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Regressions by Leaps and Bounds 

George M. Furnival 
School of Forestry, Yale University 

New Haven, Connecticut 

and Robert W. Wilson, Jr. 
USDA Forest Service 

Northeastern Forest Experiment 
Station 

This paper describes several algorithms for computing the residual sums of squares 
for all possible regressions with what appears to be a minimum of arithmetic (less than 
six floating-point operations per regression) and shows how two of these algorithms 
can be combined to form a simple leap and bound technique for finding the best subsets 
without examining all possible subsets. The result is a reduction of several orders of 
magnitude in the number of operations required to find the best subsets. 
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1. INTRODUCTION 

An investigator involved in a multiple regression 
analysis with k independent variables often suspects, 
and even hopes, that a subset of these variables 
may adequately explain his data. It may well be 
that the main purpose of the investigation is simply 
to identify the factors of importance in some 
process or phenomenon. Subset selection is also 
employed when the goal of the analysis is prediction 
because the full equation on all k variables is often 
unstable. The ridge regression approach of Hoerl 
and Kennard (1970) may be preferable here but 
the elimination of variables is an attractive strategy 
when costs of measurement are large. 

Many of the criteria which have been suggested 
for use in identifying the 'best' subset are monotone 
functions of the residual sum of squares (RSS) 
for subsets with the same number of independent 
variables (Hocking, 1972). Hence, the problem of 
finding the 'best' subset can often be reduced to the 
problem of finding those subsets of size p, p = 

1, 2 ... k - 1, with minimum RSS. The PRESS 
statistic described by Allen (1971) is an exception, 
but the adjusted R-square, the minimum mean 
square residual, and the Cp statistic of Mallows 
(1966; also described in Draper and Smith, 1966) 
are all monotone functions of the RSS. 

The search for the subsets with minimum RSS 
can be approached in a straight forward manner 
by computing all possible regressions but the amount 
of computation required can be formidable. The 
number of possible subsets increases exponentially 
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with k and the number of operations (multiplications 
and divisions) required to invert the moments 
matrix associated with each subset is of order k3. 
The cost in computer time is large enough to make 
the procedure impractical for even moderate values 
of k; hence it is not surprising to find a number of 
investigators engaged in (1) attempts to reduce 
the amount of computation involved in examining 
a subset and in (2) developing procedures for 
finding the best subsets without examining all 
possible subsets. 

The present paper is concerned with both ap- 
proaches to computational efficiency. We will 
describe several algorithms for computing the 
residual sums of squares for all possible regressions 
with what we believe to be a minimum of arithmetic, 
and we will show how two of these algorithms can 
be combined to form a leap and bound technique 
for finding the best subsets without examining all 
possible subsets. 

2. ALL POSSIBLE REGRESSIONS 

Garside (1965) and Schatzoff, Fienberg and 
Tsao (1968) have described algorithms for com- 
puting all possible regressions which are much 
superior to the naive approach involving the direct 
inversion of the moments matrix associated with 
each subset of independent variables. The average 
number of operations per regression for the direct 
approach is of order k3 whereas both Garside and 
Schatzoff achieve an order of k2 by repeated ap- 
plication of an ingenious technique for modifying 
one inverse to produce another. 

Although the two algorithms are quite similar, 
the one developed by Schatzoff et al. requires less 
than half as much computation as that described 
by Garside. The reduction is achieved by taking 
advantage of the symmetry of the moments matrices 
and by the deletion of unneeded rows and columns 



G. M. FURNIVAL AND R. W. WILSON, JR. 

as the successive inverses are computed. A further 
reduction of 3 or more, depending on the size of k, 
can be obtained (Furnival, 1971) by abandoning 
the idea of computing each new inverse from its 
immediate predecessor. More rows and columns 
can be deleted and a corresponding gain in efficiency 
achieved by returning to inverses produced in 
earlier stages of the computations. 

Unfortunately, we have now arrived at what 
appears to be a dead end. The number of operations 
per regression is still of order k2 and it does not 
seem possible to generate the 2k - 1 inverses with 
less computation. However, the limiting word here 
is inverses. If we are satisfied with less output for 
each regression, further savings are possible. We 
can, for example, compute the regression coeffi- 
cients, their variances and the residual sum of 
squares with a number of operations per regression 
which is of order k and, if we are satisfied with 
only the residual sum of squares, the number of 
operations per regression can be reduced to slightly 
less than six (Furnival, 1971). 

2.1 The Matrix Operators. 
Several authors (Beaton, 1964; also quoted in 

Schatzoff et al, 1968) have described matrix op- 
erators which can be conveniently used in computing 
full inverses for all possible regressions. We will 
describe two additional operators. The first, which 
is often called Gaussian elimination, produces only 
residual sums of squares. The second, which we will 
call a semi-sweep, produces regression coefficients 
and the diagonal elements of the inverses as well 
as the RSS. 

Both of our operators assume a (k + 1) X (k + 1) 
product (or correlation) matrix with row and column 
k + 1 containing the products associated with the 
dependent variable. We begin with the matrix 
stored in the first block of a three-dimensional 
array A(L,I,J) where L,I, and J are the block, 
row and column indices. Then at each step of our 
procedure we produce a submatrix containing the 
statistics for a subset regression by pivoting with 
one of our matrix operators on either the original 
matrix in block one or some submatrix stored in 
another block as the result of a previous pivot. 

