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Motivation I

OUR GOAL:

Evaluation of physically based computer models
for air quality applications is crucial to assist in
control strategy selection. The high risk of
getting the wrong control strategy has costly
economic and social consequences.

The main objective of our work is to statistically
assess the performance of air quality models.

The objective comparison of modeled
concentrations with observed field data provides a
means for assessing model performance.

THE PROBLEM:

To statistically assess the performance of air
quality models we need measures of how well the
model output and real data agree.

e An approach is to use spatio-temporal models
for monitoring data to provide estimates of
average concentrations over grid cells
corresponding to model prediction (Dennis et
al. (1990), Sampson and Guttorp (1998)).
This approach is reasonable when the
monitoring data are dense enough that we
can fit an appropriate spatio-temporal model
to the data. In situations with few and
sparse data points that show a lack of
stationary (eg. CASTNet), the interpolated
grid square averages would be poor because
of the sparseness of the network, so treating
them as ground truth for model evaluation
would be questionable.
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A related problem is that the comparison
does not take into account the uncertainty
in the interpolated values.
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THE SOLUTION:
We develop a new approach to the model

evaluation problem, and show how it can also be
used to remove the bias in model output.

We specify a simple model for both numerical
models predictions and field data in terms of the
unobserved ground truth, and estimate it in a
Bayesian way.

Solutions to all the problems considered here
follow directly. Model evaluation then consists of
comparing the field observations with their
predictive distributions given the output of
numerical models. Bias removal follows from
estimation of the bias parameters in the air
quality model.

The resulting approach takes account of and
estimates the bias in the atmospheric models, the
lack of stationarity in the data, the ways in which
spatial structure and dependence change with
locations, the change of support problem, and the
uncertainty about these factors.
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OUTLINE |

1. Background on Spatial processes.

2. New model for nonstationary environmental
processes.

3. Statistical assessment of model performance.

4. Application.

1. Background on Spatial Statisticsl

Consider a stochastic process {Z(s), s € D}
where D is a subset of R? (d-dimensional
Euclidean space). For example, Z(s) may
represent the concentration of SOy at a specific
location s. Let

p(s) =E{Z(s)}, seD,

denote the mean value at location s. We also
assume that the variance of Z(s) exists for all
seD.

e 7 is second-order stationary if p(s) = p and
cov{Z(s1),Z(s2)} = C(s1 —s2)

where C(s) is the covariance function.
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The covariance provides a measure of
spatial correlation by describing how sample
data are related with distance and direction.

A Gaussian process which is second-order
stationary is also strictly stationary.

Covariance models

Figure 1: Covariance models: Exponential and Gaus-

sian.
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Variogram

o Geostatistical data typically exhibit
small-scale variation that may be modeled
as spatial autocorrelation and incorporated
into estimation procedures. The variogram
provides a measure of spatial correlation by
describing how sample data are related with
distance and direction.

Variogram(x —y) = %Var{Z(x) —Z(y)}
= cov(0) — cov(x — y)

where Z is a second-order stationary process.
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Figure 2: Variogram and Covariance.
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2. New Model for nonstationarity. |

Fuentes (2001, Environmetrics), Fuentes, (2002,
Biometrika)

We represent a nonstationary process Z observed
on a region D as a MIXTURE of orthogonal local
stationary processes.

k

Z(x) =Y Zi(x)wi(x)

i=1

where Si,..., S are well-defined subregions that
cover D, and Z; is a local stationary process in
the subregion S;, w;(x) is a positive kernel
function centered at the centroid of S;.
The nonstationary covariance of Z is defined in
terms of the local stationary covariances of the

processes Z; fori =1,...,k,

k
cov(Z(x), Z(y)) = Y wi(x)wi(y)cov(Zi(x), Zi(y))-
i=1

Assuming a stationary covariance structure
Cp,(x — y) with parameter 8; for each Z; we
obtain,

k
cov(Z(x), 4(y)) = Z wi(x)wi(y)Co,(x — y)-

Generally 8; is a vector with the local values of
the covariance parameters of Z in region S;. The
covariance parameters could also vary
continuously over the domain of interest.

Next, we introduce a generalization of this
nonstationary model using an integral
representation of the process (instead of a sum),
which allows the covariance parameters to vary
continuously on the domain.
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Generalization of the nonstationary model

‘We represent a nonstationary process Z observed
on a region D as a convolution of local stationary
processes:

Z(s) = /D K(s —u)Zg(u)(s)du.

where K is a kernel function and Zg)(s), s € D
is a family of (independent) stationary processes
indexed by 6.

