated solutions when MCMC solutions which approximated 
posterior distributions are easily available? 
 
Because they are analytically approximated and need the elicitation of a 
relatively small number of prior guesses. 
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Be X  the data and  the parameter, for any � � �g� � �  and � �t t X� , 
we define � � { 'l t a t� }. 
 

If: 

� � � �, { , }Z Sl t a z s �
� t  

 

� � � �� �
� � � �� �

� � � � � � � �

2,
,

2

,

1

arg min ,

                =arg min , , ,

                = , , , { , } { , }

Z S
LS Z Sl

Z Sl

E t E l t Z S

E E t Z S l t Z S

E Z S C t Z S V t Z S t E t Z S

� �

�

� � �

� �

�

�� �

 

 

� � � � � �� �
� � � � � � � �

,

2, ,

1

min , , , , ,

                = , , , { , } , ' ,
Z S

Z S Z S
LS LSl

V t E E t Z S E t Z S Z S

V Z S C t Z S V t Z S C t Z

� � �

� � ��

� �

�� S
 

(Cocchi and Mouchart, 1996) 
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Prior conjectures 
 
Only on a certain number of moments 
 
Conjecturing on moments is more immediate than conjecturing on 
distributional assumptions 
 
Their type and number depend on the statistic on which conditioning 
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Statistic chosen for conditioning 
 
Its choice can enrich the solution and determines its complexity  
 

a) Solution conditional on  
 

0 2t T Z S� �� � y : vector of small area totals 
 
Priors to be elicitated 
 

� � � �0 1 0E Z E b� �� � 0  

� � � �0 1 0V Z V� �� � 0M  

� � � �2 2
1v E Z E

� � �
� �� �  

� � � �2 2
2v E Z E

� � �
� �� �  
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b) Solution conditional on  
 

 � �0 1 2, ,t T T T T� �  
 
i.e. the vector of small area totals and  
the sum of squares  

T
�
: between small areas and  

T
�
: within small areas 

 
Since  contains a polynomial of order d, prior information on moments 
of order 2d must be used.  

T

 
For computing the solution the following moments are needed 
 

� �2
1 0, , ,         =3,4j

j kE Z j
�

� � � ��  
 

� �2
2 , , ,         =3,4j

j kE Z j
�

� � � ��  
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New priors to be elicitated besides the group of priors above: 
 

� � � �2 2,         ,V V Z S V V Z S
� � � �

� �� �  
 

� � � �3 3 4 4,         ,a E Z S a E Z S� �� �  
 

� � � �3 3 4 4,         ,f E Z S f E Z� �� � S  
 

� �2
0,1 0 , ,c C Z

�
� �� S  

 
It is not a normal approximation! 
 
It does not mean approximating normal distributions with the same first 
two moments: the model may contain moments up to the 4th. 
 
Gain: this solution can consider asymmetry and kurtosis. 
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Solution  
 

a) For t=T0 
 

� � � � � �

� � � �

,
0 0

0

1

  =  1 :      1

Z S
LS p

p

E T gb g y I

v gb g y v v I p
� � �

� � �� � � � ��� �

� �� � � �� 	� �

a

w

a y

w y
 

 

� �,
0 0

2
0                  = :    

Z S
LSV T v M g

v M v g p p
�

� �

� �� � �

�� � �

a

w

aa

w ww
 

 
where 
 

� � � � � �
1 11 1 1 = :     1k k ka v v n v v v n v p

� � � � � �

�
�

� � �� � � �� � � �
� � � 	� 	

a �  
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 � � � � � �
11 :     1k k kw w v a v n v p

� � �

�

� � �� � � � �
� �� 	

 

 

� � :kdiag a p p� � �a     � � � �
1 :k kdiag w v n v p p

� �

�

� � � � �w  
 

0

k k
k

k

k p
k

k

n y
v n v v Ty n v i
v n v

� � �

�

� �

� �� �
� � �

� ��

�

�

�

n

n

w y w
w w n

 

 

� � � �
11 1 1

0 0 01g M M M
�

�
� �

� �� � � �w n w n  

 

� �2 2 :kZ S SZ diag n p p� �� � � �n                                 : 1pi p� 
 �nn 1
0 : 1T p�� 
 �ny

 

 
1 1 1

0n py n i n i T n� � �

� � �� � �y n y  
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b) For t=T    
 

heavier calculations, no elegant formula because of  the difficulty of 
writing analytically 

 

