
American Society for Quality

Regressions by Leaps and Bounds
Author(s): George M. Furnival and Robert W. Wilson, Jr.
Source: Technometrics, Vol. 16, No. 4 (Nov., 1974), pp. 499-511
Published by: American Statistical Association and American Society for Quality
Stable URL: http://www.jstor.org/stable/1267601
Accessed: 21/10/2008 19:07

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at
http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless
you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you
may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www.jstor.org/action/showPublisher?publisherCode=astata.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed
page of such transmission.

JSTOR is a not-for-profit organization founded in 1995 to build trusted digital archives for scholarship. We work with the
scholarly community to preserve their work and the materials they rely upon, and to build a common research platform that
promotes the discovery and use of these resources. For more information about JSTOR, please contact support@jstor.org.

American Statistical Association and American Society for Quality are collaborating with JSTOR to digitize,
preserve and extend access to Technometrics.

http://www.jstor.org

http://www.jstor.org/stable/1267601?origin=JSTOR-pdf
http://www.jstor.org/page/info/about/policies/terms.jsp
http://www.jstor.org/action/showPublisher?publisherCode=astata

TECHNOMETRICSO, VOL. 16, NO. 4, NOVEMBER 1974

Regressions by Leaps and Bounds

George M. Furnival
School of Forestry, Yale University

New Haven, Connecticut

and Robert W. Wilson, Jr.
USDA Forest Service

Northeastern Forest Experiment
Station

This paper describes several algorithms for computing the residual sums of squares
for all possible regressions with what appears to be a minimum of arithmetic (less than
six floating-point operations per regression) and shows how two of these algorithms
can be combined to form a simple leap and bound technique for finding the best subsets
without examining all possible subsets. The result is a reduction of several orders of
magnitude in the number of operations required to find the best subsets.

KiEY WORDS

Linear Regression
Regression Computation
Subset Selection

1. INTRODUCTION

An investigator involved in a multiple regression
analysis with k independent variables often suspects,
and even hopes, that a subset of these variables
may adequately explain his data. It may well be
that the main purpose of the investigation is simply
to identify the factors of importance in some
process or phenomenon. Subset selection is also
employed when the goal of the analysis is prediction
because the full equation on all k variables is often
unstable. The ridge regression approach of Hoerl
and Kennard (1970) may be preferable here but
the elimination of variables is an attractive strategy
when costs of measurement are large.

Many of the criteria which have been suggested
for use in identifying the 'best' subset are monotone
functions of the residual sum of squares (RSS)
for subsets with the same number of independent
variables (Hocking, 1972). Hence, the problem of
finding the 'best' subset can often be reduced to the
problem of finding those subsets of size p, p =

1, 2 ... k - 1, with minimum RSS. The PRESS
statistic described by Allen (1971) is an exception,
but the adjusted R-square, the minimum mean
square residual, and the Cp statistic of Mallows
(1966; also described in Draper and Smith, 1966)
are all monotone functions of the RSS.

The search for the subsets with minimum RSS
can be approached in a straight forward manner
by computing all possible regressions but the amount
of computation required can be formidable. The
number of possible subsets increases exponentially

Received June 1972; revised March 1974

499

with k and the number of operations (multiplications
and divisions) required to invert the moments
matrix associated with each subset is of order k3.
The cost in computer time is large enough to make
the procedure impractical for even moderate values
of k; hence it is not surprising to find a number of
investigators engaged in (1) attempts to reduce
the amount of computation involved in examining
a subset and in (2) developing procedures for
finding the best subsets without examining all
possible subsets.

The present paper is concerned with both ap-
proaches to computational efficiency. We will
describe several algorithms for computing the
residual sums of squares for all possible regressions
with what we believe to be a minimum of arithmetic,
and we will show how two of these algorithms can
be combined to form a leap and bound technique
for finding the best subsets without examining all
possible subsets.

2. ALL POSSIBLE REGRESSIONS

Garside (1965) and Schatzoff, Fienberg and
Tsao (1968) have described algorithms for com-
puting all possible regressions which are much
superior to the naive approach involving the direct
inversion of the moments matrix associated with
each subset of independent variables. The average
number of operations per regression for the direct
approach is of order k3 whereas both Garside and
Schatzoff achieve an order of k2 by repeated ap-
plication of an ingenious technique for modifying
one inverse to produce another.

Although the two algorithms are quite similar,
the one developed by Schatzoff et al. requires less
than half as much computation as that described
by Garside. The reduction is achieved by taking
advantage of the symmetry of the moments matrices
and by the deletion of unneeded rows and columns

G. M. FURNIVAL AND R. W. WILSON, JR.

as the successive inverses are computed. A further
reduction of 3 or more, depending on the size of k,
can be obtained (Furnival, 1971) by abandoning
the idea of computing each new inverse from its
immediate predecessor. More rows and columns
can be deleted and a corresponding gain in efficiency
achieved by returning to inverses produced in
earlier stages of the computations.

Unfortunately, we have now arrived at what
appears to be a dead end. The number of operations
per regression is still of order k2 and it does not
seem possible to generate the 2k - 1 inverses with
less computation. However, the limiting word here
is inverses. If we are satisfied with less output for
each regression, further savings are possible. We
can, for example, compute the regression coeffi-
cients, their variances and the residual sum of
squares with a number of operations per regression
which is of order k and, if we are satisfied with
only the residual sum of squares, the number of
operations per regression can be reduced to slightly
less than six (Furnival, 1971).

2.1 The Matrix Operators.
Several authors (Beaton, 1964; also quoted in

Schatzoff et al, 1968) have described matrix op-
erators which can be conveniently used in computing
full inverses for all possible regressions. We will
describe two additional operators. The first, which
is often called Gaussian elimination, produces only
residual sums of squares. The second, which we will
call a semi-sweep, produces regression coefficients
and the diagonal elements of the inverses as well
as the RSS.

Both of our operators assume a (k + 1) X (k + 1)
product (or correlation) matrix with row and column
k + 1 containing the products associated with the
dependent variable. We begin with the matrix
stored in the first block of a three-dimensional
array A(L,I,J) where L,I, and J are the block,
row and column indices. Then at each step of our
procedure we produce a submatrix containing the
statistics for a subset regression by pivoting with
one of our matrix operators on either the original
matrix in block one or some submatrix stored in
another block as the result of a previous pivot.

