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Many of the classification algorithms developed in the machine learning literature, including the support vector machine and boosting, can
be viewed as minimum contrast methods that minimize a convex surrogate of the 0–1 loss function. The convexity makes these algorithms
computationally efficient. The use of a surrogate, however, has statistical consequences that must be balanced against the computational
virtues of convexity. To study these issues, we provide a general quantitative relationship between the risk as assessed using the 0–1 loss and
the risk as assessed using any nonnegative surrogate loss function. We show that this relationship gives nontrivial upper bounds on excess
risk under the weakest possible condition on the loss function—that it satisfies a pointwise form of Fisher consistency for classification.
The relationship is based on a simple variational transformation of the loss function that is easy to compute in many applications. We also
present a refined version of this result in the case of low noise, and show that in this case, strictly convex loss functions lead to faster rates of
convergence of the risk than would be implied by standard uniform convergence arguments. Finally, we present applications of our results
to the estimation of convergence rates in function classes that are scaled convex hulls of a finite-dimensional base class, with a variety of
commonly used loss functions.
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1. INTRODUCTION

Convexity has become an increasingly important theme in
applied mathematics and engineering, having taken on a promi-
nent role akin to that played by linearity for many decades.
Building on the discovery of efficient algorithms for linear
programs, researchers in convex optimization theory have de-
veloped computationally tractable methods for large classes
of convex programs (Nesterov and Nemirovskii 1994). Many
fields in which optimality principles form the core conceptual
structure have been changed significantly by the introduction of
these new techniques (Boyd and Vandenberghe 2004).

Convexity arises in many guises in statistics as well, no-
tably in properties associated with the exponential family of
distributions (Brown 1986). But only recently has the system-
atic exploitation of the algorithmic consequences of convex-
ity begun in statistics. One applied area in which this trend
has been most salient is machine learning, where the focus
has been on large-scale statistical models, for which compu-
tational efficiency is an imperative. Many of the most promi-
nent methods studied in machine learning make significant use
of convexity; in particular, support vector machines (Boser,
Guyon, and Vapnik 1992; Cortes and Vapnik 1995; Cristianini
and Shawe-Taylor 2000; Schölkopf and Smola 2002), boost-
ing (Freund and Schapire 1997; Collins, Schapire, and Singer
2002; Lebanon and Lafferty 2002), and variational inference
for graphical models (Jordan, Ghahramani, Jaakkola, and Saul
1999) are all based directly on ideas from convex optimization.
These methods have had significant practical successes in such
applied areas as bioinformatics, information management, and
signal processing (Feder et al. 2004; Joachims 2002; Schölkopf,
Tsuda, and Vert 2003).

If algorithms from convex optimization are to continue to
make inroads into statistical theory and practice, we need to un-
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derstand these algorithms not only from a computational stand-
point, but also in terms of their statistical properties. What are
the statistical consequences of choosing models and estima-
tion procedures so as to exploit the computational advantages
of convexity?

In this article we study this question in the context of dis-
criminant analysis, a topic referred to as classification in the
machine learning field. We consider the setting in which a co-
variate vector X ∈ X is to be classified according to a binary
response Y ∈ {−1,1}. The goal is to choose a discriminant
function f :X → R, from a class of functions F , such that the
sign of f (X) is an accurate prediction of Y under an unknown
joint measure P on (X,Y). We focus on 0–1 loss; thus, let-
ting �(α) denote an indicator function that is 1 if α ≤ 0 and
0 otherwise, we wish to choose f ∈ F that minimizes the risk
R( f ) = E�(Yf (X)) = P(Y �= sign( f (X))).

Given a sample Dn = ((X1,Y1), . . . , (Xn,Yn)), it is natural
to consider estimation procedures based on minimizing the
sample average of the loss, R̂( f ) = 1

n

∑n
i=1 �(Yi f (Xi)). As is

well known, however, such a procedure is computationally in-
tractable for many nontrivial classes of functions (see, e.g.,
Arora, Babai, Stern, and Sweedyk 1997). Indeed, the loss func-
tion �(Yf (X)) is nonconvex in its (scalar) argument, and al-
though not a proof, this suggests a source of the difficulty.
Moreover, it suggests that we might base a tractable estima-
tion procedure on minimization of a convex surrogate φ(α) for
the loss. In particular, if F consists of functions that are lin-
ear in a parameter vector θ , then the expectation of φ(Yf (X))

is convex in θ (by convexity of φ and linearity of expectation).
Given a convex parameter space, we obtain a convex program
and can exploit the methods of convex optimization. A wide
variety of classification methods are based on this tactic; in par-
ticular, Figure 1 shows the (upper-bounding) convex surrogates
associated with the support vector machine (Cortes and Vapnik
1995), AdaBoost (Freund and Schapire 1997), and logistic re-
gression (Friedman, Hastie, and Tibshirani 2000). In the ma-
chine learning literature, these convexity-based methods have
largely displaced earlier nonconvex methods, such as neural
networks.
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Figure 1. A Plot of the 0–1 Loss Function and Surrogates Corre-
sponding to Various Practical Classifiers ( 0–1; exponential;

hinge; logistic; truncated quadratic). These functions are
plotted as a function of the margin α = yf (x). Note that a classification
error is made if and only if the margin is negative; thus the 0–1 loss is
a step function that is equal to 1 for negative values of the abscissa.
The curve labeled “logistic” is the negative log-likelihood, or scaled de-
viance, under a logistic regression model, “hinge” is the piecewise-linear
loss used in the support vector machine, and “exponential” is the expo-
nential loss used by the AdaBoost algorithm. The deviance is scaled so
as to majorize the 0–1 loss; see Lemma 4.

A basic statistical understanding of the convexity-based set-
ting has begun to emerge. In particular, when appropriate
regularization conditions are imposed, it is possible to demon-
strate the Bayes-risk consistency of methods based on minimiz-
ing convex surrogates for 0–1 loss. Lugosi and Vayatis (2004)
provided such a result under the assumption that the surro-
gate φ is differentiable, monotone and strictly convex and sat-
isfies φ(0) = 1. This handles all of the cases shown in Figure 1
except the support vector machine. Steinwart (2005) demon-
strated consistency for the support vector machine as well, in
a general setting where F is taken to be a reproducing kernel
Hilbert space and φ is assumed to be continuous. Other results
on Bayes-risk consistency have been presented by Breiman
(2004), Jiang (2004), Mannor and Meir (2001), and Mannor,
Meir, and Zhang (2002).

Consistency results provide reassurance that optimizing a
surrogate does not ultimately hinder the search for a function
that achieves the Bayes risk, and thus allow such a search to pro-
ceed within the scope of computationally efficient algorithms.
There is, however, an additional motivation for working with
surrogates of 0–1 loss beyond the computational imperative.
Minimizing the sample average of an appropriately behaved
loss function has a regularizing effect; it is possible to obtain
uniform upper bounds on the risk of a function that minimizes
the empirical average of the loss φ, even for classes that are
so rich that no such upper bounds are possible for the mini-
mizer of the empirical average of the 0–1 loss. Indeed, a num-

ber of such results have been obtained for function classes with
infinite Vapnik–Chervonenkis (VC) dimension (Bartlett 1998,
Shawe-Taylor, Bartlett, Williamson, and Anthony 1998), such
as the function classes used by AdaBoost (see, e.g., Schapire,
Freund, Bartlett, and Lee 1998; Koltchinskii and Panchenko
2002). These upper bounds provide guidance for model selec-
tion and in particular help guide data-dependent choices of reg-
ularization parameters.

To carry this agenda further, we need to find general quantita-
tive relationships between the approximation and estimation er-
rors associated with φ and those associated with 0–1 loss. This
point was emphasized by Zhang (2004), who presented several
examples of such relationships. Here we simplify and extend
Zhang’s results, developing a general methodology for finding
quantitative relationships between the risk associated with φ

and the risk associated with 0–1 loss. In particular, let R( f ) de-
note the risk based on 0–1 loss, and let R∗ = inff R( f ) denote
the Bayes risk. Similarly, let Rφ( f ) = Eφ(Yf (X)) be called the
“φ-risk,” and let R∗

φ = inff Rφ( f ) denote the “optimal φ-risk.”
We show that for all measurable f ,

ψ
(
R( f ) − R∗) ≤ Rφ( f ) − R∗

φ, (1)

for a nondecreasing function ψ : [0,1] → [0,∞). Moreover, we
present a general variational representation of ψ in terms of φ,
and show that this function is the optimal upper bound of the
form (1), in the sense that any other function that satisfies (1)
for all measurable f is everywhere no larger than ψ .

This result suggests that if ψ is well-behaved, then minimiza-
tion of Rφ( f ) may provide a reasonable surrogate for minimiza-
tion of R( f ). Moreover, the result provides a quantitative way
to transfer assessments of statistical error in terms of “excess
φ-risk,” Rφ( f ) − R∗

φ , into assessments of error in terms of “ex-
cess risk,” R( f ) − R∗.

Although our principal goal is to understand the implica-
tions of convexity in classification, we do not impose a con-
vexity assumption on φ at the outset. Indeed, whereas such
conditions as convexity, continuity, and differentiability of φ

are easy to verify and have natural relationships to optimization
procedures, it is not immediately obvious how to relate such
conditions to their statistical consequences. Thus we consider
the weakest possible condition on φ: that it is “classification-
calibrated,” which is essentially a pointwise form of Fisher con-
sistency for classification (Lin 2004). In particular, if we define
η(x) = P(Y = 1|X = x), then φ is classification-calibrated if,
for x such that η(x) �= 1/2, every minimizer f ∗ of the condi-
tional expectation E[φ(Yf ∗(X))|X = x] has the same sign as the
Bayes decision rule, sign(2η(x) − 1). We show that the upper
bound (1) on excess risk in terms of excess φ-risk is nontriv-
ial precisely when φ is classification-calibrated. Obviously, no
such bound is possible when φ is not classification-calibrated.

The difficulty of a pattern classification problem is closely re-
lated to the behavior of the posterior probability η(X). In many
practical problems, it is reasonable to assume that for most X,
η(X) is not too close to 1/2. Mammen and Tsybakov (1999)
introduced an elegant formulation of such an assumption, and
Tsybakov (2004) considered the convergence rate of the risk
of a function that minimizes empirical risk over some fixed
class F . He showed that under the assumption of low noise,
the risk converges surprisingly quickly to the minimum over
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the class. If the minimum risk is nonzero, then we might expect
a convergence rate no faster than 1/

√
n. However, under Tsy-

bakov’s assumption, the convergence rate can be as fast as 1/n.
We show that minimizing the empirical φ-risk also leads to
surprisingly fast convergence rates under this assumption. In
particular, if φ is uniformly convex, then the minimizer of the
empirical φ-risk has φ-risk that converges quickly to its optimal
value, and the noise assumption allows an improvement in the
relationship between excess φ-risk and excess risk.

These results suggest a general interpretation of pattern clas-
sification methods involving a convex contrast function. It is
common to view the excess risk as a combination of an estima-
tion term and an approximation term,

R( f ) − R∗ =
(

R( f ) − inf
g∈F

R(g)
)

+
(

inf
g∈F

R(g) − R∗).

However, choosing a function with risk near-minimal over a
class F—that is, finding an f for which the estimation term
above is close to 0—is, in a minimax setting, equivalent to the
problem of minimizing empirical risk, and hence is computa-
tionally infeasible for typical classes F of interest. Indeed, for
classes typically used by boosting and kernel methods, the es-
timation term in this expression does not converge to 0 for the
minimizer of the empirical risk. In contrast, we can also split
the upper bound on excess risk into an estimation term and an
approximation term,

ψ
(
R( f ) − R∗)

≤ Rφ( f ) − R∗
φ

=
(

Rφ( f ) − inf
g∈F

Rφ(g)
)

+
(

inf
g∈F

Rφ(g) − R∗
φ

)
.

