
The Newton Raphson Algorithm for Function
Optimization

1



1 Introduction

Throughout this course we will be interested in calculating maximum likelihood estimates
(MLEs). Such estimates are often extremely complicated nonlinear functions of the observed
data. As a result, closed form expressions for the MLEs will generally not exist for the models
we are working with.

The Newton Raphson algorithm is an iterative procedure that can be used to calculate
MLEs. The basic idea behind the algorithm is the following. First, construct a quadratic
approximation to the function of interest around some initial parameter value (hopefully
close to the MLE). Next, adjust the parameter value to that which maximizes the quadratic
approximation. This procedure is iterated until the parameter values stabilize.

These notes begin with the easy to visualize case of maximizing a function of one variable.
After this case is developed, we turn to the more general case of maximizing a function of k
variables.

2 The Newton Raphson Algorithm for Finding the Max-

imum of a Function of 1 Variable

2.1 Taylor Series Approximations

The first part of developing the Newton Raphson algorithm is to devise a way to approximate
the likelihood function with a function that can be easily maximized analytically. To do this
we need to make use of Taylor’s Theorem.

Theorem 1 (Taylor’s Theorem (1 Dimension)). Suppose the function f is k + 1 times
differentiable on an open interval I. For any points x and x + h in I there exists a point w
between x and x + h such that

f(x + h) = f(x) + f ′(x)h +
1

2
f ′′(x)h2 + · · ·+ 1

k!
f [k](x)hk +

1

(k + 1)!
f [k+1](w)hk+1. (1)

It can be shown that as h goes to 0 the higher order terms in equation 1 go to 0 much
faster than h goes to 0. This means that (for small values of h)

f(x + h) ≈ f(x) + f ′(x)h

This is referred to as a first order Taylor approximation of f at x. A more accurate approx-
imation to f(x + h) can be constructed for small values of h as:

f(x + h) ≈ f(x) + f ′(x)h +
1

2
f ′′(x)h2

This is known as a second order Taylor approximiation of f at x.
Note that the first order Taylor approximation can be rewritten as:

f(x + h) ≈ a + bh

2



where a = f(x) and b = f ′(x). This highlights the fact that the first order Taylor approxi-
mation is a linear function in h.

Similarly, the second order Taylor approximation can be rewritten as:

f(x + h) ≈ a + bh +
1

2
ch2

where a = f(x), b = f ′(x), and c = f ′′(x). This highlights the fact that the second order
Taylor approximation is a second order polynomial in h.

2.2 Finding the Maximum of a Second Order Polynomial

Suppose we want to find the value of x that maximizes

f(x) = a + bx + cx2.

First, we calculate the first derivative of f :

f ′(x) = b + 2cx

We know that f ′(x̂) = 0, where x̂ is the value of x at which f attains its maximum. In other
words, we know that

0 = b + 2cx̂.

Solving for x̂ we find that x̂ = − b
2c

. The second order condition is f ′′(x) = 2c < 0. This
implies that f(− b

2c
) will be a maximum whenever c < 0.

2.3 The Newton Raphson Algorithm

Suppose we want to find the value of x that maximizes some twice continuously differentiable
function f(x).

Recall

f(x + h) ≈ a + bh +
1

2
ch2

where a = f(x), b = f ′(x), and c = f ′′(x). This implies

f ′(x + h) ≈ b + ch.

The first order condition for the value of h (denoted ĥ) that maximizes f(x + h) is

0 = b + cĥ

Which implies ĥ = − b
c
. In other words, the value that maximizes the second order Taylor

approximation to f at x is

x + ĥ = x− b

c

= x− 1

f ′′(x)
f ′(x)

3



With this in mind we can specify the Newton Raphson algorithm for 1 dimensional
function optimization.

Algorithm 2.1: NewtonRaphson1D(f, x0, tolerance)

comment: Find the value x̂ of x that maximizes f(x)

i← 0
while |f ′(xi)| > tolerance

do

{
i← i + 1
xi ← xi−1 − 1

f ′′(xi−1)
f ′(xi−1)

x̂← xi

return (x̂)

Caution: Note that the Newton Raphson Algorithm doesn’t check the second order
conditions necessary for x̂ to be a maximizer. This means that if you give the algorithm a
bad starting value for x0 you may end up with a min rather than a max.