An explicit definition of our version of Gaussian
elimination is given in the following Fortran sub-
routine:

SUBROUTINE GAUSS (IB, IS, IP, A, KP)
LB = IP + 1
1)0 1 L = LB, KP
A(IS, IP, L) = A(IB, IP, L)/A(IB, IP, IP)
I)O 1M = L, KP

1 A(IS, L, M) = A(IB, L, M)
- A(IB, IP, M)*A(IS, IP, L)

RETURN

1
2
3
4
5

6
7

The variable arguments are IB, the index of the
source block, IS, the index of the storage block and
IP, the index of the pivot row and column. A is
the three dimensional storage array and the value
of KP is k + 1. The subroutine operates only on
the upper half of the symmetric matrix and only on
those rows and columns with indices greater than
or equal to IP. At the conclusion of a pivot or
elimination, the element A(IS,KP,KP) contains
the sum of squares of residuals (RSS) for one of
the subset regressions.

The semi-sweep operator requires a list, IND,
of the previous pivots on a submatrix and, since
it will not always be convenient for us to begin
with the first element of IND in storing these
pivot indices, we also include in the calling sequence
IA, the location in IND of the first pivot index
and IZ, the location of the last pivot index.

SUBROUTINE
SEMI (IB, IS, IP, A, KP, IND, IA, IZ)

A(IS, IP, IP) = 1.0/A(IB, IP, IP)
CALL GAUSS (IB, IS, IP, A, KP)
IF (IA.GT.IZ) TO TO 2
LB = IP + 1
DO 1 L = IA, IZ
B = A(IB, IND(L), IP)/A(IB, IP, IP)
A(IS, IND(L), IND(L)) = A(IB, IND(L),

IND(L)) + B*A(IB, IND(L), IP)
DO 1 M = LB, KP

1 A(IS, IND(L), M) = A(IB, IND(L), M)
- B*A(IB, IP, M)

2 RETURN

1
2
3
4
5
6
7

8
9

10
11

The arguments IB,IS,IP,A and KP are as defined
for GAUSS. Statements 5-10 operate above the
pivot row; the diagonal elements are processed by
statement 8 and the elements to the right of the
pivot column by statements 9 and 10. The major
difference between our semi-sweep and a full sweep
is that we do not operate on off-diagonal elements
to the left of the pivot column.

At the conclusion of a pivot, the element
A(IS,KP,KP) again contains the sum of squares
of residuals for a subset regression. In addition, the
elements A(IS,I,I) and A(IS,I,KP) contain, re-
spectively, the diagonal element of the inverse
and the regression coefficient associated with the
I-th independent variable. The off-diagonal elements
of the inverse are not computed.

2.2 The regression tree.

The sequences of pivots utilized in our approach
to the computation of all possible regressions are
derived from the binary tree of Figure 1. At the
root of the tree is the original matrix and at each
interior node a submatrix derived from the original
matrix by a series of pivots (solid lines) and deletions
(dotted lines). Finally, each terminal node or leaf

TECHNOMETRICSC, VOL. 16, NO. 4, NOVEMBER 1974

500

REGRESSIONS BY LEAPS AND BOUNDS

2

3.12

123

3.1

\

31
\

3.1

.13

23

3.2

.3 Null

FIGURE 1-The regression tree

represents one of the 2k possible subset regressions
including the null regression.

The labeling of the nodes utilizes a dot notation
similar to that employed for partial correlation
coefficients. The integers listed before the dot are
the subscripts of independent variables present in
the submatrix on which pivots have not yet been
performed; the subscripts following the dot cor-
respond to variables on which pivots have been
performed. Missing subscripts indicate that the
rows and columns associated with those variables
have been deleted in deriving the submatrix from
the original matrix. Thus, the submatrix 3.1 has
been obtained from the original matrix by pivoting
on X(1) and deleting X(2). A row and column
associated with the dependent variable is, of course,
always present.

.123Q

/ ^< / \

.1234

/.1
.1234 .124

The tree is constructed by beginning at the
root and 'splitting' the matrix into two new sub-
matrices-one obtained by pivoting on the first
variable of the matrix, the other by deleting the
row and column associated with that variable.
The process is repeated for the submatrices until all
variables have been treated either by pivoting or
by deletion.

The binary nature of the tree can be used as the
basis for an argument that our approach to all
possible regressions is at least as efficient as any
other procedure utilizing a sequence of Gaussian
eliminations. We argue that there must be at least
one pivot on the full matrix and, without loss of
generality, assume that this pivot is performed on
variable one. The result is a k - 1 variable sub-
matrix conditioned on X(1) and it is obvious that

.1234

.2i

/
/

I-

/
.134

.134

/ 1 / .

.14 .231

.234

//
/

/

4 .24

34 .

.34

/
/

.34 .4

FIGURE 2-The bound tree

TECHNOMETRICS?, VOL. 16, NO. 4, NOVEMBER 1974

.123

\

3

/\

.12 .1 .23 .2

501

G. M. FURNIVAL AND R. W. WILSON, JR.

all regressions containing X(1) can be derived more
easily from this submatrix than from the original
matrix. The remaining regressions, those without
X(1), can clearly be obtained from the other half
of the split-that is, from the k - 1 variable sub-
matrix formed by deleting X(1) from the full
matrix-just as easily as from the full matrix. We
can, therefore, proceed recursively by applying our
argument calling for at least one pivot on the full
matrix to the submatrices and, finally, after the
k-th round of splits, we arrive at the residual sums
of squares for the 2k - 1 regressions of the problem
with the knowledge that the amount of computation
involved could not be reduced by using some other
pattern of pivots and deletions.

Pivots will have been performed on one k-variable
matrix, two (k - 1)-variable matrices and so on
down to 2k- one-variable matrices. Thus, one-
half of the 2k - 1 regressions will have been com-
puted by pivoting on submatrices containing only
one independent variable.