Often, it is possible to minimize φ-risk efficiently. Thus, al-
though finding an f with near-minimal risk might be compu-
tationally infeasible, finding an f for which this upper bound on
risk is near-minimal can be feasible.

The article is organized as follows. Section 2 presents basic
definitions and a statement and proof of (1). It also introduces
the convexity assumption, and shows how it simplifies the com-
putation of ψ . Section 3 presents a refined version of our main
result in the setting of low noise. Section 4 presents bounds on
the rate of convergence of the φ-risk of the empirical minimizer
for strictly convex φ, and describes applications of these results
to convex function classes, such as those used by AdaBoost.
It also describes simulations that illustrate the theoretical re-
sults. Section 5 presents our conclusions. Proofs of all of our
results are presented either in the main text or in Appendix A.

2. RELATING EXCESS RISK TO EXCESS φ-RISK

There are three sources of error to consider in a statistical
analysis of classification problems: the classical estimation er-
ror due to finite sample size, the classical approximation error
due to the size of the function space F , and an additional source
of approximation error due to the use of a surrogate in place of
the 0–1 loss function. It is this last source of error that is our fo-
cus in this section. Thus, throughout this section, we work with
population expectations and assume that F is the set of all mea-
surable functions. This allows us to ignore errors due to the size
of the sample and the size of the function space, and focus on
the error due to the use of a surrogate for the 0–1 loss function.

We follow the tradition in the classification literature and re-
fer to the function φ as a loss function, because it is a function
that is to be minimized to obtain a discriminant. More precisely,
φ(Yf (X)) is generally referred to as a “margin-based loss func-
tion,” where the quantity Yf (X) is known as the “margin.” (It is
worth noting that margin-based loss functions are rather differ-
ent from distance metrics, a point that we explore in App. B.)

This ambiguity in the use of “loss” will not confuse; in par-
ticular, we will be careful to distinguish the risk, which is an
expectation over 0–1 loss, from the “φ-risk,” which is an ex-
pectation over φ. Our goal in this section is to relate these two
quantities.

2.1 Setup

Let (X × {−1,1},G ⊗ 2{−1,1},P) be a probability space. Let
X be the identity function on X , and let Y be the identity func-
tion on {−1,1}, so that P is the distribution of (X,Y); that is,
for A ∈ G ⊗ 2{−1,1}, P((X,Y) ∈ A) = P(A). Let PX on (X ,G)

be the marginal distribution of X, and let η :X → [0,1] be a
measurable function such that η(X) is a version of P(Y = 1|X).
Throughout this section, f is understood as a measurable map-
ping from X into R.

Define the {0,1}-risk, or just risk, of f as

R( f ) = P
(
sign( f (X)) �= Y

)
,

where sign(α) = 1 for α > 0 and −1 otherwise. [The particular
choice of the value of sign(0) is not important, but we need to
fix some value in {±1} for the definitions that follow.] Based on
an iid sample Dn = ((X1,Y1), . . . , (Xn,Yn)), we want to choose
a function fn with small risk.

Define the Bayes risk, R∗ = inff R( f ), where the infimum
is over all measurable f . Then any f satisfying sign( f (X)) =
sign(η(X) − 1/2) a.s. on {η(X) �= 1/2} has R( f ) = R∗.

Fix a function φ : R → [0,∞). Define the φ-risk of f as

Rφ( f ) = Eφ(Yf (X)).

Let F be a class of functions f :X → R. Let fn = f̂φ be
a function in F that minimizes the empirical expectation of
φ(Yf (X)),

R̂φ( f ) = Êφ(Yf (X)) = 1

n

n∑

i=1

φ(Yi f (Xi)).

Thus we treat φ as specifying a contrast function that is to be
minimized in determining the discriminant function fn.

2.2 Basic Conditions on the Loss Function

Define the conditional φ-risk,

E
(
φ(Yf (X))|X = x

) = η(x)φ( f (x)) + (1 − η(x))φ(−f (x))

a.e. (x).

It is useful to think of the conditional φ-risk in terms of a
generic conditional probability η ∈ [0,1] and a generic clas-
sifier value α ∈ R. To express this viewpoint, we introduce the
generic conditional φ-risk,

Cη(α) = ηφ(α) + (1 − η)φ(−α).

The notation suppresses the dependence on φ. The generic con-
ditional φ-risk coincides with the conditional φ-risk of f at
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x ∈ X if we take η = η(x) and α = f (x). Here varying α in
the generic formulation corresponds to varying f in the original
formulation, for fixed x. As a useful illustration for the defini-
tions that follow, consider a singleton domain X = {x0}. Min-
imizing the φ-risk corresponds to choosing f (x0) to minimize
Cη(x0)( f (x0)).

For η ∈ [0,1], define the optimal conditional φ-risk,

H(η) = inf
α∈R

Cη(α) = inf
α∈R

(
ηφ(α) + (1 − η)φ(−α)

)
.

Then the optimal φ-risk satisfies

R∗
φ := inf

f
Rφ( f ) = EH(η(X)),

where the infimum is over measurable functions.
If the infimum in the definition of H(η) is uniquely attained

for some α, we can define α∗ : [0,1] → R by

α∗(η) = arg min
α∈R

Cη(α).

In that case, we define f ∗
φ :X → R, up to PX-null sets, by

f ∗
φ (x) = arg min

α∈R

E
(
φ(Yα)|X = x

)

= α∗(η(x))

and then

Rφ( f ∗
φ ) = EH(η(X)) = R∗

φ.

For η ∈ [0,1], define

H−(η) = inf
α:α(2η−1)≤0

Cη(α).

This is the optimal value of the conditional φ-risk, under the
constraint that the sign of the argument α disagrees with that of
2η − 1.

We now turn to the basic condition that we impose on φ.
This condition generalizes the requirement that the minimizer
of Cη(α) (if it exists) has the correct sign. This is a minimal
condition that can be viewed as a pointwise form of Fisher con-
sistency for classification.

Definition 1. We say that φ is classification-calibrated if, for
any η �= 1/2,

H−(η) > H(η).

Consider again a singleton domain X = {x0}. Minimizing
φ-risk corresponds to choosing f (x0) to minimize Cη(x0)( f (x0)).
The classification-calibrated condition requires that adding the
constraint that f (x0) has the incorrect sign always leads to a
strictly larger φ-risk.

Example 1 (Exponential loss). Consider the loss function
φ(α) = exp(−α) used by AdaBoost. Figure 2(a) shows φ(α),
φ(−α), and the generic conditional φ-risk Cη(α) for η = .3 and
η = .7. In this case φ is strictly convex on R, and hence Cη(α)

is also strictly convex on R, for every η. So Cη is either minimal
at a unique stationary point or attains no minimum. Indeed, if
η = 0, then Cη(α) → 0 as α → −∞; if η = 1, then Cη(α) → 0
as α → ∞. Thus we have H(0) = H(1) = 0 for exponential
loss. For η ∈ (0,1), solving for the stationary point yields the

(a) (b)

Figure 2. Exponential Loss. (a) φ(α) ( ), its reflection φ(−α)
( ), and two different convex combinations of these functions
[ C.3(α); C.7(α)], for η = .3 and η = .7. Note that the minima
of these combinations are the values H(η), and the minimizing argu-
ments are the values α∗(η). (b) H(η) ( ) and α∗(η) ( ) plotted as
a function of η, and the ψ -transform ψ (θ ) ( ).

unique minimizer

α∗(η) = 1

2
log

(
η

1 − η

)

.

We may then simplify the identity H(η) = Cη(α
∗(η)) to obtain

H(η) = 2
√

η(1 − η).

Note that this expression is also correct for η equal to 0 or 1.
Figure 2(b) shows the graphs of α∗ and H over the interval
[0,1]. It is easy to check that

H−(η) ≡ exp(0) = 1,

and this is strictly greater than 2
√

η(1 − η) when η �= 1/2, so
the exponential loss is classification-calibrated.

2.3 The ψ -Transform and the Relationship
Between Excess Risks

We begin by defining a functional transform of the loss func-
tion. Then Theorem 1 shows that this transform gives optimal
bounds on excess risk in terms of excess φ-risk.

Definition 2. We define the ψ -transform of a loss func-
tion as follows. Given φ : R → [0,∞), define the function
ψ : [−1,1] → [0,∞) by ψ = ψ̃∗∗, where

ψ̃(θ) = H−
(

1 + θ

2

)

− H

(
1 + θ

2

)

,

and g∗∗ : [−1,1] → R is the Fenchel–Legendre biconjugate of
g : [−1,1] → R, which is characterized by

epi g∗∗ = co epi g.
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Here co S is the closure of the convex hull of the set S,
and epi g is the epigraph of the function g, that is, the set
{(x, t) : x ∈ [0,1],g(x) ≤ t}. The nonnegativity of ψ is estab-
lished in Lemma 2, part 7.

Recall that g is convex if and only if epi g is a convex set,
and g is closed (epi g is a closed set) if and only if g is lower
semicontinuous (Rockafellar 1997). By Lemma 2, part 5, ψ̃ is
continuous, so, in fact, the closure operation in Definition 2 is
vacuous. We thus have that ψ is simply the functional convex
hull of ψ̃ (also known as the greatest convex minorant of ψ̃ ),

ψ = co ψ̃.

This is equivalent to the epigraph convex hull condition of the
definition; that is, ψ is the largest convex lower bound on ψ̃ .
This implies that ψ = ψ̃ if and only if ψ̃ is convex; see Exam-
ple 9 for a loss function where ψ̃ is not convex.

The importance of the ψ -transform is shown by the following
theorem.

Theorem 1.
1. For any nonnegative loss function φ, any measurable

f :X → R, and any probability distribution on X × {±1},
ψ

(
R( f ) − R∗) ≤ Rφ( f ) − R∗

φ.

2. Suppose that |X | ≥ 2. For any nonnegative loss func-
tion φ, any ε > 0, and any θ ∈ [0,1], there is a probability
distribution on X × {±1} and a function f :X → R such
that

R( f ) − R∗ = θ

and

ψ(θ) ≤ Rφ( f ) − R∗
φ ≤ ψ(θ) + ε.

3. The following conditions are equivalent:
a. φ is classification-calibrated.
b. For any sequence (θi) in [0,1],

ψ(θi) → 0 if and only if θi → 0.

c. For every sequence of measurable functions fi :
X → R and every probability distribution on X ×
{±1},

Rφ( fi) → R∗
φ implies that R( fi) → R∗.

Here we mention that classification-calibration implies ψ is
invertible on [0,1], so in that case it is meaningful to write
the upper bound on excess risk in Theorem 1, part 1 as
ψ−1(Rφ( f ) − R∗

φ). Invertibility follows from convexity of ψ

together with Lemma 2, parts 6, 8, and 9.
Zhang (2004) has given a comparison theorem like parts

1 and 3b of this theorem for convex φ that satisfy certain
conditions. These conditions imply an assumption on the rate
of growth (and convexity) of ψ̃ . Lugosi and Vayatis (2004)
showed that a limiting result like part 3c holds for strictly con-
vex, differentiable, monotonic φ. The following theorem shows
that if φ is convex, classification-calibration is equivalent to a
simple derivative condition on φ at 0. Clearly, the conclusions
of Theorem 1 hold under weaker conditions than those assumed
by Zhang (2004) or Lugosi and Vayatis (2004). Steinwart
(2005) has shown that if φ is continuous and classification-

calibrated, then Rφ( fi) → R∗
φ implies that R( fi) → R∗. Theo-

rem 1 shows that we may obtain a more quantitative statement
of the relationship between these excess risks, under weaker
conditions.

It is useful to note that when φ is convex, classification-
calibration is equivalent to a condition on the derivative of φ

at 0, and in that case the ψ -transform takes a simplified form.

