Course Syllabus: BIOSTAT/STAT 535 Statistical Computing Autumn Quarter 2008

Adrian Dobra, Assistant Professor, Statistics, CS&SS and BNHS adobra@u.washington.edu

September 30, 2008

Class room

The class meets Tuesday and Thursday between 11:30 am and 12:50 pm in MGH 254.

Office Hours

Wednesdays between $9:00\mathrm{am}$ and $12:00\mathrm{pm}$ in Padelford Hall C-14B, or by appointment.

Textbooks

Robert, C. .P. and Casella, G. (2004). *Monte Carlo Statistical Methods* (Second Edition). Springer-Verlag.

Whittaker, J. (1990). Graphical Models in Applied Multivariate Statistics. New York: Wiley.

Liu, J. S. (2001). Monte Carlo Strategies in Scientific Computing. Springer-Verlag.

Prerequisites

Students are expected to have a basic understanding of statistics. Some familiarity with Markov chains is welcomed but not required. Students need to be proficient in a high level programming language such as R, Matlab or C++.

Class requirements

The students will have to complete four homeworks (70% of final grade) and a final take-home exam (30% of the grade).

Preliminary schedule

Week 1. Foundations. Reading: Robert-Casella, chapters 1, 2; Liu, chapters 1, 2.

Week 2. Monte Carlo integration. Reading: Robert-Casella, chapters 3, 4.

Week 3. Monte Carlo optimization. Reading: Robert-Casella, chapter 5; Liu, chapter 10.

Week 4. Sequential Monte Carlo. Reading: Liu, chapter 4.

Week 5. The Metropolis-Hastings algorithm. Reading: Robert-Casella, chapter 7; Liu, chapter 5.

Week 6. The Gibbs sampler. Reading: Liu, chapter 6; Robert-Casella, chapters 9, 10.

Week 7. Foundations of graphical models: graph theory, Markov properties of graphs. Reading: Whittaker, chapters 1, 2, 3, 12.

Week 8. Graphical Gaussian models. Reading: Whittaker, chapter 6.

Week 9. Graphical log-linear models. Reading: Whittaker, chapters 7, 8.

Week 10. Other topics. Reading: Whittaker, chapters 9, 10, 11.