It might appear that the tree specifies a rigid
order of computation but, in fact, quite a bit of
flexibility is permitted. Figure 3 gives a condensed
version of a four-variable tree with the dotted
lines omitted. Deletions are now implied and
interior nodes as well as terminal nodes represent
regressions. The tree can be traversed in any
'biologically feasible' order-the only restraint is
that a father be 'born' before his son.

The most obvious approach is to search the tree
horizontally, level by level, from top to bottom.

This procedure produces the regressions in a con-
venient and natural order-all one-variable regres-
sions followed by all two-variable regressions and
so forth as shown in Table 1. The drawback is that
all of the submatrices produced in the traverse of a
level must be stored until they in turn have been
utilized in the pivots required for the traverse of
the next level.

Much less storage (no more than k + 1 storage
blocks) is required if the tree is searched vertically
branch by branch and there are at least three useful
variations here. The first is obtained by beginning
at the root and moving from father to older son
at an interior node. At a terminal node, the move
is to the next younger brother, or if there is no
brother, to the father's next younger brother or,
if there is no remaining uncle, to the grandfather's
next younger brother and so on as necessary. The
process ends with a return to the root and the
regressions are produced in a dictionary-like or
lexicographic order (Table 1).

The second variation is obtained by applying the
vertical search procedure just described to the
tree in Figure 4 which is nothing more than the
mirror image of Figure 3 with the indexing of the
variables reversed. The regressions are produced
in what we refer to as 'binary' order (Table 1).
That is, if the regressions are numbered with k-
digit binary integers in the order in which they are
calculated, then the variables present in a regression
can be determined from the bit pattern of the
integer as illustrated by the following series:

1234

234.1

34.12

.n
4.123 .124

34.2

4.13 .14 4.23 .24

.134 .234

4.3 .4

.34

.1234

FIGURI: 3-The natural and lexicographic tree

TECHNOMETRICS?, VOL. 16, NO. 4, NOVEMBER 1974

502

REGRESSIONS BY LEAPS AND BOUNDS

TABLE --Sequences of Regressions

Natural Lexicographic Binary Familial

1
2
3
4

12
13
14
23
24
34

123
124
134
234

1234

1
12

123
1234
124
13

134
14
2

23
234
24

3
34

4

Binary
Integer

0001
0010
0011
0100

1
2

12
3

13
23

123
4

14
24

124
34

134
234

1234

1
2
3
4

12
13
23

123
14
24
34

124
134
234

1234

Regression
Variables

1
2

12
3

Our final method of traversing the regression tree
is again applied to Figure 4 and is something of
a hybrid with both horizontal and vertical elements.
We again move from father to older son as pre-
viously described but, when a node is visited, the
sons of that node, not the node itself, are listed in
order of age from oldest to youngest. The result is
sometimes described as familial order since all the
siblings of a family are listed together. Again k + 1
storage blocks are required; the storage can be this

small only because there are never more than
k - r + 1 sons in a family in the r-th generation.

2.3 Programming.

Algorithms for traversing the regression tree in
natural, lexicographic, binary and familial order
will be given in the form of short Fortran programs.
In principle, we could employ either our semi-sweep
or Gaussian elimination or, for that matter, the
Beaton sweep, in any of the four algorithms. How-
ever, in our Fortran implementations of the binary
and familial traverses, the list of previous pivots
required for the sweep operators is not produced
as an integral part of the programs.

It is not necessary in the programming of the
traverses to make explicit provision for the dele-
tions of Figure 1. The rows and columns to be
deleted before a pivot are always those with sub-
scripts greater than the index of the last previous
pivot and less than the index of the up-coming
pivot. Hence, these deletions are performed auto-
matically by GAUSS which operates only on those
rows and columns with subscripts greater than or
equal to the pivot index. SEMI accomplishes the
same purpose by utilizing a list of previous pivots
to limit its operations.

The sequence of pivots employed in the natural
traverse is conceptually quite simple. We begin
with the original matrix and pivot on each row in
turn beginning with the first. Each pivot produces
a submatrix and we pivot in turn on the remaining
rows of these submatrices and so on until the sub-
matrices have been exhausted.

1234

.1 1.2

.12

12.3

.13

123.4

.14

.123

1.24 12.34

A
.124 .134 1.234

.1234

FIGURE 4-The binary and familial tree

TECHNOMETRICS?, VOL. 16, NO. 4, NOVEMBER 1974

503

G. M. FURNIVAL AND R. W. WILSON, JR.

DO 1 L = 1, K
1 IND(L) = 0

M= K
IB = 0
IS = 1

2 IB = MOD(IB, MAX) + 1
DO 3 L = M, K
IF(IND(L).LT.L) GO TO 3
IND(L - 1) = IND(L - 1) + 1
IND(L) = IND(L - 1)

3 CONTINUE
4 IND(K) = IND(K) + 1

IS = MOD(IS, MAX) + 1
CALL SEMI(IB, IS, IND(K), A, K + 1,

IND, M, K- 1)
WRITE(6,) (IND(L), A(IS, IND(L),

K + 1), L = M, K)
IF(IND(K).LT.K) GO TO 4
IS = IS - 1

IF(IND(M).EQ.M) M = M- 1
IF(M.GT.0) GO TO 2
STOP

1
2
3
4
5
6
7
8
9

10
11
12
13

14

15
16
17
18
19

Statement 15 in the program writes the index and
the coefficient associated with each independent
variable in a subset regression and statements 7-12
and 16-19 identify the regressions. MAX is the
dimension corresponding to the first subscript of
A; a value of 150 is large enough for a problem with
ten independent variables. The diagonal element
of the inverse needed for computing the variance
of a regression coefficient is available in A(IS,L,L)
but we omit this calculation in, the interest of
brevity.

Our lexicographic algorithm is little more than
a method of labeling the subset regressions. We
pivot on the last variable in the regression; the
index of the storage block is the index of the pivot
plus one; and, because of this storage convention,
the index of the source block is the index of the
previous pivot plus one. Thus, if we are computing
the subset regression on variables 1, 2 and 4; then
IP is four, IS is five (4 + 1) and IB is three (2 + 1).