Theorem 2.
1. Let φ be convex. Then φ is classification-calibrated if and

only if it is differentiable at 0 and φ′(0) < 0.
2. If φ is convex and classification-calibrated, then

ψ(θ) = φ(0) − H

(
1 + θ

2

)

.

In the remainder of this section we present two prelimi-
nary lemmas and then present a proof of Theorem 1. Note
that Section 3 presents several examples of calculations of the
ψ -transform; some readers may want to visit that section first
before proceeding to the proof.

The following elementary lemma will be useful throughout
the article.

Lemma 1. Suppose that g : R → R is convex and g(0) = 0.
Then

1. For all λ ∈ [0,1] and x ∈ R,

g(λx) ≤ λg(x).

2. For all x > 0,0 ≤ y ≤ x,

g( y) ≤ y

x
g(x).

3. g(x)/x is increasing on (0,∞).

Proof. For part 1, g(λx) = g(λx + (1 − λ)0) ≤ λg(x) +
(1 − λ)g(0) = λg(x). To see part 2, put λ = y/x in 1. For part 3,
rewrite part 2 as g( y)/y ≤ g(x)/x.

Lemma 2. For any nonnegative loss function φ, the functions
H, H−, and ψ have the following properties:

1. H and H− are symmetric about 1/2 and ψ is symmetric
about 0. For all η ∈ [0,1],

H(η) = H(1 − η), H−(η) = H−(1 − η),

and

ψ(η) = ψ(−η).

2. H is concave and, for 0 ≤ η ≤ 1, it satisfies

H(η) ≤ H

(
1

2

)

= H−
(

1

2

)

.

3. If φ is classification-calibrated, then H(η) < H(1/2) for
all η �= 1/2.

4. H− is concave on [0,1/2] and on [1/2,1], and, for
0 ≤ η ≤ 1, it satisfies

H−(η) ≥ H(η).

5. H and H− are continuous on [0,1].
6. ψ and ψ̃ are continuous on [−1,1].
7. ψ is nonnegative and minimal at 0.
8. ψ(0) = 0.
9. The following statements are equivalent:

a. φ is classification-calibrated.
b. ψ(θ) > 0 for all θ ∈ (0,1].
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For the proof see Appendix A.

Proof of Theorem 1. For part 1, it is straightforward to show
that

R( f ) − R∗

= R( f ) − R(η − 1/2)

= E
(
1
[
sign( f (X)) �= sign(η(X) − 1/2)

]|2η(X) − 1|),
where 1[	] is 1 if the predicate 	 is true and 0 otherwise (see,
e.g., Devroye, Györfi, and Lugosi 1996). We can apply Jensen’s
inequality, because ψ is convex by definition, and the fact that
ψ(0) = 0 (Lemma 2, part 8) to show that

ψ
(
R( f ) − R∗)

≤ Eψ
(
1
[
sign( f (X)) �= sign(η(X) − 1/2)

]|2η(X) − 1|)

= E
(
1
[
sign( f (X)) �= sign(η(X) − 1/2)

]
ψ

(|2η(X) − 1|)).
Now, from the definition of ψ , we know that ψ(θ) ≤ ψ̃(θ), so
we have

ψ
(
R( f ) − R∗)

≤ E
(
1
[
sign( f (X)) �= sign(η(X) − 1/2)

]
ψ̃

(|2η(X) − 1|))

= E
(
1
[
sign( f (X)) �= sign(η(X) − 1/2)

]

× (
H−(η(X)) − H(η(X))

))

= E
(
1
[
sign( f (X)) �= sign(η(X) − 1/2)

]

×
(

inf
α:α(2η(X)−1)≤0

Cη(X)(α) − H(η(X))
))

≤ E
(
Cη(X)( f (X)) − H(η(X))

)

= Rφ( f ) − R∗
φ,

where we have used the fact that for any x, and in particular
when sign( f (x)) = sign(η(x) − 1/2), we have Cη(x)( f (x)) ≥
H(η(x)).

For part 2, the first inequality is from part 1. For the second
inequality, fix ε > 0 and θ ∈ [0,1]. From the definition of ψ , we
can choose γ,α1, α2 ∈ [0,1], for which θ = γ α1 + (1 − γ )α2
and ψ(θ) ≥ γ ψ̃(α1) + (1 − γ )ψ̃(α2) − ε/2. Choose distinct
x1, x2 ∈ X , and choose PX such that PX{x1} = γ , PX{x2} =
1 − γ , η(x1) = (1 + α1)/2, and η(x2) = (1 + α2)/2. From
the definition of H−, we can choose f :X → R such that
f (x1) ≤ 0, f (x2) ≤ 0, Cη(x1)( f (x1)) ≤ H−(η(x1)) + ε/2, and
Cη(x2)( f (x2)) ≤ H−(η(x2)) + ε/2. Then we have

Rφ( f ) − R∗
φ

= Eφ(Yf (X)) − inf
g

Eφ(Yg(X))

= γ
(
Cη(x1)( f (x1)) − H(η(x1))

)

+ (1 − γ )
(
Cη(x2)( f (x2)) − H(η(x2))

)

≤ γ
(
H−(η(x1)) − H(η(x1))

)

+ (1 − γ )
(
H−(η(x2)) − H(η(x2))

) + ε/2

= γ ψ̃(α1) + (1 − γ )ψ̃(α2) + ε/2

≤ ψ(θ) + ε.

Furthermore, because sign( f (x1)) = sign( f (x2)) = −1 but
η(x1), η(x2) ≥ 1/2,

R( f ) − R∗ = E|2η(X) − 1|
= γ (2η(x1) − 1) + (1 − γ )(2η(x2) − 1)

= θ.

For part 3, first note that for any φ, ψ is continuous on [0,1]
and ψ(0) = 0 by Lemma 2, parts 6 and 8, and hence θi → 0
implies that ψ(θi) → 0. Thus we can replace condition 3b by

3b′. For any sequence (θi) in [0,1],
ψ(θi) → 0 implies that θi → 0.

To see that part (3a) implies 3b′, let φ be classification-
calibrated, and let (θi) be a sequence that does not converge
to 0. Define c = lim sup θi > 0, and pass to a subsequence with
lim θi = c. Then limψ(θi) = ψ(c) by continuity, and ψ(c) > 0
by classification-calibration (Lemma 2, part 9). Thus, for the
original sequence (θi), we see lim supψ(θi) > 0, so we cannot
have ψ(θi) → 0.

To see that part 3b′ implies 3c, suppose that Rφ( fi) → R∗
φ .

By part 1, ψ(R( fi) − R∗) → 0, and part 3b′ implies that
R( fi) → R∗.

Finally, to see that part 3c implies part 3a, suppose that φ is
not classification-calibrated. By definition, we can choose η �=
1/2 and a sequence α1, α2, . . . such that sign(αi(η−1/2)) = −1
but Cη(αi) → H(η). Fix x ∈ X and choose the probability dis-
tribution P so that PX{x} = 1 and P(Y = 1|X = x) = η. Define
a sequence of functions fi :X → R for which fi(x) = αi. Then
lim R( fi) > R∗, and this is true for any infinite subsequence. But
Cη(αi) → H(η) implies that Rφ( fi) → R∗

φ .

2.4 Examples

In this section we present several examples of the computa-
tion of the ψ -transform.

Example 2 (Exponential loss). Because φ(α) = exp(−α) is
convex, differentiable, and decreasing, Theorem 2, part 1 im-
plies that it is classification-calibrated, as we have seen. We also
noted that H(η) = 2

√
η(1 − η). From Theorem 2, part 2,

ψ(θ) = 1 −
√

1 − θ2.

Figure 2(b) shows the graph of ψ over the interval [0,1].
(From Lemma 2, part 1, ψ(θ) = ψ(−θ) for any ψ and any
θ ∈ [−1,1].)

Example 3 (Truncated quadratic loss). Now consider φ(α) =
(max{1−α,0})2, as depicted together with φ(−α), C.3(α), and
C.7(α) in Figure 3(a). This function is convex, differentiable,
and decreasing at zero, and thus is classification-calibrated.
If η = 0, then it is clear that any α ∈ (−∞,−1] makes Cη(α)

vanish. Similarly, any α ∈ [1,∞) makes the conditional φ-risk
vanish when η = 1. But when 0 < η < 1, Cη is strictly convex
with a (unique) stationary point, and solving for it yields

α∗(η) = 2η − 1. (2)

Note that, although α∗ is in principle undefined at 0 and 1, we
could choose to fix α∗(0) = −1 and α∗(1) = 1, which are valid
settings. This would extend (2) to all of [0,1].
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(a) (b)

Figure 3. Truncated Quadratic Loss. (a) φ(α); φ(−α);
C.3(α); C.7(α). (b) α∗(η); H(η); Ψ(θ ).

As in Example 1, we may simplify the identity H(η) =
Cη(α

∗(η)) for 0 < η < 1 to obtain

H(η) = 4η(1 − η),

which is also correct for η = 0 and 1, as noted. Thus,

ψ(θ) = θ2.

Figure 3(b) shows α∗, H, and ψ .

Example 4 (Hinge loss). Here we take φ(α) = max{1 −
α,0}, which is shown in Figure 4(a) along with φ(−α), C.3(α),
and C.7(α). Again, φ is convex and differentiable at 0 and has
negative derivative at 0, so it is classification-calibrated. By di-
rect consideration of the piecewise-linear form of Cη(α), it is
easy to see that for η = 0, each α ≤ −1 makes Cη(α) van-
ish, just as in Example 3. The same holds for α ≥ 1 when
η = 1. Now for η ∈ (0,1), we see that Cη decreases strictly on
(−∞,−1] and increases strictly on [1,∞). Thus any minima
must lie in [−1,1]. But Cη is linear on [−1,1], so the mini-
mum must be attained at 1 for η > 1/2, −1 for η < 1/2, and
anywhere in [−1,1] for η = 1/2. We have argued that

α∗(η) = sign(η − 1/2) (3)

for all η ∈ (0,1) other than 1/2. Because (3) yields valid min-
ima at 0, 1/2, and 1 as well, we could choose to extend it to the
entire unit interval. Regardless, a simple direct verification as in
the previous examples shows

H(η) = 2 min{η,1 − η}
for 0 ≤ η ≤ 1, and so

ψ(θ) = |θ |.
We present α∗, H, and ψ in Figure 4(b).

(a) (b)

Figure 4. Hinge Loss. (a) φ(α); φ(−α); C.3(α);
C.7(α). (b) α∗(η); H(η); Ψ(θ ).

Example 5 (Distance-weighted discrimination). Marron and
Todd (2002) introduced the distance-weighted discrimination
method for high-dimensional, small-sample-size problems.
This method chooses an element of the unit ball in a repro-
ducing kernel Hilbert space to minimize a certain criterion. It is
straightforward to show that this criterion is an empirical φ-risk,
for the loss function

φ(α) =






1

α
if α ≥ γ

1

α

(

2 − α

γ

)

otherwise,

where γ is a positive constant. Note that φ is convex, differen-
tiable, decreasing, and hence classification-calibrated. It is easy
to verify that

H(η) = 1

η
(1 + 2 min{η,1 − η}),

and hence

ψ(θ) = |θ |
γ

.

Example 6 (ARC–X4). Breiman (1999) proposed ARC–X4,
a boosting algorithm based on the convex cost function

φ(α) = |1 − α|5.
More generally, consider the function φ(α) = |1 − α|p for
p > 1. This is convex and has φ′(0) < 0, so it is classification-
calibrated. Furthermore, it is easy to verify that for η ∈ (0,1),

α∗(η) = η1/(p−1) − (1 − η)1/(p−1)

η1/(p−1) + (1 − η)1/(p−1)
,

and so

H(η) = 2pη(1 − η)

((1 − η)1/(p−1) + η1/(p−1))p−1
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and

ψ(θ) = φ(0) − H

(
1 − θ

2

)

= 1 − 2p−1(1 − θ2)

((1 − θ)1/(p−1) + (1 + θ)1/(p−1))p−1
.

