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Summar y

In this talk we consider a computable function

y � f�x  

or computer model which describes some environmental system.

Sensitivity Analysis �SA  aims to assess the uncertainty on y and the
importance of each input or parameter xj from

x � �x1,..,xk 

We extend standard results from scalar y to vector valued y and extend from
linear f� to heteroskedastic models.

Contaminated wastewater treatment application

We apply these methods to SAof fixed bed reactor in order to assess the
influence of packed column parameters on the heavy metal biosorption
performance.
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Statistical SA
SA Methods are extensively considered in Saltelli et al. �2000  and reviewed
by Fassò and Perri �2001 .

In defining importance measures we have two main streams in SA :

1. Non-parametric: getting conclusions without much emphasis on f�  

2. Parametric: try to get a simple but accurate and phisically sound statistical
model for f�  

Following the latter we use and extend regression based Monte Carlo SA
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Basic idea :

S Use probability distributions for modelling uncertainty on

- input

- output

S The joint pdf of x, p�x   say, is known

S The output pdf is to be estimated

S Importance measures are based on some Variance decomposition
technique.

S Get a sample from p�x  , i.e. n repeated stochastic simulations of x, and n
computer runs, giving:

z i � �yi ,x i  , i � 1, ...,n
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These data can be used in a statistical framework to get a simplified version f�

such that

y � f��x   � e

S the statistical model f� can be used for insight into the system dynamics
and in particular for assessing the importance of the various parameters.

S In order to use a linear regression, we use a post-simulation input
transform

u �u�x  

which may give:

[ zero mean incorrelated inputs

[ polynomial, interactions and other nonlinearities

We get the transformed problem model:

y � * Uu � e

with simulated zero mean deviates y � y " y� (The tilde will be omitted for simplicity).
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S When the components uj are incorrelated, the output variance @y
2 can be

decomposed as

@y
2 � !

j

* j
2@uj

2 � @e
2

and using the LS estimate *� j a similar decomposition holds for sample
variances Sy

2,Suj
2 and Se

2 (computed with the same denominator e.g. 1
n"1 ).

S It follows that the a natural importance measure or sensitivity index is
given by

SIj � *� j
2

Suj
2

Sy
2

can be used to assess the influence of the j th input to the model output.
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S In fact these indexes sum to the total variance percentage explained by
the model, i.e.

R2
� !

j

SIj � 1 " Se
2

Sy
2

where R2 is the well known multiple determination coefficient and the
parameters can be ranked accordingly.
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Multivariate SA

For the sake of simplicity consider only the bivariate case, which is the case
study of next section.

We have the following matrix notation for the multivariate regression model

y1

y2

�
*1

U

*2
U

u �
e1

e2

� Bu � e

and the multivariate LS method (see e.g. Rencher, 1995) simply gives

B� �
*��y1 

*��y2 

where *��y1  is the ordinary LS estimate as in the previous section.
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SAcan now be applied to the variance-covariance matrix decomposition
extending the scalar variance decomposition:

Sy� BS uB U
�Se.

In order to get scalar valued indexes some metric for matrices is required:

S trace

S determinant

S likelihood decomposition
Here we use the trace metric which retains additivity.

We then have
tr�Sy  � Sy1

2 � Sy2
2

� !
j

SIj�y1 Sy1
2 �!

j

SIj�y2 Sy2
2 � Se1

2 � Se2
2
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natural multivariate sensitivity indexes for j th input are the simple or the
weighted averages:

SIj�y  �
SIj�y1  � SIj�y2 

2

SIj�y  �
SIj�y1 Sy1

2 � SIj�y2 Sy2
2

Sy1
2 � Sy2

2

The first formula is appropriate for scale invariant SAand is the same as the
second one if we use standardized outputs with unit variance.
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Heteroskedastic SA

In technological scalar regression models it may happen that the error
variance is not constant but changes with some factors vj .

In this case the model is called heteroskedastic and the error

e � y " f�x  

is now given by
e � 0h

0 � NID�0,1 

h2 � )0 �!
j

) jvj

Coefficients * and ) can be jointly estimated via Gaussian maximum likelihood
or by iterated weighted LS.
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In this case the ANOVA decomposition, similarly to mixed models, is extended
to cope with random effect components, namely

@y
2 � !

j

* j
2@uj

2 �!
j

) jE�vj   � )0

when uj and vj refer to the same input the corresponding heteroskedastic
sensitivity index, say HSI, is

HSIj � SIj � SIj
'

with

SIj
'
� )� j

v� j

Sy
2
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For example, consider the case

S u � x " x�

S v1 � x1.