IND(1) = 0 1
M = 1 2

1 M = M + 1 3
IND(M) = IND(M- 1) + 1 4

2 CALL SEMI(IND(M - 1) + 1, IND(M) + 1,
IND(M), A, K + 1, IND, 2, M - 1) 5

WRITE (6,) (IND(L), A(IND(M) + 1,
IND(L), K + 1), L = 2, M) 6

IF(IND(M).LT.K) GO TO 1 7
M = M - 1 8
IND(M) = IND(M) + 1 9
IF(M.GT.1) GO TO 2 10
STOP 11

We recommend the use of this algorithm when
coefficients and other statistics such as variances
and F-ratios are to be computed and printed for
each subset regression. The space requirements
are much less than for the previous algorithm and

the order in which the regressions are produced
is reasonably intelligible.

The binary algorithm also operates from the
subscripts of the independent variables in the
subset regressions. However, the identification
array, NK, is a binary counter with a list of ones
and zeros which indicate the presence or absence
of the independent variables and the indexing of
the independent variables is reversed-that is, the
first row (and column) of the matrix contains the
products with X(K), the next with X(K - 1) and
so forth to X(1)-but the dependent variable is
still X(K + 1). The use of the binary array requires
that the array be scanned to obtain the indices of
the present and immediately preceeding pivot;
the reverse indexing requires that IB, IP and IS
be complemented.

DO 1 L = 1, K
1 NK(L) = 0

NK(K + 1) = 1
L= 1

2 NK(L) = 1
DO 3 M = L, K
IF(NK(M + 1).EQ. 1) GO TO 4

3 CONTINUE
4 CALL GAUSS(K - M + 1, K - L + 2,

K - L + 1, A, K + 1)
WRITE(6,)A(K - L + 2, K + 1, K + 1),

(NK(N), N = 1, K)
DO 5 L = 1, K
IF(NK(L).EQ.0) GO TO 2

5 NK(L) = 0
STOP

1
2
3
4

6
7
8

9

10
11
12
13
14

Statements 5 and 11-13 increment the binary
step counter, NK. The incrementation locates the
position of the lowest order 1 in NK and this
position determines the index of the pivot. State-
ments 6-8 locate the next lowest order 1; this
second position determines the index of the previous
pivot and the index of the source block. A variant
of this algorithm as described in Frayer et al (1971)
is recommended when residual sums of squares
or R-squares only are desired for all possible regres-
sions with k greater than 12. The output is a very
compact table with 16 regressions to a line and
912 to the page.

Our familial algorithm also assumes that the
independent variables are in reverse order and it
also employs a binary counter. However, the block
index is now obtained from the position of the
first rather than the second 1 and it is convenient
to refer to a stage rather than a step counter. At
each stage, we pivot on all of the remaining rows
of the submatrix before returning to the counter.

DO 1L = 1, K
1 NK(L) = 0

M = K + 1

1
2
3

TECHNOMETRICS?, VOL. 16, NO. 4, NOVEMBER 1974

504

REGRESSIONS BY LEAPS AND BOUNDS

2 NK(M)= 1 4
DO 3 L = 2, M 5
CALL GAUSS(K - M + 2, K - L + 3,

K - L + 2, A, K + 1) 6
NK(L- 1) = 1 7
WRITE(6,) A(K - L + 3, K + 1, K + 1),

(NK(N), N = 1, K) 8
3 NK(L- 1) = 0 9

DO 4 M = 2, K 10
IF(NK(M).EQ.0) GO TO 2 11

4 NK(M) = 0 12
STOP 13

The positions of the l's in the binary counter
at any stage correspond to the indices of the pre-
vious pivots on the source submatrix. Statement 7
adds a 1 for the current pivot so that NK can be
used for labeling the regression and statement 9
sets the bit back to zero.

This algorithm was first programmed in 1958
for the IBM 650 (Furnival, 1958; also described
in Ware et al, 1962) and later for the 709 and 7094
(Furnival, 1964). It has also been utilized as a
screening option in a complete regression package
by Grosenbaugh (1967).

2.4 Discussion.

The total number of operations (floating point
multiplications and divisions) required to compute
all possible regressions is the same for the four
algorithms but varies with the matrix operator.

Full sweep 2k-3(k2 + llk + 24) - (k2 + 5k)/2 - 3
Semi-sweep 2k-1(3k + 6) - 3(k + 1)
Gaussian 6(2k) - k(k + 7)/2 - 6

An IBM 370/158 with fast multiply under the
H compiler, optimizing level two, performs these
operations at a rate of approximately 2,000,000
per minute.

The maximum number of independent variables
which can be processed by our algorithms is limited
both by the amount of output produced and by the
number of arithmetic operations which must be
performed. If we adopt an arbitrary output limit
of 50,000 individual regression statistics (about
100 compact pages), then the upper limit of k is
approximately 11 for a full sweep, 12 for our semi-
sweep and 15 for Gaussian elimination.

However, we believe that our algorithms will be
most useful in empirical studies of the distribution
of regression statistics. In such cases, the output
can be limited to summary statistics and the time
required to process the subset regressions is the
limiting factor. If we adopt an upper limit of five
minutes for a medium size computer such as the
IBMA 370/158 then the maximum value of k is
approximately 17 for the full sweep, 18 for our
semi-sweep and 20 for Gaussian elimination.

We have been unable to reduce the amount of

floating point arithmetic required by our algorithms.
However, it is possible to reduce the indexing and
fixed point housekeeping by performing several
(r) preliminary splits and obtaining a number
(2r) of submatrices which are then processed in
'parallel' by one of the algorithms. Each step of
the computations then produces 2r regressions and
the amount of housekeeping is greatly reduced.
Storage requirements are, of course, increased but
can be reduced somewhat by the use of linear
arrays. It is probable that algorithms which permit
parallel computation will become more useful as
array processors such as Illiac IV come into general
use.

3. A BRANCH AND BOUND PROCEDURE

A number of authors have described procedures
for finding the best subset regressions without
computing all possible regressions (Hocking and
Leslie, 1967; Beale, Kendall and Mann, 1967;
LaMotte and Hocking, 1970). All of these methods
are based on the fundamental inequality

RSS(A) < RSS(B)

where A is any set of independent variables and B
is a subset of A. In other words, it is impossible to
reduce the residual sum of squares for a regression
by deleting variables from that regression.