Example 7 (Sigmoid loss). We conclude by examining a
nonconvex loss function. Let φ(α) = 1 − tanh(kα) for some
fixed k > 0. Figure 5(a) depicts φ(α) with k = 1, as well as
φ(−α), C.3(α), and C.7(α). Using the fact that tanh is an odd
function, we can rewrite the conditional φ-risk as

Cη(α) = 1 + (1 − 2η) tanh(kα). (4)

From this expression, two facts are clear. First, when η = 1/2,
every α minimizes Cη(α), because it is identically 1. Second,
when η �= 1/2, Cη(α) attains no minimum, because tanh has no
maximal or minimal value on R. Hence α∗ is not defined for
any η.

Inspecting (4), for 0 ≤ η < 1/2 we obtain H(η) = 2η by let-
ting α → −∞. Analogously, when α → ∞, we get H(η) =
2(1 − η) for 1/2 < η ≤ 1. Thus we have

H(η) = 2 min{η,1 − η}, 0 ≤ η ≤ 1.

Because H−((1 + θ)/2) ≡ φ(0) = 1, we have

ψ̃(θ) = |θ |,
and convexity gives ψ = ψ̃ . We present H and ψ in Fig-
ure 5(b). Finally, the foregoing considerations imply that sig-
moid loss is classification-calibrated, provided that we note
that the definition of classification-calibration requires nothing
when η = 1/2.

(a) (b)

Figure 5. Sigmoid Loss. (a) φ(α); φ(−α); C.3(α);
C.7(α). (b) H(η); Ψ(θ ).

The following example illustrates the difficulties with non-
differentiability at 0, even if φ is decreasing and strictly convex.

Example 8. Consider

φ(α) =
{

e−2α if α ≤ 0
e−α otherwise.

Then φ is strictly convex and decreasing, but not classification-
calibrated.

To see this, note that

ηφ(α) + (1 − η)φ(−α) =
{

ηe−2α + (1 − η)eα if α ≤ 0
ηe−α + (1 − η)e2α otherwise.

(5)

Taking derivatives and setting to 0 shows that (5) is minimized
on the set {α ≤ 0} at

α = min

(

0,
1

3
ln

2η

1 − η

)

.

Thus, if η < 1/2 and 2η ≥ 1 − η (i.e., 1/3 ≤ η < 1/2), then the
optimal α is at least 0.

2.5 Further Analysis of ψ

It is interesting to consider what properties of convex cost
functions determine the optimal bound ψ on excess risk in
terms of excess φ-risk. The following lemma shows that a flat-
ter function φ leads to a better bound ψ . The measure of cur-
vature that we consider involves the Bregman divergence of φ

at 0. If φ is convex and classification-calibrated, then it is dif-
ferentiable at 0, and we can define the Bregman divergence of φ

at 0,

dφ(0, α) = φ(α) − (
φ(0) + αφ′(0)

)
.

We consider a symmetrized, normalized version of the Breg-
man divergence at 0, for α > 0,

ξ(α) = dφ(0, α) + dφ(0,−α)

−φ′(0)α
.

Because φ is convex on R, both φ and ξ are continuous, so we
can define

ξ−1(θ) = inf{α : ξ(α) = θ}.
Lemma 3. For convex, classification-calibrated φ,

ψ(θ) ≥ −φ′(0)
θ

2
ξ−1

(
θ

2

)

.

Notice that a slower increase of ξ (i.e., a less curved φ) gives
better bounds on R( f ) − R∗ in terms of Rφ( f ) − R∗

φ .

2.6 General Loss Functions

All of the classification procedures mentioned in earlier
sections use surrogate loss functions that either are upper
bounds on 0–1 loss or can be transformed into upper bounds
through a positive scaling factor. This is not a coincidence; as
the next lemma establishes, it must be possible to scale any
classification-calibrated φ into such a majorant.

Lemma 4. If φ : R → [0,∞) is classification-calibrated, then
there is a γ > 0 such that γφ(α) ≥ 1[α ≤ 0] for all α ∈ R.
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(a) (b)

Figure 6. The Loss Function of Example 9 (a) and the Corresponding (nonconvex) ψ̃ (b). The dotted lines depict the graphs for the two linear
functions of which ψ̃ is a pointwise minimum.

We have seen that for convex φ, the function ψ̃ is convex,
and so ψ = ψ̃ . The following example shows that, in general,
we cannot avoid computing the convex lower bound ψ .

Example 9. Consider the following (classification-calibra-
ted) loss function; see Figure 6(a):

φ(α) =






4 if α ≤ 0, α �= −1
3 if α = −1
2 if α = 1
0 if α > 0, α �= 1.

It is easy to check that

H−(η) =
{

min{4η,2 + η} if η ≥ 1/2
min{4(1 − η),3 − η} if η < 1/2,

and that H(η) = 4 min{η,1 − η}. Thus

H−(η) − H(η) =
{

min{8η − 4,5η − 2} if η ≥ 1/2
min{4 − 8η,3 − 5η} if η < 1/2,

so

ψ̃(θ) = min

{

4θ,
1

2
(5θ + 1)

}

.

This function, illustrated in Figure 6(b), is not convex; in fact,
it is concave. Thus ψ �= ψ̃ .

3. TIGHTER BOUNDS UNDER
LOW–NOISE CONDITIONS

Predicting the optimal class label is difficult in regions where
η(X) is close to 1/2, because the information provided by the
labels is most noisy there. In many practical pattern classifi-
cation problems, it is reasonable to assume that the posterior
probability η(X) is unlikely to be very close to 1/2. Hence it is

important to understand how pattern classification methods per-
form under these “low-noise” conditions. To quantify the notion
of low noise, consider the following two properties of a prob-
ability distribution on X × {±1}, introduced by Mammen and
Tsybakov (1999) and Tsybakov (2004):

Mβ . For some c and all ε > 0,

Pr

(

0 <

∣
∣
∣
∣η(X) − 1

2

∣
∣
∣
∣ ≤ ε

)

≤ cεβ.

Nα . For some c and all measurable f :X → {±1},
Pr

(
f (X)(η(X) − 1/2) < 0

) ≤ c
(
R( f ) − R∗)α

. (6)

These conditions are equivalent.

Lemma 5. For 0 ≤ β < ∞, a probability distribution satis-
fies Mβ iff it satisfies Nβ/(1+β). Furthermore, M∞ is equivalent
to N1, because

Pr

(

0 <

∣
∣
∣
∣η(X) − 1

2

∣
∣
∣
∣ <

1

2c

)

= 0 (7)

iff, for all measurable f :X → {±1},
Pr

(
f (X)(η(X) − 1/2) < 0

) ≤ c
(
R( f ) − R∗). (8)

In what follows, we say that P has noise exponent α ≥ 0 if it
satisfies Nα . Recall that

R( f ) − R∗ = E
(
1
[
f (X) �= sign(η(X) − 1/2)

]|2η(X) − 1|)

= E
(
1
[
f (X)(η(X) − 1/2) < 0

]|2η(X) − 1|)

≤ PX
(

f (X)(η(X) − 1/2) < 0
)
, (9)
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which implies that α ≤ 1. If α = 0, then this imposes no con-
straint on the noise. Take c = 1 to see that every probability
measure satisfies N1.

The following theorem shows that if the probability distrib-
ution is such that η(X) is unlikely to be close to 1/2, then the
bound on the excess risk in terms of the excess φ-risk is im-
proved. In cases where ψ is strictly convex, such as the expo-
nential, quadratic, and logistic loss functions, this implies that
performance improves in the presence of a favorable noise ex-
ponent, without knowledge of the noise exponent.

Theorem 3. Suppose that P has noise exponent 0 < α ≤ 1,
and that φ is classification-calibrated. Then there is a c > 0 such
that for any f :X → R,

c
(
R( f ) − R∗)α

ψ

(
(R( f ) − R∗)1−α

2c

)

≤ Rφ( f ) − R∗
φ.

Furthermore, this never gives a worse rate than the result of
Theorem 1, because

(
R( f ) − R∗)α

ψ

(
(R( f ) − R∗)1−α

2c

)

≥ ψ

(
R( f ) − R∗

2c

)

.

Proof. Recalling the definition of low noise in (6), fix c > 0
such that for every f :X → R,

PX
(
sign( f (X)) �= sign(η(X) − 1/2)

) ≤ c
(
R( f ) − R∗)α

.

We approximate the error integral separately over a region with
high noise and over the remainder of the input space. Toward
this end, fix ε > 0 (the noise threshold), and note that

R( f ) − R∗

= E
(
1
[
sign( f (X)) �= sign(η(X) − 1/2)

]|2η(X) − 1|)

= E
(
1
[|2η(X) − 1| < ε

]

× 1
[
sign( f (X)) �= sign(η(X) − 1/2)

]|2η(X) − 1|)

+ E
(
1
[|2η(X) − 1| ≥ ε

]

× 1
[
sign( f (X)) �= sign(η(X) − 1/2)

]|2η(X) − 1|)

≤ cε(R( f ) − R∗)α

+ E
(
1
[|2η(X) − 1| ≥ ε

]

× 1
[
sign( f (X)) �= sign(η(X) − 1/2)

]|2η(X) − 1|).
Now, for any x,

1
[|2η(x) − 1| ≥ ε

]|2η(x) − 1| ≤ ε

ψ(ε)
ψ

(|2η(x) − 1|). (10)

Indeed, when |2η(x)− 1| < ε, (10) follows from the fact that ψ

is nonnegative (Lemma 2, parts 2, 8, and 9), and when |2η(x)−
1| ≥ ε, (10) follows from Lemma 1, part 2.

Thus, using the same argument as in the proof of Theorem 1,

R( f ) − R∗

≤ cε
(
R( f ) − R∗)α

+ ε

ψ(ε)
E

(
1
[
sign( f (X)) �= sign(η(X) − 1/2)

]

× ψ
(|2η(X) − 1|))

≤ cε
(
R( f ) − R∗)α + ε

ψ(ε)

(
Rφ( f ) − R∗

φ

)
,

and hence
(

R( f ) − R∗

ε
− c

(
R( f ) − R∗)α

)

ψ(ε) ≤ Rφ( f ) − R∗
φ.

Choosing

ε = 1

2c

(
R( f ) − R∗)1−α

and substituting gives the first inequality. [We can assume that
R( f ) − R∗ > 0, because the inequality is trivial otherwise.]

The second inequality follows from the fact that ψ(θ)/θ is
nondecreasing, which we know from Lemma 1, part 3.

4. ESTIMATION RATES

In previous sections we showed that the excess risk,
R( f ) − R∗, can be bounded in terms of the excess φ-risk,
Rφ( f )−R∗

φ . In this section we give bounds on the excess φ-risk.
Combined with our earlier results, these lead to bounds on the
excess risk. We focus on methods that choose a function from
a class F to minimize the empirical φ-risk,

R̂φ( f ) = Êφ(Yf (X)) = 1

n

n∑

i=1

φ(Yi f (Xi)).

Let f̂ denote the minimizer of the empirical φ-risk. We are
interested in the convergence of f̂ ’s excess φ-risk, Rφ( f̂ ) − R∗

φ .
We can split this excess φ-risk into an estimation error term and
an approximation error term,

Rφ( f̂ ) − R∗
φ =

(
Rφ( f̂ ) − inf

f∈F
Rφ( f )

)
+

(
inf
f∈F

Rφ( f ) − R∗
φ

)
.

We focus on the first term, the estimation error term. We assume
throughout that some f ∗ ∈F achieves the infimum,

Rφ( f ∗) = inf
f∈F

Rφ( f ).

