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Motivation: Floods and Non-stationarity

• The assumption that floods are IID in time is at odds with the fact that

climate naturally varies at all scales.

– Evidence of regime-like or quadi-periodic behavior and systematic trends

in climate variables over the last century.

– Attributing cause for these non-stationarities in a finite record is difficult,

given the underlying dynamics.
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Motivation: California Flooding and Precipiation

• Catastrophic floods and trends may be understood in terms of large-scale

circulation pattern anomalies.

– Vulnerability of California to extreme flooding events.

– Tropical Pacific processes (ENSO, MJO) may influence precipitation.

– Large fraction of winter precipitation related to extratropical processes;

such as PNA and TNH.

– Here we investigate Pacific/North American index and CA precipitation.

• Utilize the non-decimated discrete wavelet transform (MODWT) to

determine dominant time scales between processes.

– Power of discrimination using multiscale quantiles.

– Wavelet cross-correlation within scales and between scales.
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Introduction to Orthonormal Transforms

1. Orthonormal discrete Fourier transform (DFT) of X (of length N):

F = FX

• F is an N ×N matrix of complex exponentials.

• Decomposition of X is on a frequency by frequency basis.

• FFT: O(N logN) operations.

2. Orthonormal discrete wavelet transform (DWT) of X (of length N):

W =WX

• W is an N ×N matrix of wavelet functions.

• Decomposition of X is on a scale by scale basis.

• Pyramid algorithm: O(N) operations.
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DWT: Filtering Interpretation

• Let h = (h0, . . . , hL−1) be the vector of wavelet (high-pass) filter

coefficients (e.g., Daubechies, 1992).

• Let g = (g0, . . . , gL−1) be the vector of scaling (low-pass) filter coefficients.

• Graphical representation of the DWT applied to a dyadic length vector X:
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The length N vector X has been convolved with the filter h, whose discrete

Fourier transform is H(f), and downsampled by two in order to produce a

new vector W of length N/2 (similarly for g).
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DWT: Properties

• Downsampling operation may be omitted to produce a redundant (maximal

overlap) DWT.

– N MODWT coefficients per scale.

• Wavelet coefficients at level j are associated with changes of length

τj = 2j−1 or oscillations of length 2τj = 2j .

• Approximate compensation for phase shifts so that wavelet coefficients may

be aligned with the original observations.

• Energy preserving transform: var{Xt} =
∑J
j=1 var{Wj,t}+ var{VJ,t}.

• Length of wavelet filter may be adjusted to balance between frequency

localization, boundary affects, smoothness, vanishing moments, etc.
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DWT: Wavelet Cross-Correlation

• Let Xt and Yt be two time series of interest.

• The wavelet correlation of {Xt, Yt} at scale τj is defined to be:

ρXY (τj) =
cov{˜W (X)

j,t ,˜W
(X)
j,t }

σX(τj) · σY (τj)
,

where σ2
X(τj) = var{˜W (X)

j,t } is the wavelet variance for scale τj .

• Wavelet cross-correlation: allow time series to be delayed by an integer δ.

• Compare wavelet coefficients across scales (multiscale wavelet cross-

correlation, MWCC).

GSP–NCAR 8 B. Whitcher



Climate and Floods: Precipitation Data

• Central California has a modified Mediterranean climate.

• Major flooding occurs predominantly in the middle of the wet season.

• Floods are produced by strong onshore atmospheric flow patterns.

• Snowmelt is a contributing factor, but rain is the main ingredient.

• California precipitation data consists of 185 rain gauges.

– 3-day running totals of precipitation from Jan. 1948 through Dec. 1999.

– Computed quantiles (5%, 25%, 50%, 75%, 95%) over all stations.

– Also have fraction of stations with “significant” rainfall.

– Only looked at meteorological winters defined to be DJF.
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Climate and Floods: Pacific/North American (PNA) Index

• Daily PNA index is constructed by projecting the daily 500mb height

anomalies over the N. Hemsiphere onto the loading pattern of the PNA.

• The PNA pattern is one of the most prominent modes of low-frequency

variability in the N. Hemisphere extratropics.

• The time series of the PNA pattern also indicates substantial interseasonal,

interannual and interdecadal variability.

• Daily PNA index was obtained from NOAA/CPC.

– Observations from Jan. 1948 through Feb. 2002.

– Only looked at meteorological winters defined to be DJF (1948-1999).
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Climate and Floods: Results

• Partition multiscale precipitation by extreme swings in PNA:

– Positive PNA values associated with multiscale precipitation amounts

centered away from zero.

– Negative PNA values associated with small multiscale precip amounts.

• PNA leading precipitation at (j, δ) in wavelet cross-correlation implies:

– PNA mode is forcing precipitation at scale τj .

– Both PNA and precipitation are forced by MJO or other remote forcing.

• 1986 and 1997 are major flood years:

– Scale 2 (1986, 1997) and scale 3 (1986) of PNA leads precipitation

anywhere from 3-7 days.

• 1988 is a major MJO year:

– Several scales of PNA lead CA precipitation (τ3) mainly from 2-6 days.
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Discussion

• Explored multi-scale relationships between precipitation and climate

indicator (PNA index).

• Future Directions:

– Granger causality: lagged values of A should help predict current values

of B and lagged values of B should not predict current values of A.

– Additional variables? streamflow, SOI, MJO, etc.

– Start looking at time trends across time scales.

– Want to provide insight for flood risk prediction.
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