An explicit definition of our version of Gaussian 
elimination is given in the following Fortran sub- 
routine: 

SUBROUTINE GAUSS (IB, IS, IP, A, KP) 
LB = IP + 1 
1)0 1 L = LB, KP 
A(IS, IP, L) = A(IB, IP, L)/A(IB, IP, IP) 
I)O 1M = L, KP 

1 A(IS, L, M) = A(IB, L, M) 
- A(IB, IP, M)*A(IS, IP, L) 

RETURN 

1 
2 
3 
4 
5 

6 
7 

The variable arguments are IB, the index of the 
source block, IS, the index of the storage block and 
IP, the index of the pivot row and column. A is 
the three dimensional storage array and the value 
of KP is k + 1. The subroutine operates only on 
the upper half of the symmetric matrix and only on 
those rows and columns with indices greater than 
or equal to IP. At the conclusion of a pivot or 
elimination, the element A(IS,KP,KP) contains 
the sum of squares of residuals (RSS) for one of 
the subset regressions. 

The semi-sweep operator requires a list, IND, 
of the previous pivots on a submatrix and, since 
it will not always be convenient for us to begin 
with the first element of IND in storing these 
pivot indices, we also include in the calling sequence 
IA, the location in IND of the first pivot index 
and IZ, the location of the last pivot index. 

SUBROUTINE 
SEMI (IB, IS, IP, A, KP, IND, IA, IZ) 

A(IS, IP, IP) = 1.0/A(IB, IP, IP) 
CALL GAUSS (IB, IS, IP, A, KP) 
IF (IA.GT.IZ) TO TO 2 
LB = IP + 1 
DO 1 L = IA, IZ 
B = A(IB, IND(L), IP)/A(IB, IP, IP) 
A(IS, IND(L), IND(L)) = A(IB, IND(L), 

IND(L)) + B*A(IB, IND(L), IP) 
DO 1 M = LB, KP 

1 A(IS, IND(L), M) = A(IB, IND(L), M) 
- B*A(IB, IP, M) 

2 RETURN 

1 
2 
3 
4 
5 
6 
7 

8 
9 

10 
11 

The arguments IB,IS,IP,A and KP are as defined 
for GAUSS. Statements 5-10 operate above the 
pivot row; the diagonal elements are processed by 
statement 8 and the elements to the right of the 
pivot column by statements 9 and 10. The major 
difference between our semi-sweep and a full sweep 
is that we do not operate on off-diagonal elements 
to the left of the pivot column. 

At the conclusion of a pivot, the element 
A(IS,KP,KP) again contains the sum of squares 
of residuals for a subset regression. In addition, the 
elements A(IS,I,I) and A(IS,I,KP) contain, re- 
spectively, the diagonal element of the inverse 
and the regression coefficient associated with the 
I-th independent variable. The off-diagonal elements 
of the inverse are not computed. 

2.2 The regression tree. 

The sequences of pivots utilized in our approach 
to the computation of all possible regressions are 
derived from the binary tree of Figure 1. At the 
root of the tree is the original matrix and at each 
interior node a submatrix derived from the original 
matrix by a series of pivots (solid lines) and deletions 
(dotted lines). Finally, each terminal node or leaf 
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2 

3.12 

123 

3.1 

\ 

31 
\ 

3.1 

.13 

23 

3.2 

.3 Null 

FIGURE 1-The regression tree 

represents one of the 2k possible subset regressions 
including the null regression. 

The labeling of the nodes utilizes a dot notation 
similar to that employed for partial correlation 
coefficients. The integers listed before the dot are 
the subscripts of independent variables present in 
the submatrix on which pivots have not yet been 
performed; the subscripts following the dot cor- 
respond to variables on which pivots have been 
performed. Missing subscripts indicate that the 
rows and columns associated with those variables 
have been deleted in deriving the submatrix from 
the original matrix. Thus, the submatrix 3.1 has 
been obtained from the original matrix by pivoting 
on X(1) and deleting X(2). A row and column 
associated with the dependent variable is, of course, 
always present. 

.123Q 

/ ^< / \ 

.1234 

/.1 
.1234 .124 

The tree is constructed by beginning at the 
root and 'splitting' the matrix into two new sub- 
matrices-one obtained by pivoting on the first 
variable of the matrix, the other by deleting the 
row and column associated with that variable. 
The process is repeated for the submatrices until all 
variables have been treated either by pivoting or 
by deletion. 

The binary nature of the tree can be used as the 
basis for an argument that our approach to all 
possible regressions is at least as efficient as any 
other procedure utilizing a sequence of Gaussian 
eliminations. We argue that there must be at least 
one pivot on the full matrix and, without loss of 
generality, assume that this pivot is performed on 
variable one. The result is a k - 1 variable sub- 
matrix conditioned on X(1) and it is obvious that 

.1234 

.2i 

/ 
/ 

I- 

/ 
.134 

.134 

/ 1 / . 

.14 .231 

.234 

// 
/ 

/ 

4 .24 

34 . 

.34 

/ 
/ 

.34 .4 

FIGURE 2-The bound tree 
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all regressions containing X(1) can be derived more 
easily from this submatrix than from the original 
matrix. The remaining regressions, those without 
X(1), can clearly be obtained from the other half 
of the split-that is, from the k - 1 variable sub- 
matrix formed by deleting X(1) from the full 
matrix-just as easily as from the full matrix. We 
can, therefore, proceed recursively by applying our 
argument calling for at least one pivot on the full 
matrix to the submatrices and, finally, after the 
k-th round of splits, we arrive at the residual sums 
of squares for the 2k - 1 regressions of the problem 
with the knowledge that the amount of computation 
involved could not be reduced by using some other 
pattern of pivots and deletions. 