3.1 Inverse trees.

The use of the inequality to restrict the number
of subsets evaluated in a search for the 'best' subset
regressions is illustrated by the tree diagram in
Figure 5. At the root is a five-variable inverse and
the subset regressions are computed by pivoting
variables out-of the regression. The RSS for a
node is obviously a lower bound for the RSS of
its offspring. Hence, if we arrive at the node .2345,
say, and had already computed one, two, and
three-variable regressions with RSS smaller than
that for .2345, then we could ignore the 14 de-
scendents of .2345.

The values in parentheses are the RSS for the
subset regressions and the underlining in the labels
at the nodes of Figure 5 indicates what variables
will be removed by future pivots on the submatrix.
Thus, from the node .1245 will be formed those
regressions which can be obtained by deleting all
possible combinations of X(4) and X(5).

Simple branch and bound algorithms for subset
selection can be developed by applying our all-
possible traverses to inverse trees, but the results
are not fully satisfactory. The difficulty is best
shown by an example. Suppose we are at .1345
with two and three-variable regressions which have
R-squares smaller than that for .1345 but our

TECHNOMETRICS?, VOL. 16, NO. 4, NOVEMBER 1974

505

G. M. FURNIVAL AND R. W. WILSON, JR.

,1234 .1235 .1245
(592) (596T (596)

.123 .124 .125
(612) (615) (S97)

.12
(615)

.1345
(605)

.134 .135 .145
(612) (61e) (6i)

.13 .14 .15
(641) (648) (618)

.1
(668)

23 .23235 .245
(664) (66) 6-) (667)

.23 .24 .25
(673) (685) (675)

.2
(702)

.345
(720)

.34 .35 .45
(727) (732) (736)

.3 ,4 .5
(746) (792) (799)

Null

FIGURE 5--The inverse tree

current best one-variable equation fails this test.
A reasonable procedure would be to evaluate .1
and ignore the other descendents of .1345. Un-
fortunately, the evaluation of .1 requires the prior
evaluation of .145 and .15 and these regressions
are of little or no value to us.

The problem becomes more serious with larger
trees. The likely candidates for the best regressions,
like good fruit, occur at the tips of the branches
and can be reached only by pivoting through a lot
of dead wood. It is possible to move these good

regressions to interior nodes by reversing the order
of the variables, but another difficulty emerges
immediately. The RSS for the interior nodes are

now, of course, small and therefore practically
useless as bounds. We assume here that the variables
have been ordered by some measure of importance
such as the magnitude of the t-ratios in the full
k-variable equation.

It seems that we require an impossibility-two
arrangements of the same tree. Our solution is two
trees-one for bounds and one for regressions. The

TECHNOMETRICSO, VOL. 16, NO. 4, NOVEMBER 1974

506

REGRESSIONS BY LEAPS AND BOUNDS

bound tree is obtained by eliminating all pivots on
variable five from the original inverse tree. All
the remaining regressions must then include variable
five since this variable is never pivoted out of the
regressions. The effect is simply to prune off the
terminal nodes of the tree of Figure 5.

The other half of the regressions-those without
variable five-are included in the regression tree
and this need not be an inverse tree. A step-down
procedure here would, in fact, defeat our purpose
which is to cluster regressions with a small number
of independent variables near the root of the tree
where they can be reached early in the traverse.
Furthermore, the forward approach involves fewer
pivots and possibly less rounding error.

Our object is to work out the branches of the
full inverse tree (Figure 5) by simultaneous traverses
of the regression tree and the bound tree. We observe
that each submatrix produced by the traverse of
the bound tree will serve as the source for a sub-
family or branch of regressions all of which contain
X(K) and these regressions will make up half of
the regressions in the corresponding branch of
the full inverse tree. The other half of the regressions,
those without X(K), must come from the regression
tree and we must arrange our traverse so that a
source subset will be available to produce them.

A particular branch or sub-family of the full
inverse tree can be characterized or described by
the presence or absence of certain variables and
the presence or absence of these variables also
determines the composition of the source sub-
matrices. Variables which do not occur in any of
the regressions of the sub-family must have been
pivoted out of the source subset of the bound tree
and the rows and columns associated with these
variables need not be present in the regression
source. On the other hand, variables that appear
in all the regressions of a sub-family must have
been pivoted into the regression source and must
not have been pivoted out of the bound source.
Finally, variables which are present in some regres-
sions of a sub-family but not in others must be
included in the bound source and (except for X(K))
must be represented in the regression source by
rows and columns on which pivots have not been
performed. The subscripts of this last class of
variables are underlined in the nodes of the bound
tree and appear to the left of the dot in the regression
tree.

We next observe that the rows and columns
associated with non-underlined variables can be
deleted-not pivoted out but simply dropped-
from the bound submatrices. These deletions are
possible because we are interested only in residual
sums of squares. We can, therefore, employ a

procedure very similar to Gaussian elimination and
we need not operate on rows and columns associated
with variables which will not be pivoted out of the
regression represented by the submatrix.

Symmetry now begins to emerge. Deletions on
the bound side correspond to pivots on the regres-
sion side and vice-versa. Thus, for example, the
bound source .245 is obtained from .12345 by deleting
X(2) and pivoting out X(1) and X(3). The cor-
responding regression source 4.2 is developed from
1234, by deleting X(1) and X(3) and pivoting in
X(2). We require, therefore, two traverses which
are the complements of each other-one deletes
where the other pivots. The most satisfactory
pairing that we have found applies a lexicographic
traverse to the regression tree and a slightly modified
(the sons are listed from youngest to oldest) familial
traverse to the bound tree.

Figures 1 and 2 show, respectively, the regression
tree and the bound tree for a four-variable prob-
lem. We return to the full binary representation for
these trees in order to emphasize the symmetry
and must reduce the number of variables from
five to four in order to stay within the confines of
a page.