2.4 Example: Calculating the MLE of a Binomial Sampling Model

To see how the Newton Raphson algorithm works in practice lets look at a simple example
with an analytical solution– a simple model of binomial sampling.

Our log-likelihood function is:

`(π|y) = y ln(π) + (n− y) ln(1− π)

where n is the sample size, y is the number of successes, and π is the probability of a success.
The first derivative of the log-likelihood function is

`′(π|y) =
y

π
+ (n− y)

−1

1− π

and the second derivative of the log-likelihood function is

`′′(π|y) = − y

π2
− n− y

(1− π)2
.

Analytically, we know that the MLE is π̂ = y
n
.

For the sake of example, suppose n = 5 and y = 2. Analytically, we know that the MLE
is π̂ = y

n
= 0.4. Let’s see how the Newton Raphson algorithm works in this situation.

We begin by setting a tolerance level. In this case, let’s set it to 0.01 (In practice you
probably want something closer to 0.00001). Next we make an initial guess (denoted π0) as
to the MLE. Suppose π0 = 0.55. `′(π0|y) ≈ −3.03 which is larger in absolute value than our
tolerance of 0.01. Thus we set

π1 ← π0 −
1

`′′(π0|y)
`′(π0|y) ≈ 0.40857.

4



Now we calculate `′(π1|y) ≈ −0.1774 which is still larger in absolute value than our
tolerance of 0.01. Thus we set

π2 ← π1 −
1

`′′(π1|y)
`′(π1|y) ≈ 0.39994.

`′(π2|y) is approximately equal to 0.0012 which is smaller in absolute value than our
tolerance of 0.01 so we can stop. The Newton Raphson algorithm here returns a value of
p̂i equal to 0.39994 which is reasonably close to the analytical value of 0.40. Note we can
make the Newton Raphson procedure more accurate (within machine precision) by setting
the tolerance level closer to 0.

3 The Newton Raphson Algorithm for Finding the Max-

imum of a Function of k Variables

3.1 Taylor Series Approximations in k Dimensions

Consider a function f : Rk → R that is at least twice continuously differentiable. Suppose
x ∈ Rk and h ∈ Rk. Then the first order Taylor approximation to f at x is given by

f(x + h) ≈ f(x) +∇f(x)′h

and the second order Taylor approximation to f at x is given by

f(x + h) ≈ f(x) +∇f(x)′h +
1

2
h′D2f(x)h

where ∇f(x) is the gradient (vector of first derivatives) f at x, and D2f(x) is the Hessian
(matrix of second derivatives) of f at x.

3.2 Finding the Maximum of a Second Order Polynomial in k

Variables

Consider
f(x) = a + b′x + x′Cx

where a is a scalar, b and x are k-vectors, and C is a k × k symmetric, negative definite
matrix. The gradient of f at x is

∇f(x) = b + 2Cx

Since the gradient at the value that maximizes f will be a vector of zeros we know that the
maximizer x̂ satisfies

0 = b + 2Cx̂

Solving for x̂ we find that

x̂ = −1

2
C−1b.

Since C is assumed to be negative definite we know that this is a maximum.

5



3.3 The Newton Raphson Algorithm in k Dimensions

Suppose we want to find the x̂ ∈ Rk that maximizes the twice continuously differentiable
function f : Rk → R.

Recall

f(x + h) ≈ a + b′h +
1

2
h′Ch

where a = f(x), b = ∇f(x), and C = D2f(x). Note that C will be symmetric. This implies

∇f(x + h) ≈ b + Ch.

Once again, the first order condition for a maximum is

0 = b + Cĥ

which implies that
ĥ = C−1b

In other words, the vector that maximizes the second order Taylor approximation to f at x
is

x + ĥ = x−C−1b

= x−
(
D2f(x)

)−1∇f(x)

With this in mind we can specify the Newton Raphson algorithm for k-dimensional
function optimization.

Algorithm 3.1: NewtonRaphsonKD(f,x0, tolerance)

comment: Find the value x̂ of x that maximizes f(x)

i← 0
while ‖∇f(xi)‖ > tolerance

do

{
i← i + 1

xi ← xi−1 − (D2f(xi−1))
−1∇f(xi−1)

x̂← xi

return (x̂)

6