The simplest way to bound Rφ( f̂ ) − Rφ( f ∗) is to use a uni-
form convergence argument; if

sup
f∈F

|R̂φ( f ) − Rφ( f )| ≤ εn, (11)

then

Rφ( f̂ ) − Rφ( f ∗)

= (
Rφ( f̂ ) − R̂φ( f̂ )

) + (
R̂φ( f̂ ) − R̂φ( f ∗)

)

+ (
R̂φ( f ∗) − Rφ( f ∗)

)

≤ 2εn + (
R̂φ( f̂ ) − R̂φ( f ∗)

)

≤ 2εn,

because f̂ minimizes R̂φ . But this approach can give the wrong
rate. For example, for a nontrivial class F , the expectation of
the supremum of the empirical process in (11) can decrease no
faster than 1/

√
n. But if F is a small class (e.g., if it is a sub-

set of a finite-dimensional linear class) and Rφ( f ∗) = 0, then
Rφ( f̂ ) should decrease as log n/n.

Lee, Bartlett, and Williamson (1996) showed that better rates
than those that follow from the uniform convergence argument
can be obtained for the quadratic loss φ(α) = (1 − α)2 if F is
convex, even if Rφ( f ∗) > 0. In particular, because the quadratic
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loss function is strictly convex, it is possible to bound the vari-
ance of the excess loss (i.e., the difference between the loss of a
function f and that of the optimal f ∗) in terms of its expectation.
Because the variance decreases as we approach the optimal f ∗,
the risk of the empirical minimizer converges more quickly to
the optimal risk than the simple uniform convergence results
would suggest. Mendelson (2002) improved this result and ex-
tended it from prediction in L2(PX) to prediction in Lp(PX) for
other values of p. The proof used the idea of the modulus of
convexity of a norm. In this section we use this idea to give a
simpler proof of a more general bound when the loss function
satisfies a strict convexity condition, and we obtain risk bounds.

The modulus of convexity of an arbitrary strictly convex
function (rather than a norm) is a key notion in formulating
our results. Recall that a pseudometric d on a set S satisfies all
of the axioms of a metric, except that there can be a �= b with
d(a,b) = 0.

Definition 3 (Modulus of convexity). Given a pseudomet-
ric d defined on a convex subset S of a vector space, and a
convex function f : S → R, the modulus of convexity of f with
respect to d is the function δ : [0,∞) → [0,∞] satisfying

δ(ε) = inf

{
f (x1) + f (x2)

2
− f

(
x1 + x2

2

)

:

x1, x2 ∈ S,d(x1, x2) ≥ ε

}

.

If δ(ε) > 0 for all ε > 0, then we say that f is strictly convex
with respect to d.

For example, for S = R, d denoting the Euclidean distance,
and f (α) = α2, the modulus of convexity is δ(ε) = ε2/4. For
S = [−a,a] and the same metric, f (α) = eα has modulus of
convexity e−a((1 + eε)/2 − eε/2) = e−aε2/8 + o(ε2).

We consider loss functions φ that also satisfy a Lipschitz
condition with respect to a pseudometric d on R; we say that
φ : R → R is Lipschitz with respect to d, with constant L, if

for all a,b ∈ R, |φ(a) − φ(b)| ≤ L · d(a,b).

Note that if d is a metric and φ is convex, then φ necessar-
ily satisfies a Lipschitz condition on any compact subset of R

(Rockafellar 1997).

Assumption A. The loss function φ : R → R and the class F
of real functions on X satisfy the following conditions. For
some pseudometric d on R, there are constants L, c, r, and B,
such that the following conditions obtain:

A.1. φ is classification-calibrated.
A.2. φ is Lipschitz with constant L, with respect to d.
A.3. φ is convex with modulus of convexity δ(ε) ≥ cεr with

respect to d.
A.4. F is convex.
A.5. For all f ∈ F , x1, x2 ∈ X , and y1, y2 ∈ Y , d( y1 f (x1),

y2 f (x2)) ≤ B.

Define the excess loss class gF as

gF = {gf : f ∈ F} = {
(x, y) �→ φ( yf (x)) − φ( yf ∗(x)) : f ∈F

}
,

where f ∗ = arg minf∈F Eφ(Yf (X)). Notice that functions
in gF can take negative values, but they all have nonnegative
expectation. We are interested in bounds on the excess φ-risk,

Rφ( f̂ ) − R∗
φ , where f̂ is the minimizer of the empirical φ-risk.

This is equivalent to the expectation of gf̂ , where gf̂ is the ele-
ment of the loss class with minimal sample average.

In the following theorem, we exploit the concentration of
measure phenomenon to give a bound on the excess φ-risk.
A standard uniform convergence argument, described at the be-
ginning of this section, could proceed by considering the supre-
mum of the empirical process indexed by the loss class,

E sup{Eg − Êg : g ∈ gF }.
This corresponds to considering the maximal deviation between
expectations and sample averages over the loss class. Instead,
we use an approach introduced by Bartlett and Mendelson
(2005) (see also Massart 2000b; Koltchinskii and Panchenko
2000; Mendelson 2002; Lugosi and Wegkamp 2004; Bartlett,
Bousquet, and Mendelson 2005). We divide the excess loss
class into subsets of different expectation, {g ∈ gF : Eg = ε},
and consider the suprema of the empirical processes indexed
by such subsets,

ξgF (ε) = E sup{Eg − Êg : g ∈ gF ,Eg = ε}.
(Note that the function ξgF depends on the sample size n,
but we simplify the notation by omitting this dependence.)
For strictly convex Lipschitz φ and convex F , the variance of
each excess loss function is bounded in terms of its expecta-
tion, which allows us to replace the maximal deviation over the
whole class by the maximal deviation over a small subset of the
class: those functions with expectation ε∗

n , where ε∗
n is the fixed

point of the map ε �→ ξgF (ε).

Theorem 4. Suppose that the loss function φ and the function
class F satisfy Assumption A. Then there is a constant K such
that, with probability at least 1 − δ, the minimizer f̂ ∈ F of the
empirical φ-risk satisfies

Rφ( f̂ ) ≤ inf
f∈F

Rφ( f ) + εn,

where

εn = K max

{

ε∗
n ,

(
crL2 ln(1/δ)

n

)1/(2−β)

,
BL ln(1/δ)

n

}

,

ε∗
n ≥ ξgF (ε∗

n ),

cr =
{

(2c)−2/r if r ≥ 2
(2c)−1B2−r otherwise,

and

β = min

(

1,
2

r

)

.

Thus there is a constant c′ such that for any probability distri-
bution P on X × Y with noise exponent α, with probability at
least 1 − δ,

c′(R( f̂ ) − R∗)α
ψ

(
(R( f̂ ) − R∗)1−α

2c′

)

≤ εn + inf
f∈F

Rφ( f ) − R∗
φ.

It is instructive to consider the various components of the
classification risk in this bound. The estimation error, εn, in-
creases as the complexity of the class F increases and de-
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creases as the sample size increases. The approximation error,
inff∈F Rφ( f ) − R∗

φ , is expressed in terms of the φ-risk. It de-
creases as the class F increases. Finally, using the convex sur-
rogate φ in place of the 0–1 loss affects the bound through the
rate of growth of the function of R( f̂ ) − R∗ that appears on the
left side. The rate of decrease of classification risk improves as
the noise exponent increases.

Consider the impact on the bound of the modulus of con-
vexity of the loss function. For flatter loss functions, where the
exponent of the modulus of convexity r > 2, the rate can be no
better than n−1/(2−2/r) = n−r/(2(r−1)), which approaches n−1/2

as r gets large. For more curved φ, with r ≤ 2, the rate can be
as good as n−1. In contrast, we have seen that a more curved φ

leads to a worse ψ . But, if the noise exponent is α = 1, then the
bound is optimized by a more curved φ, with r ≥ 2.

Shen, Tseng, Zhang, and Wong (2003) showed that fast rates
are also possible under the low-noise assumption for a par-
ticular nonconvex φ. In that case, however, minimization of
empirical φ-risk requires the use of heuristics, because the
optimization problem cannot be solved efficiently.

In the remainder of this section, we present a proof of Theo-
rem 4. This proof has two key ingredients, which we capture in
a pair of lemmas. The first lemma shows that if the variance of
an excess loss function is bounded in terms of its expectation,
then we can obtain faster rates than would be implied by the
uniform convergence bounds. The second lemma presents sim-
ple conditions on the loss function that ensure that this variance
bound is satisfied for convex function classes.

Lemma 6. Consider a class F of functions f :X → R with
supf∈F ‖ f ‖∞ ≤ B. Let P be a probability distribution on X ,
and suppose that there are c ≥ 1 and 0 < β ≤ 1 such that, for all
f ∈F ,

Ef 2(X) ≤ c(Ef )β . (12)

Fix 0 < α,ε < 1. Suppose that if some f ∈ F has Êf ≤ αε and
Ef ≥ ε, then some f ′ ∈ F has Êf ′ ≤ αε and Ef = ε. Then with
probability at least 1 − e−x, any f ∈F satisfies

Êf ≤ αε �⇒ Ef ≤ ε,

provided that

ε ≥ max

{

ε∗,
(

9cKx

(1 − α)2n

)1/(2−β)

,
4KBx

(1 − α)n

}

,

where K is an absolute constant and

ε∗ ≥ 6

1 − α
ξF (ε∗).

As an aside, notice that assuming that the distribution has
noise exponent α can lead to a condition of the form (12). To
see this, let f ∗ be the Bayes decision rule and consider the class
of functions {αgf : f ∈ F , α ∈ [0,1]}, where

gf (x, y) = �( f (x), y) − �( f ∗(x), y)

and � is the 0–1 loss. Then the condition

PX
(

f (X) �= f ∗(X)
) ≤ c

(
E�( f (X),Y) − E�( f ∗(X),Y)

)α

can be rewritten as

Eg2
f (X,Y) ≤ c(Egf (X,Y))α.

Thus we can obtain a version of Tsybakov’s result for small
function classes from Lemma 6: If the Bayes decision rule f ∗ is
in F , then the function f̂ that minimizes empirical risk has

Êgf̂ = R̂( f ) − R̂( f ∗) ≤ 0,

and so with high probability has Egf̂ = R( f )−R∗ ≤ ε under the
conditions of the theorem. If F is a VC class, then we have ε ≤
c log n/n for some constant c, which is surprisingly fast when
R∗ > 0.

The second ingredient in the proof of Theorem 4 is the fol-
lowing lemma, which gives conditions that ensure a variance
bound of the kind required for the previous lemma [condi-
tion (12)]. For a pseudometric d on R and a probability dis-
tribution on X , we can define a pseudometric d̃ on the set of
uniformly bounded real functions on X ,

d̃( f ,g) = (
Ed

(
f (X),g(X)

)2)1/2
.

If d is the usual metric on R, then d̃ is the L2(P) pseudometric.

Lemma 7. Consider a convex class F of real-valued func-
tions defined on X , a convex loss function � : R → R, and a
pseudometric d on R. Suppose that � satisfies the following
conditions:

1. � is Lipschitz with respect to d, with constant L,

for all a,b ∈ R, |�(a) − �(b)| ≤ Ld(a,b).

2. R( f ) = E�( f ) is a strictly convex functional with respect
to the pseudometric d̃, with modulus of convexity δ̃,

δ̃(ε) = inf

{
R( f ) + R(g)

2
− R

(
f + g

2

)

: d̃( f ,g) ≥ ε

}

.

Suppose that f ∗ satisfies R( f ∗) = inff∈F R( f ), and define

gf (x) = �( f (x)) − �( f ∗(x)).

Then

Egf ≥ 2δ̃(d̃( f , f ∗)) ≥ 2δ̃

(√
Eg2

f

L

)

.

We apply the lemma to a class of functions of the form
(x, y) �→ yf (x), with the loss function � = φ. (The lemma can
be trivially extended to a loss function � : R × Y → R that sat-
isfies a Lipschitz constraint uniformly over Y .)

