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Norwegian Spring Spawning Herring
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e The entire population of Herring over-winters in
Vestfjord in northern Norway.



Norwegian Spring Spawning Herring

e Big population: approx. 3 herring per inhabitant of
the earth!



Data

e An acoustic measure of the herring abundance was
recorded at 742 data locations in December 1996.
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e The spatial dependence often goes through the con-
necting water body.

e Problem: Complex geometry of the fjord system.

= non-stationary spatial covariance



Water distance

In aquatic studies, spatial interactions may be both
easier to interpret and to quantify by using water
distance (Rathbun 1998) than by using geographic
distance.

Water distance: “the shortest path between those
two sites that may be traversed entirely over water”.
Problem |: water distances may be non-Euclidean

=> covariance and variogram functions may be in-

valid.

Problem Il: calculation of water distances for many
spatial locations is computationally expensive.



Problem |I: non-Euclidean water distance
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Water distance metric and Gaussian covariance func-
tion with a particular parameter set

= the matrix of covariances between these five loca-
tions has negative eigenvalues

= covariance and variogram functions are not neces-
sarily valid.

=> can not use for Kriging.



Spatial model

Assume measurements Z(s;) of spatial random field
Z(s) at locations s;, € G € RY |, i =1,...,n. We
take E[Z(s;)] to be a constant.

Define the covariance function C'(-) as
O(Si — Sj) = COV[Z(SZ), Z(S])]

This means that the covariance depends on the dif-
ference s; — s; only and the process is second-order
stationary. The variogram 2v(-) is

2v(s; — s5) = VAR[Z(s;) — Z(s;)].

Problem: find G and d, to approx. water distance
space.



Water distance approximation

A Euclidean approximation to water distance
= valid variograms and covariograms. Our method:

1. Decompose the coastal domain into a grid based on
convex polygons.

2. Compute the water distances between all grid nodes,
using the grid. = Exact water distance in the grid.

3. Apply Multidimensional scaling to the grid nodes
using these distances. = Approx. water distance.

4. Map the data locations from the original space to
the new Euclidean one by linear interpolation.

Fast and easy to do, especially when you have the grid
in advance.

For new data locations in the grid, you only need to
do the mapping to the Euclidean space (4.).



Grid of convex polygons

Simplified triangular grid of the fjord system (in R?).



Problem Il: Computational efforts

With n data locations, n(n — 1)/2 distances are
needed.

With our method we compute the distances in the
grid and do the Multidimensional scaling once

= most of the computational burden is dependent
on the size of the grid only.

Typical herring survey in Vestfjord: n =~ 20,000
(each year).

The exact sampling locations vary between years.



What is Multidimensional scaling?

Distance matrix D (dim(D) = m x m); with all
distances between the m grid locations.

D is symmetric with d,,, = 0 and d,s > 0 for r # s.

Multidimensional scaling may be used for construct-
ing a map of the data locations in a k-dimensional
Euclidean space from D, where £k < p < m.

p is # of pos. eigenvalues of a transformation of D.

How do we choose k7?7

e |deally, we would like to use £ = p
= the best Euclidean approximation of the space.

e In practise, £ = 2 or £k = 3 may be the easiest to
work with and visualise.

e You can use measures based on the relative values
of the eigenvalues.
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Alternative approaches

e Sampson & Guttorp (1992) used non-metric multi-
dimensional scaling of the spatial covariance matrix.
Based on repeated observations.

e Some non-stationary spatial models fitted to obser-
vations from a single realisation of a spatial process
include

— moving-window method of Haas (1995)
— kernel smoothing approach of Higdon (1998) and
Fuentes (2001)
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Results

Define the sample mean absolute distance error e(s;)

as
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k = 2:
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Vestfjord

We found that £ = 2 gave a quite good representation:
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Transformed (triangular grid version of the) fjord.
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Data locations in the transformed triangular grid.
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Empirical variograms

Calculation of the exact water distances is demanding

= used only a subset of the data set in the example.

Denote by

e 295 the estimated variogram using our proposed
approximate water distance with dimension £ = 2

e 2919 the estimated variogram using our proposed
approximate water distance with dimension £ = 10

We fitted variograms of the exponential class to the
data with Ordinary Least Squares (OLS).
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Empirical variograms

Variogram
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249 and 2419. The two lines represent variograms of
the exponential class fitted to the data with OLS.

e Quite similar variograms.

e Largest difference between these two at the small
lags.

= May be important in spatial prediction.
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Conclusion

Multidimensional scaling may be used as a tool for
approximating the water distance metric.

Ensures valid spatial covariance models and may
significantly increase computational efficiency.

The water distance metric may be particularly im-
portant for problems with long-range dependence.

The application to herring data from Vestfjord sug-
gests that the geometry can be represented by a
two-dimensional deformed space.
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New locations
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Covariance in one particular point, £ = 10
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