Pivots will have been performed on one k-variable 
matrix, two (k - 1)-variable matrices and so on 
down to 2k- one-variable matrices. Thus, one- 
half of the 2k - 1 regressions will have been com- 
puted by pivoting on submatrices containing only 
one independent variable. 

It might appear that the tree specifies a rigid 
order of computation but, in fact, quite a bit of 
flexibility is permitted. Figure 3 gives a condensed 
version of a four-variable tree with the dotted 
lines omitted. Deletions are now implied and 
interior nodes as well as terminal nodes represent 
regressions. The tree can be traversed in any 
'biologically feasible' order-the only restraint is 
that a father be 'born' before his son. 

The most obvious approach is to search the tree 
horizontally, level by level, from top to bottom. 

This procedure produces the regressions in a con- 
venient and natural order-all one-variable regres- 
sions followed by all two-variable regressions and 
so forth as shown in Table 1. The drawback is that 
all of the submatrices produced in the traverse of a 
level must be stored until they in turn have been 
utilized in the pivots required for the traverse of 
the next level. 

Much less storage (no more than k + 1 storage 
blocks) is required if the tree is searched vertically 
branch by branch and there are at least three useful 
variations here. The first is obtained by beginning 
at the root and moving from father to older son 
at an interior node. At a terminal node, the move 
is to the next younger brother, or if there is no 
brother, to the father's next younger brother or, 
if there is no remaining uncle, to the grandfather's 
next younger brother and so on as necessary. The 
process ends with a return to the root and the 
regressions are produced in a dictionary-like or 
lexicographic order (Table 1). 

The second variation is obtained by applying the 
vertical search procedure just described to the 
tree in Figure 4 which is nothing more than the 
mirror image of Figure 3 with the indexing of the 
variables reversed. The regressions are produced 
in what we refer to as 'binary' order (Table 1). 
That is, if the regressions are numbered with k- 
digit binary integers in the order in which they are 
calculated, then the variables present in a regression 
can be determined from the bit pattern of the 
integer as illustrated by the following series: 

1234 

234.1 

34.12 

.n 
4.123 .124 

34.2 

4.13 .14 4.23 .24 

.134 .234 

4.3 .4 

.34 

.1234 

FIGURI: 3-The natural and lexicographic tree 
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TABLE --Sequences of Regressions 

Natural Lexicographic Binary Familial 

1 
2 
3 
4 

12 
13 
14 
23 
24 
34 

123 
124 
134 
234 

1234 

1 
12 

123 
1234 
124 
13 

134 
14 
2 

23 
234 
24 

3 
34 

4 

Binary 
Integer 

0001 
0010 
0011 
0100 

1 
2 

12 
3 

13 
23 

123 
4 

14 
24 

124 
34 

134 
234 

1234 

1 
2 
3 
4 

12 
13 
23 

123 
14 
24 
34 

124 
134 
234 

1234 

Regression 
Variables 

1 
2 

12 
3 

Our final method of traversing the regression tree 
is again applied to Figure 4 and is something of 
a hybrid with both horizontal and vertical elements. 
We again move from father to older son as pre- 
viously described but, when a node is visited, the 
sons of that node, not the node itself, are listed in 
order of age from oldest to youngest. The result is 
sometimes described as familial order since all the 
siblings of a family are listed together. Again k + 1 
storage blocks are required; the storage can be this 

small only because there are never more than 
k - r + 1 sons in a family in the r-th generation. 

2.3 Programming. 

Algorithms for traversing the regression tree in 
natural, lexicographic, binary and familial order 
will be given in the form of short Fortran programs. 
In principle, we could employ either our semi-sweep 
or Gaussian elimination or, for that matter, the 
Beaton sweep, in any of the four algorithms. How- 
ever, in our Fortran implementations of the binary 
and familial traverses, the list of previous pivots 
required for the sweep operators is not produced 
as an integral part of the programs. 

It is not necessary in the programming of the 
traverses to make explicit provision for the dele- 
tions of Figure 1. The rows and columns to be 
deleted before a pivot are always those with sub- 
scripts greater than the index of the last previous 
pivot and less than the index of the up-coming 
pivot. Hence, these deletions are performed auto- 
matically by GAUSS which operates only on those 
rows and columns with subscripts greater than or 
equal to the pivot index. SEMI accomplishes the 
same purpose by utilizing a list of previous pivots 
to limit its operations. 

The sequence of pivots employed in the natural 
traverse is conceptually quite simple. We begin 
with the original matrix and pivot on each row in 
turn beginning with the first. Each pivot produces 
a submatrix and we pivot in turn on the remaining 
rows of these submatrices and so on until the sub- 
matrices have been exhausted. 