In our application, the following result implies that we can
estimate the modulus of convexity of Rφ with respect to the
pseudometric d̃ if we have some information about the modulus
of convexity of φ with respect to the pseudometric d.

Lemma 8. Suppose that a convex function � : R → R has
modulus of convexity δ with respect to a pseudometric d on R,
and that for some fixed c, r > 0, every ε > 0 satisfies

δ(ε) ≥ cεr.

Then for functions f :X → R satisfying supx1,x2
d( f (x1),

f (x2)) = B, the modulus of convexity δ̃ of R( f ) = E�( f ) with
respect to the pseudometric d̃ satisfies

δ̃(ε) ≥ crε
max{2,r},

where cr = c if r ≥ 2 and cr = cBr−2 otherwise.
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It is also possible to prove a converse result, that the mod-
ulus of convexity of φ is at least the infimum over probability
distributions of the modulus of convexity of R. [To see this,
we choose a probability distribution concentrated on the x ∈ X
where f1(x) and f2(x) achieve the infimum in the definition of
the modulus of convexity.]

Proof of Theorem 4. Consider the class {gf : f ∈ F} where,
for each f ∈ F ,

gf (x, y) = φ( yf (x)) − φ( yf ∗(x)),

and where f ∗ ∈ F minimizes Rφ( f ) = Eφ(Yf (X)). Applying
Lemma 8, we see that the functional R( f ) = Eφ( f ), defined for
functions (x, y) �→ yf (x), has modulus of convexity

δ̃(ε) ≥ crε
max{2,r},

where cr = c if r ≥ 2 and cr = cBr−2 otherwise. From
Lemma 7,

Egf ≥ 2cr

(√
Eg2

f

L

)max{2,r}
,

which is equivalent to

Eg2
f ≤ c′

rL2(Egf )
min{1,2/r}

with

c′
r =

{
(2c)−2/r if r ≥ 2
(2c)−1B2−r otherwise.

To apply Lemma 6 to the class {gf : f ∈ F}, we need to check
the condition. Suppose that gf has Êgf ≤ αε and Egf ≥ ε. Then,
by the convexity of F and the continuity of φ, some f ′ = γ f +
(1 − γ )f ∗ ∈ F , for 0 ≤ γ ≤ 1 has Egf = ε. Jensen’s inequality
shows that

Êgf = Êφ
(
Y
(
γ f (X) + (1 − γ )f ∗(X)

)) − Êφ(Yf ∗(X))

≤ γ
(
Êφ(Yf (x)) − Êφ(Yf ∗(X))

) ≤ αε.

Applying Lemma 6 we have, with probability at least 1 − e−x,
that any gf with Êgf ≤ ε/2 also has Egf ≤ ε, provided that

ε ≥ max

{

ε∗,
(

36c′
rL2Kx

n

)1/(2−min{1,2/r})
,

16KBLx

n

}

,

where ε∗ ≥ 12ξgF (ε∗). In particular, if f̂ ∈ F minimizes empir-
ical risk, then

Êgf̂ = R̂φ( f̂ ) − R̂φ( f ∗) ≤ 0 <
ε

2
,

and hence Egf̂ ≤ ε.
Combining with Theorem 3 shows that for some c′,

c′(R( f̂ ) − R∗)α
ψ

(
(R( f̂ ) − R∗)1−α

2c′

)

≤ Rφ( f̂ ) − R∗
φ

= Rφ( f̂ ) − Rφ( f ∗) + Rφ( f ∗) − R∗
φ

≤ ε + Rφ( f ∗) − R∗
φ.

4.1 Examples

We consider four loss functions that satisfy the requirements
for the fast convergence rates: the exponential loss function
used in AdaBoost, the deviance function corresponding to lo-
gistic regression, the quadratic loss function, and the truncated
quadratic loss function; see Table 1. These functions are illus-
trated in Figures 1 and 3. We use the pseudometric

dφ(a,b) = inf
{|a − α| + |β − b| :

φ constant on (min{α,β},max{α,β})}.
For all functions except the truncated quadratic loss function,
this corresponds to the standard metric on R, dφ(a,b) = |a−b|.
In all cases, dφ(a,b) ≤ |a − b|, but for the truncated quadratic,
dφ ignores differences to the right of 1. It is easy to calculate the
Lipschitz constant and modulus of convexity for each of these
loss functions. These parameters are given in Table 1.

In the following result, we consider the function class used by
algorithms such as AdaBoost: the class of linear combinations
of classifiers from a fixed base class. We assume that this base
class has finite VC dimension, and constrain the size of the class
by restricting the �1 norm of the linear parameters. If G is the
VC class, then we write F = B absconv(G) for some constant B,
where

B absconv(G) =
{

m∑

i=1

αigi : m ∈ N, αi ∈ R,gi ∈ G,‖α‖1 = B

}

.

Theorem 5. Let φ : R → R be a convex loss function. Sup-
pose that on the interval [−B,B], φ is Lipschitz with con-
stant LB and has modulus of convexity δ(ε) = aBε2 (both with
respect to the pseudometric d).

For any probability distribution P on X × Y that has noise
exponent α, there is a constant c′ for which the following is
true. For iid data (X1,Y1), . . . , (Xn,Yn), let f̂ ∈ F be the min-
imizer of the empirical φ-risk, Rφ( f ) = Êφ(Yf (X)). Suppose
that F = B absconv(G), where G ⊆ {±1}X has VC dimension V
and

ε∗
n ≥ BLB max

{(
LBaB

B

)1/(V+1)

,1

}

n−(V+2)/(2(V+1)).

Then, with probability at least 1 − δ,

R( f̂ ) ≤ R∗ + c′
(

ε∗
n + LB(LB/(2aB) + B) ln(1/δ)

n

+ inf
f∈F

Rφ( f ) − R∗
φ

)1/(2−α)

.

Table 1. Four Convex Loss Functions Defined on R

φ(α) LB δ(ε)

Exponential e−α eB e−Bε2/8
Logistic ln (1 + e−2α) 2 e−2Bε2/4
Quadratic (1 − α)2 2(B + 1) ε2/4
Truncated quadratic (max {0, 1 − α})2 2(B + 1) ε2/4

NOTE: On the interval [−B, B], each has the indicated Lipschitz constant LB and modulus of
convexity δ(ε) with respect to dφ . All have a quadratic modulus of convexity.
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4.2 Simulations

This section describes a set of simulations that illustrate the
performance of the excess risk bound based on the ψ -transform,
as well as the theoretical excess φ-risk rates obtained from The-
orem 4. We took X = [−1,1]10 as our covariate space, with
PX equal to the uniform distribution on X . For the conditional
distribution η(x), we used members of a parameterized family
based on the logistic function,

ηq(x) = P(Y = 1|x) = σ
(
C sign(x1)|x1|q

)
, q > 0,

where σ(u) = 1/(1 + exp(−u)). Varying q results in different
noise exponents for the conditional distribution; it is straight-
forward to see that PX (0 < |2ηq(X) − 1| < ε) < (4/C)1/qε1/q,
so Lemma 5 implies that ηq has noise exponent 1/(q + 1). We
chose the constant C so that ηq(−1) = 1/4 and ηq(1) = 3/4,
for all q.

The margin-based loss functions in our simulations also
came from a one-dimensional family, indexed by p > 1,

φp(α) = (p − 1)(2/p)p/(p−1) − 2α + |α|p.
The leading constant ensures that φp is nonnegative for all
α ∈ [−1,1]. For p > 1, φp is convex with a negative first deriv-
ative at 0, so Theorem 2, part 1 tells us that it is classification-
calibrated. Different choices of p lead to different values for
the modulus of convexity exponent of φp, because (φ(ε) +
φ(−ε))/2 − φ(0) = εp for positive ε.

We took as a family of real-valued classifiers the convex
hull of the coordinate functions, F = co{x �→ βi(x) = xi : i =
1, . . . ,10}. Thus each f ∈ F has the form f (u) = λ�u for
some λ ≥ 0, λ�1 ≤ 1. We simulated datasets of several sizes n
between 10 and 10,000, using various values of p and q, as de-
tailed later. For each choice of n, p, and q, we performed 25 rep-
etitions of the following procedure. First, we generated a dataset
according to (PX , ηq(x)) and found the empirical risk mini-
mizer f̂n over F , through a constrained convex optimization.
Then we computed the 0–1 risk of f̂n, approximating the rele-
vant integral with adaptive numerical quadrature. Subtracting
the Bayes risk for the chosen distribution (depending on q),
also approximated using quadrature, gave us the excess 0–1 risk
of f̂n. Finally, we carried out a similar computation to determine
the excess φ-risk of f̂n.

We illustrate the behavior of the upper bound on excess 0–1
risk obtained from the ψ -transform using these simulation re-
sults. A routine calculation along the lines of the examples in
Section 2.3 shows that ψ(θ) = (p − 1)(2θ/p)p/(p−1). We ap-
peal to Theorem 1 to obtain the inequality

(p − 1)

(
2(R( f ) − R∗)

p

)p/(p−1)

≤ Rφ( f ) − R∗
φ.

Solving this inequality for excess 0–1 risk gives an upper bound
as a function of excess φ-risk,

R( f ) − R∗ ≤ p

2

(Rφ( f ) − R∗
φ

p − 1

)(p−1)/p

.

We verified that, as expected, every excess 0–1 risk in our sim-
ulations obeyed the upper bound determined by its correspond-
ing excess φ-risk, across all values of p and q.

We also used the simulations to illustrate the theoretical rates
of convergence for excess φ-risk implied by Theorem 4. For
the class F under consideration, the centered empirical process
ξF (ε) used in the theorem can be pointwise upper-bounded
using a local Rademacher average symmetrization, which in
turn is bounded by the Dudley entropy integral. The derivation
closely follows the proof of Theorem 5 (see also Bartlett et al.
2005). These calculations reveal that a suitable upper bound
on ε∗ in Theorem 4 is c(d/n) log(nL/d), with d = 10 the di-
mension of F and c a universal constant. Thus, with probability
at least 1 − e−x, we have the excess φ-risk bound

Rφ( f̂ ) − Rφ( f ∗)

≤ c max

{(
crL2x

n

)1/(2−min{1,2/p})
,

BLx

n
,

d

n
log

(
nL

d

)}

,

recalling that p is the modulus of convexity exponent for φp(α).
Treating the logarithmic factor as approximately constant, we
therefore expect a rate of order n−1 for 1 < p < 2 and of order
n−1/(2−2/p) for p ≥ 2.

Figure 7 presents the simulation results for p ∈ {1.5,2,3.5},
all with q = 1. Results with q ∈ {1.5,2,2.5,3} are similar, and
indeed the theoretical rates do not vary with q. The solid lines
are natural cubic spline fits, on the log–log scale, to the sam-
ple size and excess φ-risk from each simulation. The slope of
each dashed line is the theoretical rate exponent implied by the
bound: −1.0 for p = 1.5 and 2 and −.7 for p = 3.5. As the
plots reveal, the agreement with theory when p = 1.5 and 2 is
extremely good for large enough n. Although the match when
p = 3.5 is less exact, the simulated results appear compatible
with the theoretical rate to within the noise tolerance.

5. CONCLUSIONS

We have focused on the relationship between properties of
a nonnegative margin-based loss function φ and the statistical
performance of the classifier that, based on an iid training set,
minimizes empirical φ-risk over a class of functions. We first
derived a universal upper bound on the population misclassifi-
cation risk of any thresholded measurable classifier in terms of
its corresponding population φ-risk. The bound is governed by
the ψ -transform, a convexified variational transform of φ. It is
the tightest possible upper bound uniform over all probability
distributions and measurable functions in this setting.