S and skedastic component given by

h2 � )0 � )1x1 � )2x1
2

It follows that the sensitivity index for the first input is given by

HSI1 � SI1 � SI1
'
�

* j
2@uj

2

@y
2 �

)1E�x1  � )2E�x1
2 

@y
2

whilst the other sensitivities are unchanged,
HSIj � SIj

for j � 2, ...,k.
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SA of

Heavy Metals Adsorption from
Contaminated Wastewater
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Computer Simulation Results
We than have the following I/O definition

Model Output

y � �tb,LUB 

with

S tb �
tb
'u0

L and tb
' is the column working time,

S LUB �
LUB'

L and LUB' is the length of unused bed.
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Input Parameters

x ��6L ,>L ,u0,/,dp,>S,qmax,b  U

Fluid Dynamic Factors

S 6L fluid viscosity (kg/m� s),

S >L liquid density (kg/m3),

S u0 specific bed velocity (m/s),

S . void degree,

Chemical -physical characteristics

S dp adsorption particle diameter (mm),

S >s sorbent density (kg/m3),

S qmax maximum heavy metal up-take (mg/g) (Langmuir equation),

S b equilibrium solute Langmuir equation coefficient (L/mg).
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Monte Carlo Simulations

n � 10,000replications of x were simulated using independent rectangular
random numbers and model outputs y � �LUB, tb  were computed

Min Max Mean Std
�L 0.298 0.903 0.603 0.173
!L 0.801 1.200 1.001 0.115
u0 196.801 603.791 402.047 115.470
0 0.199 0.402 0.300 0.058
dp 0.045 1.004 0.521 0.274
!S 0.694 1.602 1.153 0.260
qmax 19.812 60.079 39.808 11.547
b 0.972 4.028 2.505 0.866
tb 0.228 0.743 0.450 0.102
LUB 0.059 0.422 0.186 0.060

Table 1: Parameter and output statistics for global SA
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Data Anal ysis and Modellin g

This large dataset used allows nonlinearities and interactions to be detected
with high power.

The modelling philosophy has been incremental :

S starting from a simple linear model as with u � x,

S deleting unimportant variables and then

S adding quadratic and interactions when needed

S first univariate modelling than multivariate extension
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Diagnostic tools

S graphical analysis of residuals.

S searching for residuals almost independent from the x and

S normally distributed or, at least symmetric around zero and of course with

S small Mean Squared Error �MSE  and

S little model complexity as measured by the Akaike Information Criterion
�AIC .

Data details

S All variables, both input and output, in the sequel are zero mean deviates.

S Linear inputs x are incorrelated

S the quadratic and interaction components have been orthogonalized after
running the model so that they have to be interpreted as quadratic effects
after discounting for the linear ones.
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tb Model 1

Omitting the statistically unimportant variables we get the following simple
model for tb, with ostandard deviationreported in brackets for all coefficients
and error:

tb � 0.187�o0.003 / � 0.237�o7 � 10"4 >S

� 0.00686�o2 � 10"5 qmax � e�o0.018 

Model dia gnostic

Very good fitting R2 � 96.90%,but ....
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Residuals of tb model 1 vs. parameters. (a) /, (b) >S, (c) qmax.

The symmetric behavior of the residuals hints both for heteroskedasticity or
interactions.
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tb values fitted by model 1 vs. observed.

Moreover the fitted against observed plot hints for nonlinearity
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Residuals of tb model 1. Normal probability plot and histogram

The same conclusions may be achieved from the normal probability plot and
the histogram with superimposed Gaussian which show high tails and kurtosis

k�e  �
n!e4

�!e2 
2 � 3.5
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tb Model 2

We then get the following second order model

tb � 0.187�o9 � 10"4 / � 0.237�o2 � 10"4 >S � 0.00686�o10"5 qmax

" 0.230�o0.0033 />S " 0.0071�o2 � 10"5 /qmax � 0.0054�o2 � 10"5 >Sqmax

" 0.329�o0.016 /2 " 0.00001�o8 � 10"6 qmax
2 � e�o0.0049 .

Note that,

S input orthogonality ´ the coefficients of the linear component are
unchanged but all standard errors decreased

S fitting is now very high with R2 � 99.77%

S square root MSEis given by RMSE� 0.015.
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Technical Details :

Remembering the non-stochastic nature of our simulation model one could
search for a more detailed description of f�  .

For example, if one would use all 8 parameters and their 36 quadratic and
interaction terms, would get R2 � 99.985%and RMSE� 0.0013.

In this case, residual uncertainty would be about a quarter of tb Model 2 but
we omit these components because inessential for the present work.
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Residuals of tb model 2 vs. linear, quadratic and interaction terms. (a) /, (b)
>S, (c) qmax, (d) />S, (e) /qmax, (f) >Sqmax, (g) /2, (h) qmax

2 .
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tb values fitted by model 2 vs. observed.
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Residuals of tb model 2 : (a) normal probability plot; (b) .histogram
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From these figures we see that we have an
almost perfect Gaussian error distribution

with

S no dynamical signal

S low skewness, sk � "0.03

S gaussian kurtosis k�e  � 3.03.