1234 

.1 1.2 

.12 

12.3 

.13 

123.4 

.14 

.123 

1.24 12.34 

A 
.124 .134 1.234 

.1234 

FIGURE 4-The binary and familial tree 
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DO 1 L = 1, K 
1 IND(L) = 0 

M= K 
IB = 0 
IS = 1 

2 IB = MOD(IB, MAX) + 1 
DO 3 L = M, K 
IF(IND(L).LT.L) GO TO 3 
IND(L - 1) = IND(L - 1) + 1 
IND(L) = IND(L - 1) 

3 CONTINUE 
4 IND(K) = IND(K) + 1 

IS = MOD(IS, MAX) + 1 
CALL SEMI(IB, IS, IND(K), A, K + 1, 

IND, M, K- 1) 
WRITE(6, ) (IND(L), A(IS, IND(L), 

K + 1), L = M, K) 
IF(IND(K).LT.K) GO TO 4 
IS = IS - 1 

IF(IND(M).EQ.M) M = M- 1 
IF(M.GT.0) GO TO 2 
STOP 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

14 

15 
16 
17 
18 
19 

Statement 15 in the program writes the index and 
the coefficient associated with each independent 
variable in a subset regression and statements 7-12 
and 16-19 identify the regressions. MAX is the 
dimension corresponding to the first subscript of 
A; a value of 150 is large enough for a problem with 
ten independent variables. The diagonal element 
of the inverse needed for computing the variance 
of a regression coefficient is available in A(IS,L,L) 
but we omit this calculation in, the interest of 
brevity. 

Our lexicographic algorithm is little more than 
a method of labeling the subset regressions. We 
pivot on the last variable in the regression; the 
index of the storage block is the index of the pivot 
plus one; and, because of this storage convention, 
the index of the source block is the index of the 
previous pivot plus one. Thus, if we are computing 
the subset regression on variables 1, 2 and 4; then 
IP is four, IS is five (4 + 1) and IB is three (2 + 1). 

IND(1) = 0 1 
M = 1 2 

1 M = M + 1 3 
IND(M) = IND(M- 1) + 1 4 

2 CALL SEMI(IND(M - 1) + 1, IND(M) + 1, 
IND(M), A, K + 1, IND, 2, M - 1) 5 

WRITE (6, ) (IND(L), A(IND(M) + 1, 
IND(L), K + 1), L = 2, M) 6 

IF(IND(M).LT.K) GO TO 1 7 
M = M - 1 8 
IND(M) = IND(M) + 1 9 
IF(M.GT.1) GO TO 2 10 
STOP 11 

We recommend the use of this algorithm when 
coefficients and other statistics such as variances 
and F-ratios are to be computed and printed for 
each subset regression. The space requirements 
are much less than for the previous algorithm and 

the order in which the regressions are produced 
is reasonably intelligible. 

The binary algorithm also operates from the 
subscripts of the independent variables in the 
subset regressions. However, the identification 
array, NK, is a binary counter with a list of ones 
and zeros which indicate the presence or absence 
of the independent variables and the indexing of 
the independent variables is reversed-that is, the 
first row (and column) of the matrix contains the 
products with X(K), the next with X(K - 1) and 
so forth to X(1)-but the dependent variable is 
still X(K + 1). The use of the binary array requires 
that the array be scanned to obtain the indices of 
the present and immediately preceeding pivot; 
the reverse indexing requires that IB, IP and IS 
be complemented. 

DO 1 L = 1, K 
1 NK(L) = 0 

NK(K + 1) = 1 
L= 1 

2 NK(L) = 1 
DO 3 M = L, K 
IF(NK(M + 1).EQ. 1) GO TO 4 

3 CONTINUE 
4 CALL GAUSS(K - M + 1, K - L + 2, 

K - L + 1, A, K + 1) 
WRITE(6, )A(K - L + 2, K + 1, K + 1), 

(NK(N), N = 1, K) 
DO 5 L = 1, K 
IF(NK(L).EQ.0) GO TO 2 

5 NK(L) = 0 
STOP 

1 
2 
3 
4 

6 
7 
8 

9 

10 
11 
12 
13 
14 

Statements 5 and 11-13 increment the binary 
step counter, NK. The incrementation locates the 
position of the lowest order 1 in NK and this 
position determines the index of the pivot. State- 
ments 6-8 locate the next lowest order 1; this 
second position determines the index of the previous 
pivot and the index of the source block. A variant 
of this algorithm as described in Frayer et al (1971) 
is recommended when residual sums of squares 
or R-squares only are desired for all possible regres- 
sions with k greater than 12. The output is a very 
compact table with 16 regressions to a line and 
912 to the page. 

Our familial algorithm also assumes that the 
independent variables are in reverse order and it 
also employs a binary counter. However, the block 
index is now obtained from the position of the 
first rather than the second 1 and it is convenient 
to refer to a stage rather than a step counter. At 
each stage, we pivot on all of the remaining rows 
of the submatrix before returning to the counter. 

DO 1L = 1, K 
1 NK(L) = 0 

M = K + 1 

1 
2 
3 
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2 NK(M)= 1 4 
DO 3 L = 2, M 5 
CALL GAUSS(K - M + 2, K - L + 3, 

K - L + 2, A, K + 1) 6 
NK(L- 1) = 1 7 
WRITE(6, ) A(K - L + 3, K + 1, K + 1), 

(NK(N), N = 1, K) 8 
3 NK(L- 1) = 0 9 

DO 4 M = 2, K 10 
IF(NK(M).EQ.0) GO TO 2 11 

4 NK(M) = 0 12 
STOP 13 

The positions of the l's in the binary counter 
at any stage correspond to the indices of the pre- 
vious pivots on the source submatrix. Statement 7 
adds a 1 for the current pivot so that NK can be 
used for labeling the regression and statement 9 
sets the bit back to zero. 

This algorithm was first programmed in 1958 
for the IBM 650 (Furnival, 1958; also described 
in Ware et al, 1962) and later for the 709 and 7094 
(Furnival, 1964). It has also been utilized as a 
screening option in a complete regression package 
by Grosenbaugh (1967). 