The covariance C(s1,s2;0) of Z is a convolution
of the local covariances Cy(s)(s1 — s2),

0(51752§0) =

/ K(s1 —s)K(s2 —s)Co(s)(s1 — s2)ds.
D
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Two approaches for spatial interpolation

e A geostatistical approach for interpolation.
The predicted value of Z at location sq is
obtained using the traditional kriging
equations with the estimated covariance C.

e A Bayesian approach for spatial interpolation
is recommended, to take into account the
uncertainty about the covariance parameters.
The quantity of interest is the predictive
posterior distribution (ppd) for Z(x¢) given
Z, the observed values of the process Z. The
ppd is obtained by integrating out the
covariance parameters,

P(Z(x0)|Z) / P(Z(x0)(0 Z)p(6]2Z)d6

Hierarchical Bayesian approachl

The parameter function @(u) for u € D, measures
the lack of stationarity of the process Z. If would
be natural to treat 6(u) as a stochastic process,
with correlated errors.

‘We consider a hierarchical Bayesian approach to
model and take into the account the spatial
structure of the parameter @(u) in the prediction
of Z.

Stage 1:

The process Z is as a convolution of local
stationary processes:

Z(s) = /D K(s —u)Zg(u)(s)du.

where K is a kernel function and Zg(s), s € D is
a family of (independent) stationary Gaussian
processes indexed by 6. The kernel K has a
bandwidth h.
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Thus, the distribution of Z given @ and h is
Gaussian:
Z

6, h] is Gaussian
Stage 2:

We propose the following model for the parameter
function 6

6(s) = u(s) + co(s) (1)

The process eg(u) represents some spatially
correlated zero-mean noise, it has zero-mean and
a stationary covariance with parameters ;. The
function u represents the large scale structure, is
a polynomial with coefficients 3. The vector
parameter 3, is unknown.

Thus, we have in stage 2:

(018, o] is Gaussian
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If the goal is to predict Z at a location xg, the
Bayesian solution is the predictive distribution of

Z(x9) given the observations
Z=(Z(s1),---,%4(sn)),

p(Z(x0)|Z) x
/p(Z(xo)\Z,B(u),h)p(()(u),h\Z)dhdo.

an (fibbs sampling approach is used to simulate m
values from the posterior of the parameters 6 and
h (bandwidth of kernel). Thus, the predictive
distribution is approximated by the
Rao-Blackwellized estimator:

p(Z(x0)|Z) =

1 m ) )
- p(Z(x0)|Z,0(w)? for u € D, V)
i=1
where 8(u)(®) for u € D, and h()| constitute the

i-th draw from the posterior distribution.
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3. Evaluation of numerical models |

(Fuentes and Raftery, 2001)

Two sources of information for air fluxes:

I. Point Measures of Pollutant

Concentrations

Atmospheric deposition takes place via two
pathways: wet deposition and dry deposition.
Wet deposition rates of acidic species across the
United States have been well documented over
the last 10 to 15 years; however, comparable
information is unavailable for dry deposition
rates. Since 1990 EPA operates approximately 50
sites through US to establish spatial patterns of
deposition and concentration.

II. Regional Models (Models-3) Estimated
Concentrations

The present generation of regional scale air
quality models can consider land cover, plant
growth rate, topography, and other factors in
estimating pollutant concentrations and fluxes in
a grid.
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SO2 concentrations (CASTNet)

Figure 3: CASTNet weekly concentrations of SO5),
for the week of July 11, 1995.
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SO2 Concentrations
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Figure 4: Output of Models-3, weekly average of
SO, concentrations (ppb), for the week of July 11,
1995. The resolution is 36km x 36km.
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We should not treat CASTNet (Z) measurements
as the "ground truth”. We assume there is some
smooth underlying (but unobserved) field Z(s),
where Z(s) measures the ”true” concentration of
the pollutant at location s. We write

Z(s) = Z(s) + e(s)

where e(s) ~ N(0, 02) represents the
measurement error (nugget) at location s.

Since the output of Models-3 (Z) are not point
measurements but areal estimations in subregions
By, ..., By that cover the domain, D, we have:

Z(B1) :(L(Bl)—O—b/‘ Z(s)ds + 6(By)
JB,

The true underlying process Z is a spatial process
with a nonstationary covariance,

Z(s) = pls) + €(s)

where Z(s) has a spatial trend, u(s), that is a

function of some metereological and geographic
covariates f1,..., fp that are know functions at
some locations s, with unknown coefficients 3 :

w(s) = Bifis)

We assume Z(s) has zero-mean correlated errors
€(s). The process €(s) has a nonstationary
covariance with parameter vector 6 that might
change with location.
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e Evaluation of MODELS-3:
For model evaluation we simulate values of
CASTNet given models-3, from the following
posterior predictive distribution:

P(Z|Z,a=0,b=1).

e Estimating Bias of Models-3:
For bias removal we simulate values of the
parameters a and b from the posterior
distribution:

P(a,b|Z, Z).
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e Air Quality mapping by combining CASTNet
and MODELS-3
If the goal is to get more reliable maps of air
pollution, we could predict the value of Z
(the truth) at location xo given ALL the data
(CASTNet and Models-3), thus we need the
predictive distribution of Z(xg) given the

observations (Z and Z)

For spatial prediction we simulate values of Z
from the posterior predictive distribution:

P(Z|2,7).