Using this upper bound, we characterized the class of loss
functions that guarantee that every φ-risk consistent classifier
sequence is also Bayes-risk consistent under any population
distribution. Here φ-risk consistency denotes sequential con-
vergence of population φ-risks to the smallest possible φ-risk
of any measurable classifier. The characteristic property of
such a φ, which we term classification-calibration, is a kind of
pointwise Fisher consistency for the conditional φ-risk at each
x ∈ X . The necessity of classification-calibration is apparent;
the sufficiency underscores its fundamental importance in elab-
orating the statistical behavior of large-margin classifiers.

For the special case of convex φ, which is widespread
in practical applications, we demonstrated that classification-
calibration is equivalent to the existence and strict negativity of
the first derivative of φ at 0, a condition that is readily verifiable
in most practical examples. In addition, the convexification step
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(a) (b) (c)

Figure 7. Rate Plots for (a) p = 1.5, (b) p = 2, and (c) p = 3.5. Each panel shows simulated excess φ-risk on the log scale versus simulated
sample size on the log scale, for the choice of p given at top. We took q = 1 in each case. Natural cubic spline fits appear as solid lines. The dashed
line depicts the slope corresponding to the theoretical rate for the chosen p. (The vertical position of the dashed line is not informative.)

in the ψ -transform is vacuous for convex φ, which simplifies
the derivation of closed forms.

Under the low-noise assumption of Mammen and Tsybakov
(1999) and Tsybakov (2004), we sharpened our original upper
bound. We found that empirical φ-risk minimization yields con-
vergence of φ-risk to that of the best-performing function in F
as the sample size grows. For strictly convex φ, the convergence
rate can be faster than that implied by standard uniform con-
vergence arguments, depending on the strictness of convexity
of φ and the complexity of F . Combined with the low-noise
condition, we saw that this implies fast rates of convergence of
the misclassification risk to its optimal value. Simulations con-
firm the convergence rates of φ-risk predicted by the theory, for
a linear class and a particular probability distribution. Simula-
tions also show that the relationship between excess φ-risk and
excess risk closely follows that predicted by the theory.

Two important issues that we have not treated are the approx-
imation error for population φ-risk relative to F , and algorith-
mic considerations in the minimization of empirical φ-risk. In
the setting of scaled convex hulls of a base class, some approx-
imation results have been given by Breiman (2004), Mannor
et al. (2002), and Lugosi and Vayatis (2004). Regarding the nu-
merical optimization to determine f̂ , Zhang and Yu (2005) gave
novel bounds on the convergence rate for generic forward stage-
wise additive modeling (see also Zhang 2003). These authors
focused on optimization of a convex risk functional over the
entire linear hull of a base class, with regularization enforced
by an early stopping rule.

APPENDIX A: PROOFS

Proof of Lemma 2

The proof of part 1 is immediate from the definitions. For part 2,
concavity follows because H is an infimum of concave (affine) func-
tions of η. Now, because H is concave and symmetric about 1/2,
H(1/2) = H((1/2)η + (1/2)(1 −η)) ≥ (1/2)H(η)+ (1/2)H(1 −η) =
H(η). Thus H is maximal at 1/2. To see that H(1/2) = H−(1/2), note
that α(2η − 1) ≤ 0 for all α when η = 1/2.

To prove part 3, assume that there is an η �= 1/2 with H(η) =
H(1/2). Fix a sequence α1, α2, . . . for which limi→∞ C1/2(αi) =
H(1/2). By the assumption,

lim inf
i→∞

(
ηφ(αi) + (1 − η)φ(−αi)

) ≥ H(η)

= H(1/2) = lim
i→∞

φ(αi) + φ(−αi)

2
. (A.1)

Rearranging, we have

(η − 1/2) lim inf
i→∞

(
φ(αi) − φ(−αi)

) ≥ 0.

Because H(1 − η) = H(η), the same argument shows that

(η − 1/2) lim inf
i→∞

(
φ(−αi) − φ(αi)

) ≥ 0.

It follows that

lim
i→∞

(
φ(αi) − φ(−αi)

) = 0,

so that all of the expressions in (A.1) are equal. Hence, H(η) =
limi→∞ Cη(αi) = limi→∞ Cη(−αi), which implies that H(η) =
H−(η). Thus if H(η) = H(1/2), then φ is not classification-calibrated.

For part 4, H− is concave on [0,1/2] by the same argument as
for the concavity of H. (Note that when η < 1/2, H− is an infimum
over a set of concave functions, but in this case when η > 1/2, it is
an infimum over a different set of concave functions.) The inequality
H− ≥ H follows from the definitions.

For part 5, first note that the concavity of H implies that it is con-
tinuous on the relative interior of its domain, that is, (0,1). Thus, to
show that H is continuous [0,1], it suffices (by symmetry) to show
that it is left-continuous at 1. Because [0,1] is locally simplicial in
the sense of Rockafellar (1997), his theorem 10.2 gives lower semi-
continuity of H at 1 (equivalently, upper semicontinuity of the convex
function −H at 1). To see upper semicontinuity of H at 1, fix any ε > 0
and choose αε such that φ(αε) ≤ H(1) + ε/2. Then for any η between
1 − ε/(2φ(−αε)) and 1, we have

H(η) ≤ Cη(αε) ≤ H(1) + ε.

Because this is true for any ε, lim supη→1 H(η) ≤ H(1), which is up-
per semicontinuity. Thus H is left-continuous at 1. The same argu-
ment shows that H− is continuous on (0,1/2) and (1/2,1) and is
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left-continuous at 1/2 and 1. Symmetry implies that H− is continuous
on the closed interval [0,1]. The continuity of ψ̃ is now immediate.

To see part 6, observe that ψ is a closed convex function with locally
simplicial domain [−1,1], so that its continuity follows by once again
applying theorem 10.2 of Rockafellar (1997).

It follows immediately from parts 2 and 4 that ψ̃ is nonnegative and
minimal at 0. Because epiψ is the convex hull of epi ψ̃ (i.e., the set
of all convex combinations of points in epi ψ̃ ), we see that ψ is also
nonnegative and minimal at 0, which is part 7.

Part 8 follows immediately from 2.
To prove part 9, suppose first that φ is classification-calibrated. Then

for all θ ∈ (0,1], ψ̃(θ) > 0. But every point in epiψ is a convex com-
bination of points in epi ψ̃ , so if (θ,0) ∈ epiψ , then we can only have
θ = 0. Hence for θ ∈ (0,1], points in epiψ of the form (θ, c) must have
c > 0, and closure of ψ̃ now implies ψ(θ) > 0. For the converse, note
that if φ is not classification-calibrated, then some θ > 0 has ψ̃(θ) = 0,
and so ψ(θ) = 0.

Proof of Theorem 2

Recall that a subgradient of φ at α ∈ R is any value mα ∈ R such
that φ(x) ≥ φ(α) + mα(x − α) for all x. To prove part 1, fix a convex
function φ.

(⇒) Because φ is convex, we can find subgradients g1 ≥ g2 such
that for all α,

φ(α) ≥ g1α + φ(0)

and

φ(α) ≥ g2α + φ(0).

Then we have

ηφ(α) + (1 − η)φ(−α)

≥ η
(
g1α + φ(0)

) + (1 − η)
(−g2α + φ(0)

)

= (
ηg1 − (1 − η)g2

)
α + φ(0) (A.2)

=
(

1

2
(g1 − g2) + (g1 + g2)

(

η − 1

2

))

α + φ(0). (A.3)

Because φ is classification-calibrated, for η > 1/2, we can express
H(η) as infα>0[ηφ(α) + (1 − η)φ(−α)]. If (A.3) were greater than
φ(0) for every α > 0, then it would follow that for η > 1/2, H(η) ≥
φ(0) ≥ H(1/2), which, by Lemma 2, part 3, would be a contradiction.
We now show that g1 > g2 implies this contradiction. Indeed, we can
choose

1

2
< η <

1

2
+ g1 − g2

2|g1 + g2|
to show that |(η − 1/2)(g1 + g2)| < (g1 − g2)/2, so (A.3) is greater
than φ(0) for all α > 0. Thus if φ is classification-calibrated, then we
must have g1 = g2, which implies that φ is differentiable at 0.

To see that we must also have φ′(0) < 0, note that from (A.2), we
have

ηφ(α) + (1 − η)φ(−α) ≥ (2η − 1)φ′(0)α + φ(0).

But for any η > 1/2 and α > 0, if φ′(0) ≥ 0, then this expression is
at least φ(0). Thus if φ is classification-calibrated, then we must have
φ′(0) < 0.

(⇐) Suppose that φ is differentiable at 0 and has φ′(0) < 0. Then
the function Cη(α) = ηφ(α) + (1 − η)φ(−α) has C′

η(0) = (2η −
1)φ′(0). For η > 1/2, this is negative. It follows from the convexity
of φ that Cη(α) is minimized by some α∗ ∈ (0,∞]. To see this, note
that for some α0 > 0, we have

Cη(α0) ≤ Cη(0) + α0C′
η(0)/2.

But the convexity of φ, and hence of Cη , implies that for all α,

Cη(α) ≥ Cη(0) + αC′
η(0).

In particular, if α ≤ α0/4, then

Cη(α) ≥ Cη(0) + α0

4
C′

η(0) > Cη(0) + α0

2
C′

η(0) ≥ Cη(α0).

Similarly, for η < 1/2, the optimal α is negative. This means that φ is
classification-calibrated.

For the proof of part 2, note that part 1 implies that φ is differen-
tiable at 0 and φ′(0) < 0, and so

φ(0) ≥ H−(η)

= inf
α:α(η−1/2)≤0

(
ηφ(α) + (1 − η)φ(−α)

)

≥ inf
α:α(η−1/2)≤0

(
η
(
φ(0) + φ′(0)α

) + (1 − η)
(
φ(0) − φ′(0)α

))

= φ(0) + inf
α:α(η−1/2)≤0

(
(2η − 1)φ′(0)α

)

= φ(0).

Thus H−(η) = φ(0). The concavity of H (Lemma 2, part 2 implies
that ψ̃ = H−(η) − H(η) = φ(0) − H(η) is convex, which implies that
ψ = ψ̃ .

Proof of Lemma 3

From the convexity of φ, we have

ψ(θ) = H

(
1

2

)

− H

(
1 + θ

2

)

= φ(0) − inf
α>0

(
1 + θ

2
φ(α) + 1 − θ

2
φ(−α)

)

= sup
α>0

(

−θφ′(0)α + 1 + θ

2

(
φ(0) − φ(α) + αφ′(0)

)

+ 1 − θ

2

(
φ(0) − φ(−α) − αφ′(0)

)
)

= sup
α>0

(

−θφ′(0)α − 1 + θ

2
dφ(0, α) − 1 − θ

2
dφ(0,−α)

)

≥ sup
α>0

(−θφ′(0)α − dφ(0, α) − dφ(0,−α)
)

= sup
α>0

(θ − ξ(α))(−φ′(0)α)

≥ (
θ − ξ(ξ−1(θ/2))

)(−φ′(0)ξ−1(θ/2)
)

= −φ′(0)
θ

2
ξ−1

(
θ

2

)

,

where the first inequality used the fact that for all α ∈ [0,1] and all
a,b > 0, αa + (1 − α)b ≤ a + b.

Proof of Lemma 4

Proceeding by contrapositive, suppose that no such γ exists. Be-
cause φ(α) ≥ 1[α ≤ 0] on (0,∞), then we must have infα≤0 φ(α) = 0.
But φ(α) = C1(α), and hence

0 = inf
α≤0

C1(α) = H−(1) ≥ H(1) ≥ 0.

Thus H−(1) = H(1), so φ is not classification-calibrated.
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Proof of Lemma 5

We first show that Nα implies Mα/(1−α). Consider the set S =
{x : 0 < |η(x) − 1/2| ≤ ε}, and let f be such that S = {x : f (x)(η(x) −
1/2) < 0}. Then Nα implies that

ε Pr(S) ≥
∫

S

∣
∣
∣
∣η(x) − 1

2

∣
∣
∣
∣dPX(x)

= 1

2

(
R( f ) − R∗)

≥ 1

2

(
1

c
Pr(S)

)1/α

.