2.4 Discussion. 

The total number of operations (floating point 
multiplications and divisions) required to compute 
all possible regressions is the same for the four 
algorithms but varies with the matrix operator. 

Full sweep 2k-3(k2 + llk + 24) - (k2 + 5k)/2 - 3 
Semi-sweep 2k-1(3k + 6) - 3(k + 1) 
Gaussian 6(2k) - k(k + 7)/2 - 6 

An IBM 370/158 with fast multiply under the 
H compiler, optimizing level two, performs these 
operations at a rate of approximately 2,000,000 
per minute. 

The maximum number of independent variables 
which can be processed by our algorithms is limited 
both by the amount of output produced and by the 
number of arithmetic operations which must be 
performed. If we adopt an arbitrary output limit 
of 50,000 individual regression statistics (about 
100 compact pages), then the upper limit of k is 
approximately 11 for a full sweep, 12 for our semi- 
sweep and 15 for Gaussian elimination. 

However, we believe that our algorithms will be 
most useful in empirical studies of the distribution 
of regression statistics. In such cases, the output 
can be limited to summary statistics and the time 
required to process the subset regressions is the 
limiting factor. If we adopt an upper limit of five 
minutes for a medium size computer such as the 
IBMA 370/158 then the maximum value of k is 
approximately 17 for the full sweep, 18 for our 
semi-sweep and 20 for Gaussian elimination. 

We have been unable to reduce the amount of 

floating point arithmetic required by our algorithms. 
However, it is possible to reduce the indexing and 
fixed point housekeeping by performing several 
(r) preliminary splits and obtaining a number 
(2r) of submatrices which are then processed in 
'parallel' by one of the algorithms. Each step of 
the computations then produces 2r regressions and 
the amount of housekeeping is greatly reduced. 
Storage requirements are, of course, increased but 
can be reduced somewhat by the use of linear 
arrays. It is probable that algorithms which permit 
parallel computation will become more useful as 
array processors such as Illiac IV come into general 
use. 

3. A BRANCH AND BOUND PROCEDURE 

A number of authors have described procedures 
for finding the best subset regressions without 
computing all possible regressions (Hocking and 
Leslie, 1967; Beale, Kendall and Mann, 1967; 
LaMotte and Hocking, 1970). All of these methods 
are based on the fundamental inequality 

RSS(A) < RSS(B) 

where A is any set of independent variables and B 
is a subset of A. In other words, it is impossible to 
reduce the residual sum of squares for a regression 
by deleting variables from that regression. 

3.1 Inverse trees. 

The use of the inequality to restrict the number 
of subsets evaluated in a search for the 'best' subset 
regressions is illustrated by the tree diagram in 
Figure 5. At the root is a five-variable inverse and 
the subset regressions are computed by pivoting 
variables out-of the regression. The RSS for a 
node is obviously a lower bound for the RSS of 
its offspring. Hence, if we arrive at the node .2345, 
say, and had already computed one, two, and 
three-variable regressions with RSS smaller than 
that for .2345, then we could ignore the 14 de- 
scendents of .2345. 

The values in parentheses are the RSS for the 
subset regressions and the underlining in the labels 
at the nodes of Figure 5 indicates what variables 
will be removed by future pivots on the submatrix. 
Thus, from the node .1245 will be formed those 
regressions which can be obtained by deleting all 
possible combinations of X(4) and X(5). 

Simple branch and bound algorithms for subset 
selection can be developed by applying our all- 
possible traverses to inverse trees, but the results 
are not fully satisfactory. The difficulty is best 
shown by an example. Suppose we are at .1345 
with two and three-variable regressions which have 
R-squares smaller than that for .1345 but our 
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,1234 .1235 .1245 
(592) (596T (596) 

.123 .124 .125 
(612) (615) (S97) 

.12 
(615) 

.1345 
(605) 

.134 .135 .145 
(612) (61e) (6i) 

.13 .14 .15 
(641) (648) (618) 

.1 
(668) 

23 .23235 .245 
(664) (66) 6-) (667) 

.23 .24 .25 
(673) (685) (675) 

.2 
(702) 

.345 
(720) 

.34 .35 .45 
(727) (732) (736) 

.3 ,4 .5 
(746) (792) (799) 

Null 

FIGURE 5--The inverse tree 

current best one-variable equation fails this test. 
A reasonable procedure would be to evaluate .1 
and ignore the other descendents of .1345. Un- 
fortunately, the evaluation of .1 requires the prior 
evaluation of .145 and .15 and these regressions 
are of little or no value to us. 

The problem becomes more serious with larger 
trees. The likely candidates for the best regressions, 
like good fruit, occur at the tips of the branches 
and can be reached only by pivoting through a lot 
of dead wood. It is possible to move these good 

regressions to interior nodes by reversing the order 
of the variables, but another difficulty emerges 
immediately. The RSS for the interior nodes are 

now, of course, small and therefore practically 
useless as bounds. We assume here that the variables 
have been ordered by some measure of importance 
such as the magnitude of the t-ratios in the full 
k-variable equation. 

It seems that we require an impossibility-two 
arrangements of the same tree. Our solution is two 
trees-one for bounds and one for regressions. The 
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bound tree is obtained by eliminating all pivots on 
variable five from the original inverse tree. All 
the remaining regressions must then include variable 
five since this variable is never pivoted out of the 
regressions. The effect is simply to prune off the 
terminal nodes of the tree of Figure 5. 