3.2 The algorithm.
Our simultaneous traverses produce both a

regression RSS and a bound at each step in the
computations by parallel pivots on submatrices
from the product matrix and its inverse. With
testing 'turned off', all possible regressions would
be produced in the order shown in Table 2 for
k = 5. However, with testing 'turned on' for the
problem of Figure 5, only those pivots marked with
asterisks are performed.

There is no difficulty in combining our lexico-
graphic and familial algorithms to produce the
sequences of Table 2; the problem arises in imple-
menting the testing and skipping which permit us
to perform, for the problem of Figure 5, only those
pivots marked with asterisks. Before each pivot,
we will test the RSS for some current best regres-
sion against some bound and then leap ahead if
the test is successful. The questions are, of course:
which regression, which bound and how much?
The answers are quite simple. The appropriate
best regression has the same number of variables
as the regression which is about to be produced
by the product traverse; the proper bound is the
RSS from the source submatrix in the traverse of
the inverse; and the increment for the stage counter
is 2k-~-l where p is the pivot index.

We illustrate the procedure with a step-by-step
descent through Table 2. The pivots of stage zero
must always be performed. At stage 1, the inverse

TECHNOMETRICSC, VOL. 16, NO. 4, NOVEMBER 1974

507

G. M. FURNIVAL AND R. W. WILSON, JR.

TABLE 2-Order of computations for leap and bound algorithm

Stage Pivot Product Traverse Inverse Traverse Stage
Mumber Index Source: Regr'n RSS Source: Regr'n RSS Bound

0 * 1 1234. 234.1 668 .12345 .2345 660
* 2 234.1 34.12 615 .12345 .1345 605
* 3 34.12 4.123 612 .12345 .1245 596
* 4 4.123 .1234 592 .12345 .1235 596

1 *4 4.12 .124 615 .1245 .125 597 596

2 3 34.1 4.13 641 .1345 .145 618 605
4 4.13 .134 612 .1345 .135 618

3 4 4.1 .14 648 .145 .15 618 618

4 * 2 234. 34.2 702 .2345 .345 720 660
3 34.2 4.23 673 .2345 .245 667
4 4.23 .234 664 .2345 .235 666

5 4 4.2 .24 685 .245 .25 675 667

6 3 34. 4.3 746 .345 .45 736 720
4 4.3 .34 727 .345 .35 732

7 4 4. .4 792 .45 .5 799 736

source is .1245 and the product source is 4.12. The
inverse source always bounds the regressions that
can be produced from it and it also bounds the
only regression, .124, that can be produced from the
product source. It is clear, therefore, that our best
three-variable regression should be tested against
the RSS for .1245. The asterisk indicates failure;
the 612 of .123 is larger than the 596 of 1245. At
stage two, the inverse source .1345 again clearly
bounds the regressions that can be produced from
the product source 34.1, and we test against our
current best two-variable regression. We use the
two-variable regression because further pivots on
34.1 will produce at least a two-variable regression
and pivoting out one or more of the underlined
variables from .1345 will leave at least a two-
variable regression. Again the asterisk indicates
that our test fails; the 615 of .12 is larger than the
605 of .1345.

Our first success occurs on the next pivot of
stage 2. Reasoning similar to that described for
the earlier pivots leads to a test of the best three-
variable regression against the bound .1345 and
the test is passed. The 597 of .125 is smaller than
605 and we can leap but not very far. Only one
regression will be produced from 4.13 and only one
from .1345 so we can skip only the last pivot of
stage two. The stage increment is 25-4-1 or 1 and
moves us to stage 3. A further successful test of a
two-variable regression-the 615 of .12 versus the
618 of .145-moves us to stage 4 and our last

TECHNOMETRICS?, VOL. 16, NO. 4, NOVEMBER 1974

failure occurs here on the first pivot where the
668 of .1 is larger than the 660 of .2345.

At the second pivot, however, we are again
successful. The 615 of .12 is smaller than the 660
of .2345 and the regressions from .2345 and 34.2
need not be produced. Each of the sources is effec-
tively a two-variable matrix and each will produce
three regressions in two stages. Hence, we skip to
stage 6 where a successful test-the 668 of .1 versus
the 720 of .345-again permits a leap of two stages
and our search is completed after evaluating 6
of the 22 possible subsets of stages 1-7.

The source submatrices utilized at each pivot
in our procedure include only the rows and columns
associated with the dependent variable and those
independent variables having subscripts equal to
or larger than the pivot index. Each source is,
therefore, effectively a matrix with k - p inde-
pendent variables from which 2k - 1 subset regres-
sions can be formed and these regressions are
produced in 2k-P-' stages.

For the lexicographic traverse, a stage is equiva-
lent to a branch of a tree and, for the familial
traverse, a stage is all the sons of a father. In either
case, it is easily shown that the traverse of an
r-variable tree (or sub-tree) requires 2T-1 stages.
There are 2' nodes in a condensed tree of which
half, 2r-', are interior nodes and half are exterior.
We simply note that each interior node is the father
of a family of sons and each exterior node is the
tip of a branch.

508

REGRESSIONS BY LEAPS AND BOUNDS

Just prior to each pivot in our procedure we are
effectively at a node of Figure 5 preparing to develop
the regressions in the sub-family defined by the
node. We have, however, already in hand, in the
source submatrix on the product side, the regression
at the terminal node of the longest branch. Our
stage increment of 2k-p-l simply skips the remaining
regressions which could be derived from and are
therefore bounded by our node of Figure 5.

3.3 Programming.
The initial step in our program is the inversion

of the product matrix using a forward step-wise
procedure with a tolerance check on the pivot
elements. Next we re-order the variables by cal-
culating the reduction in the regression sum of
squares that would occur with the removal of
each variable from the regression equation; the
variable associated with the largest removal sum
of squares becomes the new X(1) and so on. The
reordered product and inverse matrices, with the
new X(K) deleted, are loaded into two-dimensional
working arrays labeled AA and BB-the product
in AA, the inverse in BB. We complete the intializa-
tion phase by setting IP= 1, KM = K-1, KMM=
K-2, NXS(1)=0, LS=O and the array NK (I)
to zero for I= 1,2.. KMM.

