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SUMMARY 
We consider a nonparametric technique proposed by Priestley and Chao (1972) for 
estimating an unknown regression function. Conditions for strong convergence and 
asymptotic normality are discussed. Special consideration is given to the optimal 
choice of a weighting function. 
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1. INTRODUCTION 
AN important statistical problem is the estimation of a regression function g(x) = E(y I x). 
Typically, g(x) has a specified functional form and parameter estimates are obtained according 
to certain desirable criteria, such as least squares. Assuming normal errors the investigator can 
test the appropriateness of the hypothesized model. One may wish, however, to have an 
estimation technique applicable for an arbitrary g(x). 

In a recent paper, Priestley and Chao (1972) considered the problem of estimating an 
unknown regression function g(x) given observations at a fixed set of points. Their estimate, 
referred to here as the Priestley-Chao (PC) estimate, is nonparametric in the sense that g(x) 
is restricted only by certain smoothing requirements. It  can be viewed as a moving average of 
sample Y's whose weights are based on a class of kernels suggested by Rosenblatt (1956) and 
Parzen (1962). These weights are similar to those used in nonparametric density estimation. 

In this paper, the results of Priestley and Chao will be reviewed and further properties of 
their estimate considered. 

2. THE PRIESTLEY-CHAO ESTIMATE 

Let Y,, ..., Y, be n observations at fixed x,, . . . ,xn according to the model 


where g is an unknown function defined on x contained in the interval [0, 11, and the errors are 
i.i.d. random variables with zero mean and finite variance a2. Without loss of generality we 
assume 0 6x, 6 ... 6x, 6 1. The Priestley-Chao estimate of g(x) is of the form 

where K is a weight function, satisfying 

and {h,) is a sequence of positive real numbers converging to zero in such a way that nh, -+ a 
as n-+a. Commonly used weight functions, or kernels, are given in Table 1. 

Priestley and Chao (1970) establish consistency of the estimate through the following 
theorem. 
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Theorem 1. Let g(x) and K(u) satisfy Lipschitz conditions of orders a: and ,8 respectively. 
Let 8, = maxi(xi-xi-,) = O(l/n) and h, = n-7 for y >O. If y <min(a,,8/l +P),  then 
gn(x)+g(x) in probability for x ~ ( 0 , l ) .  

Note that the restrictions on y require it to  be <3. 
In the next two sections, asymptotic normality and a stronger form of convergence 

are demonstrated. The final section considers choices of the kernel and the bandwidth 
parameter. 

3. ASYMPTOTICNORMALITY 
To demonstrate asymptotic normality, we require the following lemma, which is stated 

without proof. (The details are a straightforward application of the dominated convergence 
theorem, and may be found in Benedetti, 1974.) 

Lemma 1. Suppose K is continuous, and is such that K(u) is nonincreasing for u >0, and 
nondecreasing for u <0, and suppose jZmKr(u)du<a.If there exists some d such that 
b/n 2max(xi -xi-,) for all n, where x, = 0, x,,, = 1, and if nh, +-co,then for x E(0,l)  

Most commonly used kernels satisfy the requirements of Lemma 1. One exception is the 
Fejer kernel 

which does not display the required monotonicity. However, since it is bounded above by 
2/(ry2), an appropriate dominating function may be constructed to carry forth the desired 
convergence. 

Theorem 2. If K satisfies the conditions of Lemma I for r = 3, and if there exists and 
such that 0 <a /n  <(xi -xi-,) <b/n for i = 1,2, ...,n, and if the third moment of the E'S is 
finite, then 

is asymptotically N(0,l) for all x E (0,l). 
Proof. Theorem 2 follows from the Liapounoff Central Limit Theorem and Lemma 1. 

Let Fn be the distribution function of 

@(x) be the standard normal distribution, and M = max, K(x). Then I F,(x) -@(x)1 can be 
approximately bounded by 

which is obtained using the Berry-Essen theorem (Rosenblatt, 1971) and Lemma 1. 