� �

00 01 02

1 10 11 12

20 21 22

, : ( 2) ( 2)V T Z S v v p p
v v

�

� �
� �� � � � � �� �� 	
� �
� 	

V v v
v
v

 

 

� � � �
� � � �

� �

1
,

* 0 * **

1Z S
LS p p

T v p v n n
E T I C i b C C

T v n p
� � �

� �

�

�� �� ��� � � �� �� 	
 � � �
� 	� �� �

n n
y  

 

where  � �00 01
* 0 1 :      C C V c v p p� ��� � � �� 	
 �

n  

       01 11 02 12
** 0 1   0 1     :       2C C v c v C v c v p� �� � � �� �  

 

after defining:   � � � � � �0 1     0 :      2C T C c p p� � � � �  
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The normal case and the departure from normality 
 

In case of symmetry: � �
� �

1

0
1

1

, 0

,
0 ,

V T Z S

V T Z S T
V Z S

T
�

�

�

�

�

� �� �
� �� �

� � � ��� � � �� 	� �
� �
 �� �� � �� �

 

 
when normality holds: � � � �� �, 1C T T V p n p

� � �
� � �  

 
When � �0,1 , , 0c C T Z S

�
�� �  

 

Then  and ** 0C � � � � � � � � �
1 1

0 0, , , ,C T Z S V T Z S C T Z S V T Z S� �
� �

� � � �� ��� � � �  
As a consequence 
 
 � � � �, ,

0
Z S Z S
LS LSE T E T� ��  
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Comments on least squares approximations 
 
They borrow strength from the other subgroups and from the prior 
conjectures  
 
The idea recalls two important points : 
 
 posterior linearity (for estimating the general mean starting from the 
least squares approximations of the small area parameters) 
 
 empirical Bayes solutions. 
 
The solution is robust 
 

since it depends only on  moments. 
 
The solution seems not to have practical drawbacks linked to the number 
of small areas or to the fact of not having evidence for some subgroups. 
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A simulated experiment 
 
Aim: Checking the improvement of conditioning on  instead of  in the 
approximated posterior expectations. 

T 0T

 
Data generation process: random generation of   and  from  � �

 
normal - normal 

 
lognormal - lognormal. 

 
Lognormal parameters are set  in order to have the same first two 
moments of the normal distribution. 
 
Exact Bayesian least squares solutions 
 
i.e. right prior conjectures.  
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Design of the experiment 
 

1. generation of 1000 populations of N= 1000 elements  
with mean =1. 0�
 

under 4 different hypotheses on structural variability: 
 

1, 0.5
� �

� �� �            0.5, 0.5
� �

� �� �

 

2, 1
� �

� �� �                1, 1
� �

� �� �

 
and 2 different hypotheses on the domains: p=10;  p=40; 
 
2. generation of 100 samples from each population with  
 

kn  =10, k=1,…, p when p=10   =5,  k=1,…, p when p=40; kn
 

3.  evaluation of the performances of the posterior expectations by 
means of mean square errors averaged over the domains. 
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Lognormal – Lognormal 
 

 p=10 nk=20 p=40 nk=5 
��=1  ��=0.5 1.043  1.088
��=0.5  ��=0.5 1.012  

  
  

1.023
��=2  ��=1� 1.085 1.132
��=2  ��=2� 1.031 1.054

 
 
Normal –Normal ( ) 0,1 1c �

 

 p=10 nk=20 p=40 nk=5 
��=1  ��=0.5 1.012  1.021
��=0.5  ��=0.5 1.001  

  
  

1.009
��=2  ��=1� 1.023 1.044
��=2  ��=2� 1.011 1.014
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Consequences of misspecifications in prior evaluations 
 
a) Not important: errors in conjectures on variances 
 

� � � � � �2 2
0            V V V

� �
� � �  

 

b) As expected: errors in conjectures on � �0E �  
 
c) The most dangerous: errors in conjectures on expectations of variances 
 

� � � �2 2      E E
� �

� �  
 

d) Exchanging the right lognormal and normal conjectures 
 
For normal-normal data generation: the most dangerous are the errors on 
the 3rd moment. 
 
For lognormal - lognormal data generation: the most dangerous are the 
errors on the 4th moments. 
 27



 

High possibility of application to environmental problems 
 
Suitable solution for estimating emission inventories since 

 
a) the compositeness and heterogeneity of local emissions is so high 

that a random effect model is in many cases the only practicable 
solution 

 
b) all methods for building emissions inventories involve expert 

evaluations, which can be managed as priors.  
 

Extensions  
 

introduction of covariates 
 
relationships with the design 
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