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Submodel Selection and Evaluation in 
Regression. The X-Random Case 
Leo Breiman and Philip Spector 
Statistics Department, University of California, Berkeley, CA 94720 

Summary 

Often, in a regression situation with many variables, a sequence of submodels is generated 
containing fewer variables by using such methods as stepwise addition or deletion of variables, or 
'best subsets'. The question is which of this sequence of submodels is 'best', and how can submodel 
performance be evaluated. This was explored in Breiman (1988) for a fixed X-design. This is a 
sequel exploring the case of random X-designs. 

Analytical results are difficult, if not impossible. This study involved an extensive simulation. The 
basis of the study is the theoretical definition of prediction error (PE) as the expected squared error 
produced by applying a prediction equation to the distributional universe of (y,  x) values. This 
definition is used throughout to compare various submodels. 

There can be startling differences between the x-fixed and x-random situations and different PE 

estimates are appropriate. Non-resampling estimates such as C,, adjusted RZ,etc. turn out to be 
highly biased methods for submodel selection. The two best methods are cross-validation and 
bootstrap. One surprise is that 5 fold cross-validation (leave out 20% of the data) is better at 
submodel selection and evaluation than leave-one-out cross-validation. There are a number of other 
surprises. 

Key words: Regression; variable selection; cross-validation; bootstrap; prediction error; subset 
selection. 

1 Introduction 

In previous research (Breiman, 1988) we explored the issue of submodel selection and 
evaluation when the X-design was fixed and results were conditional on the fixed 
X-design. In this present work we look at the situation where the X-design is random. 

More specifically, we assume that there is data of the form (y,, x,), n = 1, . . . ,N 
where x, is an M-variate vector. The analyst runs a program that produces regressions 
based on subsets of the variables, such as a 'best subsets' program or stepwise forward 
variable addition or stepwise backwards variable deletion. This produces a sequence of 
subsets go, . . . , cM, where S; denotes the indices of the J variables in the regression and 
we use the notation to indicate the number of variables in a given subset; thus ItJ;,)J.= 

The problem is to select the 'best7 one of these submodels and to give some estimate of 
the predictive capability of the submodel selected. In the previous paper we set up some 
definitions to give some precision to the concept of 'best' and predictive capability. The 
basic definitions were the x-fixed and x-random prediction errors. 

Suppose we have a predictor @(x) for y based on x. In the x-fixed case, consider new 
data ( y r w ,  x,), n = 1, . . . ,n where the y r w  have the same distribution as the original y,. 
Define the prediction error for this x-fixed case as 
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where we use the notation lla1I2 = C a;, and the expectation is over the {y,"'") only. If the 
model generating the {y,) is 

y, = ~ * ( x , ) + E , ,  n = 1,. . . ,N 

with EE,=0, EE,E,. = dd,,.. Then 

PEF =~d+ lip* - fill2. 

We referred to the term 1 1  y * - fi 1 1 2  as the x-fixed model error ME^. The assumptions for 
the x-random case are the (y,, x,) are i.i.d. sampled from the distribution of (Y, X). In 
this case, the predictor error is defined as 

where (ynew, xnew) is a random vector with the distribution of (Y, X), but independent of 
the (y,, x,), n = 1, . . . ,N and the expectation is over (ynew, xnew) only. If Y and X are 
related by 

Y =  y*(X)+ E, 

EE=0, E E ~= 13,and E independent of X, then 

PER = + N E(y*(.XneW)- p(~""" ) )~ .  

The second term is the x-random model error MER. Then the submodel selection and 
evaluation problem is formulated as follows: let ME(^) be the model error for OLS 

regression based on the subset of variables with indices in 5. In the sequence to,. . . , t, 
estimate the J that minimizes ME(^^) and estimate min, ME(<^) for the selected submodel. 

If we assume a classical linear model then for the full M-variable model the expected 
x-fixed model error is ~  a ~ ,or a2per variable. In the X-random case, the expected model 
error is c ~ a ~ ,  where c can be substantially larger than one. 

In the latter case, more is gained by variable deletion, the 'best' submodel is smaller 
than in the X-fixed case and has larger model error. As the sample size +a, these 
differences become small. But they can be quite significant for sample sizes not large 
compared to the number of variables. 

The model error in the X-random case reflects both the variability due to the noise 
components { E , )  and that due to the randomness in the {x,) as a sample from the X 
distribution. If M is a substantial fraction of the sample size N, the latter variability can 
contribute more to the ME than the former. 