4. CONVERGENCEOF g,(x) 
In this section we establish a stronger form of convergence for gn(x) than previously 

demonstrated by Priestley and Chao. We apply the following lemma to achieve our results. 
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Lemma 2. Let {y,} be a sequence of symmetric i.i.d. random variables with zero mean and 
finite fourth moment. If (ank) is a sequence of constants such that 

then yk+O almost surely, where yk = x ankyk, the summation being from 1 to n. 
Proof. The fourth moment pi  of y6 is such that p i  <p4(x  a;k)2, where p4 is the fourth 

moment of y,. 
The Chebyshev inequality implies 

Hence it follows that yk+O almost surely by the Bore1 Cantelli lemma. 
Theorem 3. Under the conditions of Theorem 1, and if E ( E ) ~  exists, and Lemma 1 holds for 

r = 2, g,(x)+g(x) with probability one. 
Proof. The result follows from Lemma 2 with 

5. CHOICESOF KERNEL 
Let us assume now that the xi's are equally spaced, i.e. x,-x,-, = 6. Using a method of 

Parzen (1962) which will be outlined below, we find an asymptotic expression for the mean 
square error, which, under certain conditions, is found to be identical to the expression derived 
by Priestley and Chao. Given this expression, optimality of the choice of kernel will be 
considered. 

Let 

~ ( t )= !Irneitx K(x) dx 

be the Fourier transform of the kernel K. Then 

Similarly, the bias term may be expressed as 

where $,(z) = $4 g(x) eZzx dx. 
Now, if g is bounded and continuous, then by the dominated convergence theorem, 

nx g(xi) 6eizxj ++,(z), 
j=1 


and hence the first term of the bias expression converges to zero. 
If there exists a positive r such that k, = lim,,,[{l -K(u)}/Ju~is nonzero, then r is called 

the characteristic exponent of K, and k, is the characteristic coefficient. Thus, if we divide the 
second term in the bias by h7, we obtain 
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Since K(U) is the Fourier transform of K, I 1-K(U)I <MI ul for some My and for Iu I < 8. Hence, 
equation (2) is bounded by 

where Q is a bound on K(u)- 1 which necessarily exists and is positive. 
This equation is strictly less than {(P+1)/2.1r}jZmI ul 1 $(u) I du, where P = max(M, Q/ar). 

Hence, by the dominated convergence theorem 

where 

and it is assumed that the integral converges absolutely. Now, 

by Lemma 1. Hence, an asymptotic expression for the mean square error is 

This is minimized with respect to h, by taking 

Hence the mean square error becomes 

which tends to zero as n-2'/1+2r. In the case of r = 2 (see Table 1) this implies the estimates have 
order of consistency n*, i.e. n* E(g,(x)-g(~))~+ C < co as n+m. It should also be noted that 
this mean square error is precisely the result (2.3) derived by Priestley and Chao. 

Suppose now, among the class of kernels with r = 2, we would like to find the kernel which 
minimizes (3). This is the same as finding the K which minimizes 

subject to the restraints jZm K(u) = 1, K(u) 20, K(u) = K(- u). The next result shows that 
there is not a unique minimization of R, but rather a whole family of kernels K(u) which will be 
acceptable. 

Lemma 3. For any random variable U whose density function is an acceptable kernel, any 
scale transformation X = cU leaves R unchanged. 

Proof. Let U have variance 02, and range (a, b) where fco are possible limits. Let X = cU. 
Then 

f(x) = c-lK(x/c) for ca<x<cb, if c > 0 ;  ca>x>cb, if c c 0 ;  

hence 
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therefore 

To find one member of the family of "optimal" kernels, let us set the variance equal to 1. 
Thus we need only to consider minimizing 

J:'~ ' ( 4du 

subject to constraints (1) and J u2 K(u)du = 1. This minimization problem is precisely one 
considered by Epanechnikov (1969). The solution is the quadratic kernel. 

which is just a scale transformation of the kernel 

that Priestley and Chao conjectured to be optimal. 
The above argument provides an optimal family of kernels in the sense of optimizing an 

asymptotic expression for the mean square error. There is no reason to believe, however, for 
finite samples that the same kernel should be best regardless of the underlying form of the 
function g(x). 

Table 1 suggests that, at least asymptotically, the choice of kernel is not critical. As has 
previously been noted for density estimation and the PC estimate, the properties of g,(x) 
tend to depend more critically on the choice of the bandwidth parameter. Guidelines for 
choosing an appropriate h, are needed before such estimates can be employed in practical 
situations. 
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