Rearranging shows that

Pr(S) ≤ (2ε)α/(1−α)c1/(1−α),

and hence the distribution satisfies Mα/(1−α).
To see that Mβ implies Nβ/(1+β), we fix ε > 0 and f :X → {±1},

define S = {x : f (x)(η(x) − 1/2) < 0}, and write

R( f ) − R∗ = E
(
1[X ∈ S]|2η(X) − 1|)

= 2
∫

S

∣
∣
∣
∣η(x) − 1

2

∣
∣
∣
∣dPX(x)

≥ 2ε

∫

S
1

[∣
∣
∣
∣η(x) − 1

2

∣
∣
∣
∣ > ε

]

dPX(x)

= 2ε

(

Pr(S) −
∫

S
1

[

0 <

∣
∣
∣
∣η(x) − 1

2

∣
∣
∣
∣ ≤ ε

]

dPX(x)

)

≥ 2ε
(
Pr(S) − cεβ

)
.

With ε = (Pr(S)/(c(1 + β)))1/β , this shows that

R( f ) − R∗ ≥ 2β

c1/β(1 + β)(β+1)/β
(Pr(S))(β+1)/β ,

and hence the distribution satisfies Nβ/(β+1).
Now consider the second part of the lemma. For any measurable

f :X → {±1}, (8) is equivalent to

Pr(Af ) ≤ c
∫

Af

|2η(x) − 1|dPX(x)

⇐⇒
∫

Af

1

c
dPX(x) ≤

∫

Af

|2η(x) − 1|dPX(x), (A.4)

where Af = {x : f (x)(η(x) − 1/2) < 0}. Note that Af ranges over all
measurable subsets of {x : |η(x)− 1/2| > 0}, so that (A.4) is true for all
such Af iff

Pr

(

0 < |2η(X) − 1| < 1

c

)

= 0,

which is (7).

Proof of Lemma 6

The proof of Lemma 6 uses techniques due to Bartlett and
Mendelson (2005), which built on the work of Massart (2000b),
Koltchinskii and Panchenko (2000), Mendelson (2002), Lugosi and
Wegkamp (2004), and Bartlett et al. (2005). We use the following con-
centration inequality, which is a refinement, due to Rio (2001) and
Klein (2002), of a result of Massart (2000a), following Talagrand
(1994) and Ledoux (2001). The best estimates on the constants are
due to Bousquet (2002).

Lemma A.1. There is an absolute constant K for which the fol-
lowing holds. Let G be a class of functions defined on X with

supg∈G ‖g‖∞ ≤ b. Suppose that P is a probability distribution such
that for every g ∈ G, Eg = 0. Let X1, . . . ,Xn be independent random
variables distributed according to P and set σ 2 = supg∈G var g. Define

Z = sup
g∈G

1

n

n∑

i=1

g(Xi).

Then, for every x > 0 and every ρ > 0,

Pr

{

Z ≥ (1 + ρ)EZ + σ

√
Kx

n
+ K(1 + ρ−1)bx

n

}

≤ e−x.

To prove Lemma 6, from the condition on F , we have

Pr{∃ f ∈ F : Êf ≤ αε,Ef ≥ ε}
≤ Pr{∃ f ∈F : Êf ≤ αε,Ef = ε}
= Pr

{
sup{Ef − Êf : f ∈F ,Ef = ε} ≥ (1 − α)ε

}
.

We bound this probability using Lemma A.1, with ρ = 1 and G =
{Ef − f : f ∈F ,Ef = ε}. This shows that

Pr{∃ f ∈F : Êf ≤ αε,Ef ≥ ε} ≤ Pr{Z ≥ (1 − α)ε} ≤ e−x,

provided that

2EZ ≤ (1 − α)ε

3
,

√

cεβKx

n
≤ (1 − α)ε

3
,

and

4KBx

n
≤ (1 − α)ε

3
.

(We have used the fact that supf∈F ‖ f‖∞ ≤ B implies that
supg∈G ‖g‖∞ ≤ 2B.) Observing that

EZ = ξF (ε),

and rearranging gives the result.

Proof of Lemma 7

The proof proceeds in two steps. The Lipschitz condition allows
us to relate Eg2

f to d̃( f , f ∗), and the modulus of convexity condition,
together with the convexity of F , relates this to Egf .

We have

Eg2
f = E

(
�( f (X)) − �( f ∗(X))

)2

≤ E
(
Ld

(
f (X), f ∗(X)

))2

= L2(d̃( f , f ∗))2. (A.5)

From the definition of the modulus of convexity,

R( f ) + R( f ∗)

2
≥ R

(
f + f ∗

2

)

+ δ̃(d̃( f , f ∗))

≥ R( f ∗) + δ̃(d̃( f , f ∗)),

where the optimality of f ∗ in the convex set F implies the second
inequality. Rearranging gives

Egf = R( f ) − R( f ∗) ≥ 2δ̃(d̃( f , f ∗)).

Combining with (A.5) gives the result.
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Proof of Lemma 8

Fix functions f1, f2 :X → R with d̃( f1, f2) =
√

Ed2( f1(X), f2(X)) ≥
ε. We have

R( f1) + R( f2)

2
− R

(
f1 + f2

2

)

= E
(

�( f1(X)) + �( f2(X))

2
− �

(
f1(X) + f2(X)

2

))

≥ E
(
δ
(
d
(

f1(X), f2(X)
)))

≥ cEdr( f1(X), f2(X)
)

= cE
(
d2(

f1(X), f2(X)
))r/2

.

When the function ξ(a) = ar/2 is convex (i.e., when r ≥ 2), Jensen’s
inequality shows that

R( f1) + R( f2)

2
− R

(
f1 + f2

2

)

≥ cεr.

Otherwise, we use the following convex lower bound on ξ : [0,B2] →
[0,Br]:

ξ(a) = ar/2 ≥ Br a

B2
,

which follows from (the concave analog of ) Lemma 1, part 2. This
implies that

R( f1) + R( f2)

2
− R

(
f1 + f2

2

)

≥ cBr−2ε2.

Proof of Theorem 5

It is clear that F is convex and satisfies the conditions of Theorem 4.
That theorem implies that, with probability at least 1 − δ,

(
R( f̂ ) − R∗)2−α ≤ c′(εn + inf

f∈F
Rφ( f ) − R∗

φ

)
,

provided that

εn ≥ K max

{

ε∗
n ,

L2
B ln(1/δ)

2aBn
,

BLB ln(1/δ)

n

}

,

where ε∗
n ≥ ξgF (ε∗

n ). It remains to prove suitable upper bounds for ε∗
n .

By a classical symmetrization inequality (see, e.g., Van der Vaart
and Wellner 1996), we can upper bound ξgF in terms of local
Rademacher averages,

ξgF (ε) = E sup{Egf − Êgf : f ∈F ,Egf = ε}

≤ 2E sup

{
1

n

n∑

i=1

σigf (Xi,Yi) : f ∈F ,Egf = ε

}

,

where the expectations are over the sample (X1,Y1), . . . , (Xn,Yn) and
the independent uniform (Rademacher) random variables σi ∈ {±1}.
The Ledoux and Talagrand (1991) contraction inequality and Lemma 7
imply that

ξgF (ε) ≤ 4LE sup

{
1

n

n∑

i=1

σidφ

(
Yi f (Xi),Yi f ∗(Xi)

)
: f ∈F ,Egf = ε

}

≤ 4LE sup

{
1

n

n∑

i=1

σidφ

(
Yi f (Xi),Yi f ∗(Xi)

)
:

f ∈F , d̃φ( f , f ∗)2 ≤ 2aBε

}

= 4LE sup

{
1

n

n∑

i=1

σi f (Xi,Yi) : f ∈ Fφ,Ef 2 ≤ 2aBε

}

,

where

Fφ = {
(x, y) �→ dφ

(
yf (x), yf ∗(x)

)
: f ∈F

}
.

One approach to approximating these local Rademacher averages
is through information about the rate of growth of covering numbers
of the class. For some subset A of a pseudometric space (S,d), let
N (ε,A,d) denote the cardinality of the smallest ε-cover of A, that
is, the smallest set Â ⊂ S for which every a ∈ A has some â ∈ Â
with d(a, â) ≤ ε. Using Dudley’s entropy integral (Dudley 1999),
Mendelson (2002) showed the following result. Suppose that F is a
set of [−1,1]-valued functions on X and that there are γ > 0 and
0 < p < 2 for which

sup
P

N
(
ε,F ,L2(P)

) ≤ γ ε−p,

where the supremum is over all probability distributions P on X . Then
for some constant Cγ,p (which depends only on γ and p),

1

n
E sup

{ n∑

i=1

σi f (Xi) : f ∈F ,Ef 2 ≤ ε

}

≤ Cγ,p max
{
n−2/(2+p),n−1/2ε(2−p)/4}

.

Because dφ(a,b) ≤ |a−b|, any ε-cover of {f − f ∗ : f ∈F} is an ε-cover
of Fφ , so that N (ε,Fφ,L2(P)) ≤ N (ε,F ,L2(P)).

Now for the class absconv(G) with dVC(G) = d, we have

sup
P

N
(
ε, absconv(G),L2(P)

) ≤ Cdε−2d/(d+2);

(see, e.g., Van der Vaart and Wellner 1996). Applying Mendelson’s
result shows that

1

n
E sup

{ n∑

i=1

σi f (Xi) : f ∈ B absconv(G),Ef 2 ≤ ε

}

≤ Cd max
{
Bn−(d+2)/(2d+2),Bd/(d+2)n−1/2ε1/(d+2)

}
.

Solving for ε∗
n ≥ ξgF (ε∗

n ) shows that it suffices to choose

ε∗
n = C′

dBLB max

{(
LBaB

B

)1/(d+1)

,1

}

n−(d+2)/(2d+2)

for some constant C′
d that depends only on d.

APPENDIX B: LOSS, RISK, AND DISTANCE

We could construe Rφ as the risk under a loss function �φ : R ×
{±1} → [0,∞) defined by �φ( ŷ, y) = φ( ŷy). The following result es-
tablishes that loss functions of this form are fundamentally unlike dis-
tance metrics.

Lemma B.1. Suppose that �φ : R2 → [0,∞) has the form �φ(x, y) =
φ(xy) for some φ : R → [0,∞). Then the following results hold:

1. �φ is not a distance metric on R.
2. �φ is a pseudometric on R iff φ ≡ 0, in which case �φ assigns

distance 0 to every pair of reals.

Proof. By hypothesis, �φ is nonnegative and symmetric. Another
requirement of a distance metric is definiteness; for all x, y ∈ R,

x = y ⇐⇒ �φ(x, y) = 0. (B.1)

But we may write any z ∈ (0,∞) in two different ways, as
√

z
√

z
and, for example,

√
2z

√
(1/2)z. Satisfying (B.1) requires φ(z) = 0 in

the former case and φ(z) > 0 in the latter case, an impossibility. This
proves part 1.

To prove part 2, recall that a pseudometric relaxes (B.1) to the re-
quirement

x = y �⇒ �φ(x, y) = 0. (B.2)
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Because each z ≥ 0 has the form xy for x = y = √
z, (B.2) amounts to

the necessary condition that φ ≡ 0 on [0,∞). The final requirement
on �φ is the triangle inequality, which in terms of φ becomes

φ(xz) ≤ φ(xy) + φ( yz) for all x, y, z ∈ R. (B.3)

Because φ must vanish on [0,∞), taking y = 0 in (B.3) shows that
only the zero function can (and does) satisfy the constraint.

[Received April 2003. Revised June 2005.]
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