Note that the pure quadratic components

/2 andqmax
2

add very little in terms of variance but they have been retained in the model
because improve both Gaussian fitting and dynamics filtering as shown by
figures above
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Modellin g LUB

Following the approach of previous section we get the following second order
model for L � 100� LUB

L � 5.89�o0.02 dp � 62.6�o0.098 / " 10.0�o0.02 >S " 0.297�o0.0005 qmax

� 0.722�o0.006 b

� 21.0�o0.4 dp/ " 0.0298�o0.002 dpqmax

" 18.0�o0.4 />S " 0.514�o0.008 /qmax � 0.0776�o0.002 >Sqmax

" 6.12�o0.09 >S
2 " 0.00527�o5 � 10"5 qmax

2 � e�o0.56 

This model again has a very good fitting with R2 � 99.12%.
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Residuals of LUB model vs. linear, quadratic and interaction terms. (a) dp, (b)
/, (c) >S, (d) qmax, (e) b, (f) dp/, (g) dpqmax, (h) />S (i) /qmax, (j) >Sqmax, (k) >2, (l)
qmax

2 .
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Nevertheless, from the first plot of figure above, we see that the conditional
variance of e�x   increases with dp.

Moreover, residuals have high tails and high kurtosis, being k�e  � 5.07.

We then fit the skedastic model

h2 � )0 � )1x1 � )2x1
2

and get the following quadratic equation
h�u 2

� 0.0973�o0.021  " 0.389�o0.093 dp � 1.221�o0.087 dp
2

Note that, contrary to regression equation, here dp is the nonzero mean
original parameter.

The heteroskedastic model greatly improves error normality since now we
have k e

h
� 3.02.
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Skedastic function h�dp  for LUB

Moreover this figure shows that after fixing /,>S and qmax, output uncertainty
strongly depend on dp being generally increasing with dp. Hence the
heteroskedastic model gives a further reduction of the output uncertainty
especially for packed column reactors with small particles diameters dp.
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Multivariate re gression

Since the correlation coefficient between the errors of the LUB model and the
tb model 2 is quite small, being "0.109, we can conclude that the residual
uncertainty of the two subsystems is almost independent.
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Results and Discussion
tb Multivariate SI

SI
skedastic 

SI* H-SI
qmax 59.75% 34.01% 34.01% 46.88%
!S 36.05% 19.27% 19.27% 27.66%
0 1.12% 36.47% 36.47% 18.79%
dp 7.26% 0.61% 7.88% 3.94%
b 1.09% 1.09% 0.54%
!S - qmax 2.52% 0.15% 0.15% 1.34%
0���Tmax 0.21% 0.33% 0.33% 0.27%
0���!S 0.11% 0.20% 0.20% 0.16%
dp ��0 0.31% 0.31% 0.15%
dp - qmax 0.03%

Totals 99.77% 99.11% 99.70% 99.74%
R2 99.77% 99.11%
Output Std 0.1025 0.060
Model RMSE 0.015292 0.00023

LUB

Table 2: SA for tb and LUB.
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Technical Details

S The first three lines contain both linear and pure quadratic components.

S The multivariate SI’s are based on the simple average formula and the
weighted averages are not reported here since, in this case, the results
are essentially the same.
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Considerin g the bivariate s ystem alto gether :

S the maximum heavy metal up-take (qmax) is the most important process
parameter

This conclusion is in agreement with those ones reported in similar works
and physically acceptable.

S The biosorbent density (>S) is the second significant parameter.

As also reported by Hatzikioseyian et al. (2001), the increase in density >S

produces an increase in adsorbing material in the fixed bed, improving
both tb and LUB outputs.

Considerin g the output separatel y:

S [ for LUB: the most relevant factor is the fixed bed void degree (/) with
an influence of 36%:

[ for tb: qmax and >S are the most important .
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Summin g up

The characteristics of the biosorbent materials seem to be more important for
the system altogheter than fluid dynamic factors (in the range of the investigated

conditions for the selected equilibrium local model).

This global result is also true for the column working time tb alone

but considering the length of unused bed LUB the void degree �/  is quite
important.
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Conclusions
A standard procedure to evaluate the influence of process parameters on the
performance of fixed bed reactors used to remove heavy metals from
wastewaters by biosorption has been proposed.

The statistical approach is based on Extended Sensitivity Analysis which
generalizes standard SAto cope with heteroskedastic and multi-output
systems.

With this approach, interaction effects can also be estimated.

The influence of the main process parameters on the heavy metal biosorption
has been estimated for design purposes and as a useful tool to plan
experimental runs in terms of experimental error variance.
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