The other half of the regressions-those without 
variable five-are included in the regression tree 
and this need not be an inverse tree. A step-down 
procedure here would, in fact, defeat our purpose 
which is to cluster regressions with a small number 
of independent variables near the root of the tree 
where they can be reached early in the traverse. 
Furthermore, the forward approach involves fewer 
pivots and possibly less rounding error. 

Our object is to work out the branches of the 
full inverse tree (Figure 5) by simultaneous traverses 
of the regression tree and the bound tree. We observe 
that each submatrix produced by the traverse of 
the bound tree will serve as the source for a sub- 
family or branch of regressions all of which contain 
X(K) and these regressions will make up half of 
the regressions in the corresponding branch of 
the full inverse tree. The other half of the regressions, 
those without X(K), must come from the regression 
tree and we must arrange our traverse so that a 
source subset will be available to produce them. 

A particular branch or sub-family of the full 
inverse tree can be characterized or described by 
the presence or absence of certain variables and 
the presence or absence of these variables also 
determines the composition of the source sub- 
matrices. Variables which do not occur in any of 
the regressions of the sub-family must have been 
pivoted out of the source subset of the bound tree 
and the rows and columns associated with these 
variables need not be present in the regression 
source. On the other hand, variables that appear 
in all the regressions of a sub-family must have 
been pivoted into the regression source and must 
not have been pivoted out of the bound source. 
Finally, variables which are present in some regres- 
sions of a sub-family but not in others must be 
included in the bound source and (except for X(K)) 
must be represented in the regression source by 
rows and columns on which pivots have not been 
performed. The subscripts of this last class of 
variables are underlined in the nodes of the bound 
tree and appear to the left of the dot in the regression 
tree. 

We next observe that the rows and columns 
associated with non-underlined variables can be 
deleted-not pivoted out but simply dropped- 
from the bound submatrices. These deletions are 
possible because we are interested only in residual 
sums of squares. We can, therefore, employ a 

procedure very similar to Gaussian elimination and 
we need not operate on rows and columns associated 
with variables which will not be pivoted out of the 
regression represented by the submatrix. 

Symmetry now begins to emerge. Deletions on 
the bound side correspond to pivots on the regres- 
sion side and vice-versa. Thus, for example, the 
bound source .245 is obtained from .12345 by deleting 
X(2) and pivoting out X(1) and X(3). The cor- 
responding regression source 4.2 is developed from 
1234, by deleting X(1) and X(3) and pivoting in 
X(2). We require, therefore, two traverses which 
are the complements of each other-one deletes 
where the other pivots. The most satisfactory 
pairing that we have found applies a lexicographic 
traverse to the regression tree and a slightly modified 
(the sons are listed from youngest to oldest) familial 
traverse to the bound tree. 

Figures 1 and 2 show, respectively, the regression 
tree and the bound tree for a four-variable prob- 
lem. We return to the full binary representation for 
these trees in order to emphasize the symmetry 
and must reduce the number of variables from 
five to four in order to stay within the confines of 
a page. 

3.2 The algorithm. 
Our simultaneous traverses produce both a 

regression RSS and a bound at each step in the 
computations by parallel pivots on submatrices 
from the product matrix and its inverse. With 
testing 'turned off', all possible regressions would 
be produced in the order shown in Table 2 for 
k = 5. However, with testing 'turned on' for the 
problem of Figure 5, only those pivots marked with 
asterisks are performed. 

There is no difficulty in combining our lexico- 
graphic and familial algorithms to produce the 
sequences of Table 2; the problem arises in imple- 
menting the testing and skipping which permit us 
to perform, for the problem of Figure 5, only those 
pivots marked with asterisks. Before each pivot, 
we will test the RSS for some current best regres- 
sion against some bound and then leap ahead if 
the test is successful. The questions are, of course: 
which regression, which bound and how much? 
The answers are quite simple. The appropriate 
best regression has the same number of variables 
as the regression which is about to be produced 
by the product traverse; the proper bound is the 
RSS from the source submatrix in the traverse of 
the inverse; and the increment for the stage counter 
is 2k-~-l where p is the pivot index. 

We illustrate the procedure with a step-by-step 
descent through Table 2. The pivots of stage zero 
must always be performed. At stage 1, the inverse 
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TABLE 2-Order of computations for leap and bound algorithm 

Stage Pivot Product Traverse Inverse Traverse Stage 
Mumber Index Source: Regr'n RSS Source: Regr'n RSS Bound 

0 * 1 1234. 234.1 668 .12345 .2345 660 
* 2 234.1 34.12 615 .12345 .1345 605 
* 3 34.12 4.123 612 .12345 .1245 596 
* 4 4.123 .1234 592 .12345 .1235 596 

1 *4 4.12 .124 615 .1245 .125 597 596 

2 3 34.1 4.13 641 .1345 .145 618 605 
4 4.13 .134 612 .1345 .135 618 

3 4 4.1 .14 648 .145 .15 618 618 

4 * 2 234. 34.2 702 .2345 .345 720 660 
3 34.2 4.23 673 .2345 .245 667 
4 4.23 .234 664 .2345 .235 666 

5 4 4.2 .24 685 .245 .25 675 667 

6 3 34. 4.3 746 .345 .45 736 720 
4 4.3 .34 727 .345 .35 732 

7 4 4. .4 792 .45 .5 799 736 

source is .1245 and the product source is 4.12. The 
inverse source always bounds the regressions that 
can be produced from it and it also bounds the 
only regression, .124, that can be produced from the 
product source. It is clear, therefore, that our best 
three-variable regression should be tested against 
the RSS for .1245. The asterisk indicates failure; 
the 612 of .123 is larger than the 596 of 1245. At 
stage two, the inverse source .1345 again clearly 
bounds the regressions that can be produced from 
the product source 34.1, and we test against our 
current best two-variable regression. We use the 
two-variable regression because further pivots on 
34.1 will produce at least a two-variable regression 
and pivoting out one or more of the underlined 
variables from .1345 will leave at least a two- 
variable regression. Again the asterisk indicates 
that our test fails; the 615 of .12 is larger than the 
605 of .1345. 