4. Application |
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Figure 5: We divided the domain shown in the pre-
vious figure in 9 subregions and we calculated the
empirical semivariograms. There is clear evidence
of lack of stationarity.
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SO2 concentrations (CASTNet)

Figure 6: Weekly average of SOy concentrations
(ppb) at 6 selected CASTNet sites, for the week of
July 11, 1995.
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Posterior distribution for RANGE

Figure 7: Posterior distributions for the range pa-
rameter (km) of the covariance for Models-3 SO,
concentrations, for the week starting July 11, 1995.
At 6 selected locations.
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Posterior distribution for SILL

Figure 8: Posterior distributions for the sill param-
eter of the covariance for Models-3 SOs concentra-
tions, for the week starting July 11, 1995. At the
6 selected locations.
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Sill for SO2
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Figure 9: Map of the modes of the posterior distri-
butions for the sill parameter of the covariance for
Models-3 SO, concentrations, for the week starting
July 11, 1995.
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Predictive distributions

Figure 10: Predictive distributions for the Models-
3 SO, concentrations, at 6 selected locations where
we have CASTNet measurements, for the week
starting July 11, 1995.
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Evaluation of Models-3 Evaluation of Models-3
interpolated output

CASTNet
CASTNet
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Figure 11: The graph on the left shows CASTNet
measurements for the week starting July 11, 1995,
versus the values of Models-3 for the pixels that
are the closest to each CASTNet site, without con-
sidering the change of support. The graph on the
right shows the CASTNet measurements versus the
modes and 90% credible intervals of the predictive
Bayesian distributions derived from Models-3 at
the CASTNet locations.The dotted lines indicate
a 90% confidence region for the CASTNet values.

| site | CASTNet | Models3 | 90%  C.1 ||

ME 0.15 0.33 0.10 0.43
IL 3.29 3.33 2,17 5.03
NC 0.90 5.32 3.67  6.67
IN 3.14 9.59 4.20  20.50
FL 0.57 0.52 0.20  0.80
MI 1.02 1.04 0.53  1.70

TABLE 1. Column 2 are the CASTNet values (Z).
Columns 3-5 show the modes and the corresponding
90% credible intervals of the posterior predictive
distribution P(Z|Z, a =0,b=1) for model validation.
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We could remove the bias in the interpolated
Models-3 values by taking into account the
additive bias measured by a(x) (a polynomial of
degree 4 with coefficients ag) and the
multiplicative bias b.

We simulate values of ap and b from the posterior
distribution P(a,b|Z, Z), at each site, and we
obtained the following adjusted Models-3 values
(adjusted value = ((Models 3) — a)/b) at the 6
selected sites: 0.22, 2.90, 1.67, 2.36, 0.96, and
1.00.

These values are again similar to CASTNet,
especially considering that the uncertainty about
CASTNet is approximately 0.8ppb.

Slide 36




CASTNet values
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Figure 12: CASTNet values of SO2 versus the
mean of the predictive posterior distribution at
each site.

SO2 Concentrations (Bayesian melding)
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Figure 13: Predicted SO concentrations via a
Bayesian melding approach to combine CASTNet
and Models-3 data. This graph shows the mean
of the posterior predictive distribution for the SO5
concentrations.
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Conclusions |

o Nonstationary processes can be modeled as a

convolution of local stationary processes. The
nonstationary covariance is a convolution of
the local stationary covariances.

e Uncertainty in the specification of the
non-stationarity is incorporated by obtaining
the predictive distribution through a
Hierarchical Bayesian model.

o We evaluate air quality models by obtaining

the posterior predictive distribution of the
measurements at the monitoring sites given
the numerical models output.

e We remove the bias the air quality models by
obtaining the posterior distribution of the
bias parameters given the measurements at
the monitoring sites and the numerical
models output.

o We combine data using conditionally
specified spatial models through a
Bayesian melding approach.

e The approach presented in this paper gave us
a good understanding of the spatial structure
of the “true” concentrations of SO5. This
information can be very useful for designing
future data collection. Part of our future
work is to use the findings presented here for
monitoring network design.

Slide 39

Slide 40




