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Digital Airborne Imaging Spectrometer

Wavelength range # Bands Band width  Detector
0.4-1 pum 32 12-35 nm Si
1.5-1.8 um 8 36-56 nm InSb
2-2.5 um 32* 20-40 nm InSb
3-5 um (1) 2.0 um InSb
8.7-12.3 um (6) 0.6-1 um MCT

Spectral band characteristics of the DAIS7915 (Strobl et al.,
1996)

e pixels: 6 x 6 m, 71 bands useful



Biomass data

For 30 x 30 m plots, estimated from:
number of trees, stem diameters, tree height
aggregated over trees, shrubs, plants

data collection random stratified: forest, maquis,
garrigue

81 observations within flight strip: y = f(X) + e
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Previous work: mapping biomass

stepwise forward selected X;: bands at 636, 773,
895, 985, 1004, 1563, 2199 and 2343 nm.

correlations over .99: bands 773, 985, and 2343
were dropped manually

y(s) = Bo+ > iy BiXi(s) + e(s)
e(s) second order stationary =- kriging/BLUP
regression coefficients: -29, -44, 73, -74, 76

problem: multiple collinearity

— stepwise variable selection is unstable
— variable selection: can/should it be avoided?



Methods

Principal component regression (PCA)
Partial least squares (PLS)
Ridge regression (RR)

Neural network (NN)



Principal component regression

ldea:

e find linear combinations f; = ) . o, X; that

— explain maximum variability of X
— are orthogonal (uncorrelated)

e use a small number of f; as regressors
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Partial least squares

ldea:

e find linear combinations g; = > . ;X that

— maximally correlate with y and explain
maximum variability of X
— are orthogonal (uncorrelated)

e use a small number of g; as regressors



Ridge regression

OLS: 5= (X'X)" X'y
ridge: 8= (X'X + M)~ X'y
RSS(\) = (y — XB)'(y — XB) + \3'f3

large X shrinks coefficients to zero

effective degrees of freedom df(\) = f(X, \)
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Neural network

picks up nonlinear dependencies of log(biomass)
to reflectances

single hidden layer, feed-forward network (Ripley’s
nnet )

71 inputs (X;), 1 output (y), 5, 8 or 12 hidden
layers

combines several sigmoid curves of linear
combinations of the X

find optimal weight decay factor to avoid
overfitting by CV

(optional: skip layer connection)



Results

e y and X, scaled to zero mean, unit std.dev.

e 10-fold cross validation: detects overfitting

1 n
RMSE = | =S (0; — ;)2
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RMSE 10-fold CV
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Response Variable
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Conclusion

e PLS and ridge regression both solve the problem

e although the reflectance data seem to lie in
a plane, ridge and PLS perform best in a 7-
dimensionsional subspace



Discussion

e Rather poor overall performance:

— do other physical factors dominate image
variability?

— do images still need more correction?

— poor quality of data (measurement errors)?

— spatial matching field to image data?
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Extensions

e collect more/other field data

e extend X:

NIR — RED

NDVI =
NIR + RED

— soil and geology

e extend method space (e.g., use k-NN or SVM’s)