Our first success occurs on the next pivot of 
stage 2. Reasoning similar to that described for 
the earlier pivots leads to a test of the best three- 
variable regression against the bound .1345 and 
the test is passed. The 597 of .125 is smaller than 
605 and we can leap but not very far. Only one 
regression will be produced from 4.13 and only one 
from .1345 so we can skip only the last pivot of 
stage two. The stage increment is 25-4-1 or 1 and 
moves us to stage 3. A further successful test of a 
two-variable regression-the 615 of .12 versus the 
618 of .145-moves us to stage 4 and our last 
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failure occurs here on the first pivot where the 
668 of .1 is larger than the 660 of .2345. 

At the second pivot, however, we are again 
successful. The 615 of .12 is smaller than the 660 
of .2345 and the regressions from .2345 and 34.2 
need not be produced. Each of the sources is effec- 
tively a two-variable matrix and each will produce 
three regressions in two stages. Hence, we skip to 
stage 6 where a successful test-the 668 of .1 versus 
the 720 of .345-again permits a leap of two stages 
and our search is completed after evaluating 6 
of the 22 possible subsets of stages 1-7. 

The source submatrices utilized at each pivot 
in our procedure include only the rows and columns 
associated with the dependent variable and those 
independent variables having subscripts equal to 
or larger than the pivot index. Each source is, 
therefore, effectively a matrix with k - p inde- 
pendent variables from which 2k - 1 subset regres- 
sions can be formed and these regressions are 
produced in 2k-P-' stages. 

For the lexicographic traverse, a stage is equiva- 
lent to a branch of a tree and, for the familial 
traverse, a stage is all the sons of a father. In either 
case, it is easily shown that the traverse of an 
r-variable tree (or sub-tree) requires 2T-1 stages. 
There are 2' nodes in a condensed tree of which 
half, 2r-', are interior nodes and half are exterior. 
We simply note that each interior node is the father 
of a family of sons and each exterior node is the 
tip of a branch. 
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Just prior to each pivot in our procedure we are 
effectively at a node of Figure 5 preparing to develop 
the regressions in the sub-family defined by the 
node. We have, however, already in hand, in the 
source submatrix on the product side, the regression 
at the terminal node of the longest branch. Our 
stage increment of 2k-p-l simply skips the remaining 
regressions which could be derived from and are 
therefore bounded by our node of Figure 5. 

3.3 Programming. 
The initial step in our program is the inversion 

of the product matrix using a forward step-wise 
procedure with a tolerance check on the pivot 
elements. Next we re-order the variables by cal- 
culating the reduction in the regression sum of 
squares that would occur with the removal of 
each variable from the regression equation; the 
variable associated with the largest removal sum 
of squares becomes the new X(1) and so on. The 
reordered product and inverse matrices, with the 
new X(K) deleted, are loaded into two-dimensional 
working arrays labeled AA and BB-the product 
in AA, the inverse in BB. We complete the intializa- 
tion phase by setting IP= 1, KM = K-1, KMM= 
K-2, NXS(1)=0, LS=O and the array NK (I) 
to zero for I= 1,2.. KMM. 

1 DO 3 L = IP, KM 1 
IS = L +1 2 
NXS(IS) = NXS(IP) + L - IP 3 
IF(RM(NXS(IS) + 1).LE.BB(K, K)) 

GO TO 4 4 
IADD(IS) = LS 5 
DO 2 I = IS, K 6 
DO 2 J = I, K 7 
LS = LS + 1 8 
AN(LS) = AA(I, J) 9 
AA(I, J) = AN(LS) 

- AA(L, I)*AA(L, J)/AA(L, L) 10 
2 AI(LS) = BB(I, J) 

- BB(L, I)*BB(L, J)/BB(L, L) 11 
3 CALL STORE 12 

L = KM 13 
4 LEAP = K- L 14 

DO 5 M = LEAP, KMM 15 
IF(NK(M).EQ.0) GO TO 6 16 

5 NK(M) = 0 17 
CALL WRITE 18 
STOP 19 

6 NK(M)= 1 20 
IP = K- M 21 
LS = IADD(IP) 22 
CALL COPY 23 
GO TO 1 24 

In order to save space without unduly complicating 
the indexing, we work out of the two-dimensional 
arrays AA and BB but store in the linear arrays 
AN and AI. This practice also permits us to lag 
the storage of the product submatrices (statement 9) 
so that the index of the source block for a stage 

is the same for both the product and the inverse 
side of the computations. We begin stage zero with 
AA and BB already loaded and subroutine COPY 
has the task of retrieving the source submatrices 
before the first pivot of each succeeding stage. 
Statements 13-17 and 20-21 increment the stage 
counter by the amount 2**(LEAP -1) and compute 
a value for IP which is the index of the source 
blocks and also the index the first pivot of a stage. 
Statement 3 finds the number of variables in the 
regressions produced by the pivots on the product 
submatrix and statement 4 tests the best regression 
with this number of variables against the RSS 
from the source submatrix of the inverse. At stage 
zero, the array, RM, of best regressions contains 
the best subset regressions found in the initial 
step-wise inversion. 