1 DO 3 L = IP, KM 1
IS = L +1 2
NXS(IS) = NXS(IP) + L - IP 3
IF(RM(NXS(IS) + 1).LE.BB(K, K))

GO TO 4 4
IADD(IS) = LS 5
DO 2 I = IS, K 6
DO 2 J = I, K 7
LS = LS + 1 8
AN(LS) = AA(I, J) 9
AA(I, J) = AN(LS)

- AA(L, I)*AA(L, J)/AA(L, L) 10
2 AI(LS) = BB(I, J)

- BB(L, I)*BB(L, J)/BB(L, L) 11
3 CALL STORE 12

L = KM 13
4 LEAP = K- L 14

DO 5 M = LEAP, KMM 15
IF(NK(M).EQ.0) GO TO 6 16

5 NK(M) = 0 17
CALL WRITE 18
STOP 19

6 NK(M)= 1 20
IP = K- M 21
LS = IADD(IP) 22
CALL COPY 23
GO TO 1 24

In order to save space without unduly complicating
the indexing, we work out of the two-dimensional
arrays AA and BB but store in the linear arrays
AN and AI. This practice also permits us to lag
the storage of the product submatrices (statement 9)
so that the index of the source block for a stage

is the same for both the product and the inverse
side of the computations. We begin stage zero with
AA and BB already loaded and subroutine COPY
has the task of retrieving the source submatrices
before the first pivot of each succeeding stage.
Statements 13-17 and 20-21 increment the stage
counter by the amount 2**(LEAP -1) and compute
a value for IP which is the index of the source
blocks and also the index the first pivot of a stage.
Statement 3 finds the number of variables in the
regressions produced by the pivots on the product
submatrix and statement 4 tests the best regression
with this number of variables against the RSS
from the source submatrix of the inverse. At stage
zero, the array, RM, of best regressions contains
the best subset regressions found in the initial
step-wise inversion.

The pivots are simply Gaussian eliminations and
are performed by statements 6-12. The computa-
tions, except for the storage lag just described,
are identical for the product and inverse submatrices.
This simplification is possible because the original
inversion utilizes a sweep operator which returns
a negative inverse and regression coefficients. Thus,
at stage zero and thereafter, the RSS in BB(K,K)
is positive but the elements of the inverse in rows
and columns IP through K-1 and the regression
coefficients in column K have their signs reversed.

Subroutine STORE is assigned the housekeeping
chores of labeling and saving the RSS for the best
regressions; subroutine WRITE prints the final
output.

Our operating program reorders the variables
just prior to the first pivot of each stage using a
procedure very similar to that described for the
initial ordering. We 'look ahead' and calculate, for
each underlined variable in the inverse source
submatrix, the removal sum of squares

RIN(L) = - BB(L,K) *BB(L,K) /BB(L,L)

for L=IP,IP+1.. K-1. The new X(IP) is the
variable with the largest removal sum of squares.

As a by-product of the reordering, we also obtain
sharper bounds. Referring again to the node .2345
of Figure 5, we see that all one-variable regressions
from this source come from the sub-sources .245
and .345. Hence, the smaller RSS, the 667 from
.245, bounds the one-variable regressions. A similar
argument shows that the 666 of .235 bounds the
two-variable regressions. For the three-variable
bound and in general for the last bound of a stage,
we use the usual bound BB(K,K). The RSS needed
for the sharper bounds can be obtained, without
performing the pivots that would normally produce
them, by simply adding the appropriate RIN(L)
to BB(K,K). Thus, with the RIN(L) ordered by

TECHNOMETRICS?, VOL. 16, NO. 4, NOVEMBER 1974

509

G. M. FURNIVAL AND R. W. WILSON, JR.

size from largest to smallest and with RIN(K) =0,
the bound for the L-th pivot of a stage is BB(K,K) +
RIN(L+ 1).

The program also offers the option of finding
the best m regressions, rather than a single best
regression, for each size of subset. The changes
in the algorithm are minor. The tests preceding
the pivots of a stage are made on the current m-th
best, rather than the best, regression with the
appropriate number of independent variables; and
the test procedure is modified to ensure that no
leap occurs if the test associated with any remaining
pivot of the stage is not satisfied. This situation
can never arise in the simpler version of the program
because there the bounds remain constant within
a stage and the current best r-variable regression
always has a RSS at least as small as the current
best regression with a smaller number of variables.

In the search for the m best regressions for each
size subset, the program evaluates a number of
additional regressions and the best of these are
saved for each size subset. The program also saves
for each size subset the smallest bound invoking a
leap or skip and these bounds are, of course, lower
bounds for the RSS of the subsets that have not
been evaluated.

3.4 Discussion.

Our branch and bound algorithm appears to
have some desirable features which are not present
in others that have been proposed. First, we make
no real distinction between an RSS computed as
a bound and an RSS computed for a regression;
we use both in working out the branches of the
regression tree. Other algorithms treat their bounds
and regressions separately and may compute the
same RSS twice, once as a bound and again for a
regression. In addition, we compute each RSS
with a single pivot and never pivot more than
twice (only once in product submatrices) on the
same row and column of any submatrix. Other
algorithms employ a horizontal traverse and form
new regressions by pivoting an 'old' variable out
and then a 'new' variable into the regression. Thus,
the subsets are strung along a lengthy chain of
pivots and two pivots are required to move from
one subset to another. The results are an increase
in computing time and perhaps an accumulation of
rounding errors. Furthermore, except for the re-
ordering within stages, we do very little house-
keeping beyond that required to do all possible
regressions. In fact, our leaps and bounds procedure
with testing 'turned off' is a very efficient algorithm
for computing all possible regressions. Finally,
we can obtain the m-best regressions, rather than
a single best regression, for each size of subset and,

so far as we know, no other program offers this
option.

Some idea of the number of operations required
to find the best subsets with our program can be
obtained from the following series of trials:

k

10
15
20
25
30
35

m=1

2,192
11,050
66,766

336,575
2,169,708
6,301,708

m = 10

3,764
23,118

123,412
639,945

3,934,714
11,614,024

Again, the number of operations can be converted
to approximate time in minutes on an IBM 370/158
by dividing by 2,000,000. However, timing and
number of operations are strongly data dependent
and may vary from that given above by as much
as a factor of two in either direction.