The pivots are simply Gaussian eliminations and 
are performed by statements 6-12. The computa- 
tions, except for the storage lag just described, 
are identical for the product and inverse submatrices. 
This simplification is possible because the original 
inversion utilizes a sweep operator which returns 
a negative inverse and regression coefficients. Thus, 
at stage zero and thereafter, the RSS in BB(K,K) 
is positive but the elements of the inverse in rows 
and columns IP through K-1 and the regression 
coefficients in column K have their signs reversed. 

Subroutine STORE is assigned the housekeeping 
chores of labeling and saving the RSS for the best 
regressions; subroutine WRITE prints the final 
output. 

Our operating program reorders the variables 
just prior to the first pivot of each stage using a 
procedure very similar to that described for the 
initial ordering. We 'look ahead' and calculate, for 
each underlined variable in the inverse source 
submatrix, the removal sum of squares 

RIN(L) = - BB(L,K) *BB(L,K) /BB(L,L) 

for L=IP,IP+1.. K-1. The new X(IP) is the 
variable with the largest removal sum of squares. 

As a by-product of the reordering, we also obtain 
sharper bounds. Referring again to the node .2345 
of Figure 5, we see that all one-variable regressions 
from this source come from the sub-sources .245 
and .345. Hence, the smaller RSS, the 667 from 
.245, bounds the one-variable regressions. A similar 
argument shows that the 666 of .235 bounds the 
two-variable regressions. For the three-variable 
bound and in general for the last bound of a stage, 
we use the usual bound BB(K,K). The RSS needed 
for the sharper bounds can be obtained, without 
performing the pivots that would normally produce 
them, by simply adding the appropriate RIN(L) 
to BB(K,K). Thus, with the RIN(L) ordered by 

TECHNOMETRICS?, VOL. 16, NO. 4, NOVEMBER 1974 

509 



G. M. FURNIVAL AND R. W. WILSON, JR. 

size from largest to smallest and with RIN(K) =0, 
the bound for the L-th pivot of a stage is BB(K,K) + 
RIN(L+ 1). 

The program also offers the option of finding 
the best m regressions, rather than a single best 
regression, for each size of subset. The changes 
in the algorithm are minor. The tests preceding 
the pivots of a stage are made on the current m-th 
best, rather than the best, regression with the 
appropriate number of independent variables; and 
the test procedure is modified to ensure that no 
leap occurs if the test associated with any remaining 
pivot of the stage is not satisfied. This situation 
can never arise in the simpler version of the program 
because there the bounds remain constant within 
a stage and the current best r-variable regression 
always has a RSS at least as small as the current 
best regression with a smaller number of variables. 

In the search for the m best regressions for each 
size subset, the program evaluates a number of 
additional regressions and the best of these are 
saved for each size subset. The program also saves 
for each size subset the smallest bound invoking a 
leap or skip and these bounds are, of course, lower 
bounds for the RSS of the subsets that have not 
been evaluated. 

3.4 Discussion. 

Our branch and bound algorithm appears to 
have some desirable features which are not present 
in others that have been proposed. First, we make 
no real distinction between an RSS computed as 
a bound and an RSS computed for a regression; 
we use both in working out the branches of the 
regression tree. Other algorithms treat their bounds 
and regressions separately and may compute the 
same RSS twice, once as a bound and again for a 
regression. In addition, we compute each RSS 
with a single pivot and never pivot more than 
twice (only once in product submatrices) on the 
same row and column of any submatrix. Other 
algorithms employ a horizontal traverse and form 
new regressions by pivoting an 'old' variable out 
and then a 'new' variable into the regression. Thus, 
the subsets are strung along a lengthy chain of 
pivots and two pivots are required to move from 
one subset to another. The results are an increase 
in computing time and perhaps an accumulation of 
rounding errors. Furthermore, except for the re- 
ordering within stages, we do very little house- 
keeping beyond that required to do all possible 
regressions. In fact, our leaps and bounds procedure 
with testing 'turned off' is a very efficient algorithm 
for computing all possible regressions. Finally, 
we can obtain the m-best regressions, rather than 
a single best regression, for each size of subset and, 

so far as we know, no other program offers this 
option. 

Some idea of the number of operations required 
to find the best subsets with our program can be 
obtained from the following series of trials: 

k 

10 
15 
20 
25 
30 
35 

m=1 

2,192 
11,050 
66,766 

336,575 
2,169,708 
6,301,708 

m = 10 

3,764 
23,118 

123,412 
639,945 

3,934,714 
11,614,024 

Again, the number of operations can be converted 
to approximate time in minutes on an IBM 370/158 
by dividing by 2,000,000. However, timing and 
number of operations are strongly data dependent 
and may vary from that given above by as much 
as a factor of two in either direction. 

We have not had an opportunity to test our 
program against the Beale, Kendall and Mann 
algorithm. However, in a series of trials with k 
varying from 15 to 27, our program was 15-50 
times as fast as the LaMotte-Hocking program, 
and the difference in speed increased with k. 

Program decks (300 cards), instructions for use, 
and a sample problem are available from the authors. 
The progranr is designed for use with an existing 
regression package and is in the form of a sub- 
routine utilizing a correlation or product matrix 
as input. 
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