We have not had an opportunity to test our
program against the Beale, Kendall and Mann
algorithm. However, in a series of trials with k
varying from 15 to 27, our program was 15-50
times as fast as the LaMotte-Hocking program,
and the difference in speed increased with k.

Program decks (300 cards), instructions for use,
and a sample problem are available from the authors.
The progranr is designed for use with an existing
regression package and is in the form of a sub-
routine utilizing a correlation or product matrix
as input.

REFERENCES

[1] ALLEN, D. M. (1971). Mean square error of prediction as
a criterion for selecting variables. Technometrics 13,
469-475.

[2] BEALE, E. M. L., KENDALL, M. G., and MANN, D. W.
(1967). The discarding of variables in multivariate
analysis. Biometrika 54, 357-365.

[3] BEATON, A. E. (1964). The Use of Special Matrix Opera-
tors in Statistical Calculus. Research Bulletin RB-64-51,
Educational Testing Service, Princeton, New Jersey.

[4] DRAPER, N. R., and SMITH, H. (1966). Applied Regression
Analysis. John Wiley and Sons, Inc.

[5] FRAYER, W. E., WILSON, R. W., FURNIVAL, G. M. (1971).
FSCREEN (Fast SCREEN) A Computer Program for
Screening All Combinations of Independent Variables in
Univariate Multiple Linear Regressions. Dept. of Forest
and Wood Sciences. College of For. and Nat. Resources.
Colorado State University.

[6] FURNIVAL, G. M. (1958). Regression Routines. Mimeo.
Yale School of Forestry, New Haven, Conn.

[7] FURNIVAL, G. M. (1964). More on the elusive formula of
best fit. Proceedings, Society of American Foresters,
Washington, D. C.

[8] FURNIVAL, G. M. (1971). All possible regressions with
less computation. Technometrics 13, 403-408.

[9] GARSIDE, M. J. (1965). The best subset in multiple
regression analysis. Applied Statist., J. R. Statist. Soc.,
Series C, 14, 196-200.

[10] GROSENBAUGH, L. R. (1967). REX-Fortran-4 System for
Combinational Analysis of Multivariate Regression.

TECHNOMETRICSO, VOL. 16, NO. 4, NOVEMBER 1974

510

REGRESSIONS BY LEAPS AND BOUNDS

Berkeley, Calif., Pacific S. W. Forrest Exp. Sta. (U. S.
Forest Serv. Res. Paper PSW-44).

[11] HOCKING, R. R. (1972). Criteria for selection of a subset
regression: which one should be used? Technometrics 14,
967-970.

[12] HOCKING, R. R., and LESLIE, R. N. (1967). Selection of
the best subset in regression analysis. Technometrics 9,
531-540.

[13] HOERL, A. E., and KENNARD, R. W. (1970). Ridge
regression: biased estimation for non-orthogonal prob-
lems. Technometrics 12, 55-68.

[14] LAMOTTE, L. R. and HOCKING, R. R. (1970). Computa-

tional efficiency in the selection of regression variables.
Technometrics 12, 83-93.

[15] MALLOWS, C. L. (1966). Choosing a Subset Regression.
Presented at Joint Statistical Meetings, Los Angeles,
California.

[16] SCHATZOFF, M., FIENBERG, S. and TSAO, R. (1968).
Efficient calculations of all possible regressions. Tech-
nometrics 10, 768-779.

[17] WARE, K. D., BICKFORD, C. A., WILSON, R. W. and
MAYER, C. E. (1962). A program for regression analysis
with the IBM 650 electronic computer. Journal of
Forestry 60, 645-646.

TECHNOMETRICS?, VOL. 16, NO. 4, NOVEMBER 1974

511

	Article Contents
	p.499
	p.500
	p.501
	p.502
	p.503
	p.504
	p.505
	p.506
	p.507
	p.508
	p.509
	p.510
	p.511

	Issue Table of Contents
	Technometrics, Vol. 16, No. 4 (Nov., 1974), pp. 483-648
	Volume Information [pp.639-647]
	Front Matter
	The Atom Probe and Markov Chain Statistics of Clustering [pp.483-493]
	Percentage Points of the Distribution of the t Statistic When the Parent Is Student's t [pp.495-497]
	Regressions by Leaps and Bounds [pp.499-511]
	Latent Root Regression Analysis [pp.513-522]
	A Robust Method for Multiple Linear Regression [pp.523-531]
	Test Statistics for Mixture Models [pp.533-537]
	A Double Sampling Procedure to Control the Variance in Net Weight Acceptance Sampling [pp.539-543]
	Power of Cochran's Test in the Behrens-Fisher Problem [pp.545-549]
	Analysis for the Linear Failure-Rate Life-Testing Distribution [pp.551-559]
	Optimum Composite Designs [pp.561-567]
	The Relationship in Terms of Asymptotic Mean Square Error between the Separate Problems of Estimating Each of the Three Types of Error Rate of the Linear Discriminant Function [pp.569-575]
	A Problem in the Distribution of Maximum Flaw Length after Inspection [pp.577-583]
	Maximum Likelihood Estimation for the Multinomial Distribution Using Geometric Progamming [pp.585-587]
	Nearly Optimal Allocation of Experimental Units Using Observed Covariate Values [pp.589-599]
	Efficient Sampling by Artificial Attributes [pp.601-611]
	Notes
	On Minimum-Point Second-Order Designs [pp.613-616]
	Estimating Weibull Parameters by Linear and Nonlinear Regression [pp.617-619]
	An Improved Gamma Approximation to the Negative Binomial [pp.621-624]
	A Note on the Estimation of Pr {Y < X} in the Exponential Case [p.625]
	Determination of System Performance by the Generation of Conditional System Moments [pp.627-629]
	On the Continuity Correction [pp.631-632]

	Book Reviews
	untitled [pp.633-634]
	untitled [p.634]
	untitled [pp.634-635]
	untitled [p.635]
	untitled [p.635]
	untitled [pp.635-636]
	untitled [p.636]
	untitled [p.636]
	untitled [p.637]

	Letters to the Editor [pp.641-642]
	Back Matter [pp.643-648]