To illustrate this, we look at the full model ME assuming 

where brnare the OLS estimates. Let S =X'X where X is the data matrix. Then, denoting 
r ,=EX,X, 

MEF = (b- P * N b- P*) 

M E R =  ( b  - P * ) N ~ ( ~ - P * )  
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The extent to which NTS-' differs from the identity will govern how much MEF and ME^ 
differ. One useful estimate for NTS-' is given by cross-validation, 

where S-, is the inner product matrix X'X formed with the exclusion of the nth case. If 
we use the identity 

where h, = x,S-'x,, then we get 

Under (1. I ) ,  taking expectations only over { E, ), 

The average h, is 6 = MIN. If the {h,) are fairly constant, 

E ( M E ~ )= (-) N 
. Mcr2.

N - M  

For M = 40 and N = = 3Mcr2. But if the X-distribution is skewed 60, this gives E ( M E ~ )  
and long tailed, some of the {h,) can get close to one, with the result that 
E ( M E ~ )= C M U ~ ,with c as high as 6-7. This will be further illustrated by our simulation 
results. 

1.2 Which Schema Should be Used ? 

In some applications the x-variables are actually controlled and fixed. Here there is no 
question of the appropriateness of fixed x methods. But in many other situations, e.g. 
observational data, where there is no hope of controlling or replicating the x-variables, 
should PEF or PER be used as the 'standard'? 

An interesting discussion relevant to this issue is in an article by J. Wu (1986). 
Referring to the fact that unconditional confidence interval estimates need the assumption 
that the {x,) are i.i.d. samples, he states 'In data analysis how often do analysts bother to 
find out what the sampling design is? On the other hand, a conditionally valid 
procedure. . . does not require such a stringent condition on the sampling design'. In the 
discussion, Tibshirani refers to both conditional and unconditional procedures as being 
based on different 'gold standards' and argues that it is not clear which one to use if the 
x-design is not a priori fixed. Tibshirani's point is a good one. Much of statistics has to do 
with the establishing of standards for the presentation of results and for the understanding 
of these results. 

Suppose, for example, that a faculty member has his freshman class fill out a 
questionaire with, say, 40 responses and then regresses the first response on the other 39. 
Would the x-fixed or x-random PE be a better measure of the accuracy of the results? 
What standard should he use? To argue that in the absence of knowing that the 
x-variables are i.i.d. selected from a well-defined universe, it is better to assume they are 
fixed (replicable, controlled) is an argument for a poor standard. In this context, the 
x-random ME is a much more realistic standard. 
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Not only that, but if the faculty member decides to repeat the questionaire on the 
following years' freshman class and use the new data to estimate the prediction error of 
the equation derived the previous year, then his estimate is clearly much closer in concept 
to the x-random PE than the x-fixed. 

Our belief is that for observational data, where the x-variables are gathered in an 
uncontrolled manner, the x-random PE is a better standard, both conceptually and also in 
terms of estimating prediction accuracy on future data gathered in a similar way (i.e. 
another freshman class). 

This is a practical issue as well as the conceptual one. Methods for estimating the 
prediction or model error depend on whether one wishes to estimate the x-fixed or 
x-random values. As Efron (1986) points out, cross-validation gives an estimate of the 
x-random PE, and should not be used as an estimate of the x-fixed PE unless the sample 
size is large enough to make their difference small. 

1.3 Outline of Paper 

In the arena of submodel selection and evaluation, exact analytic results are hard to 
come by. Some were given in the previous paper for the x-fixed case. But the x-random 
case seems to be a harder nut to crack. However, the problem is too important and 
pressing to be put off pending the appearance of analytical results. The standard methods 
used in estimating PE and selecting submodels are highly biased and usually do poor 
selection. Here, by standard methods we mean such things as adjusted R2, Cp, 
F-to-enter, F-to-delete etc. Reviews of these appear in Miller (1984) and Thompson 
(1978). Miller's recent book (1990) gives a good exposition of the biases encountered in 
variable selection. 

Data resampling methods such as cross-validation and the bootstrap have become a hot 
item in this arena and are being advocated as better PE estimators and submodel selectors. 
However, no telling results have yet been published. For these reasons, we decided to 
embark on a simulation study having much of the same structure as the earlier study in 
Breiman (1988). It uses 40 variables at sample sizes 60 and 160. 

The basic structure is this: the {x,) are i.i.d. sampled from an underlying X 
distribution. The {y,) are formed from 

Backwards deletion of variables is used to get the sequence c,,, . . . ,5',. The model using 
all M variables is called the full model. 

The exact ME and PE for each submodel are computed using the values of the OLS 

coefficient estimates and the known true values of these coefficients. Therefore, we know 
what the best submodel in the sequence is and what its ME is. This is then compared to the 
submodels in the sequence selected by various estimation procedures and the ME 

estimates for the selected submodels. 
In Section 2, we give an outline of the methods to be compared. Section 3 discusses the 

structure of the simulation. Section 4 gives the global simulation results, and Section 5 the 
results relevant to submodel selection and evaluation. Section 6 discusses the results of 
some substudies, and 7 presents our conclusions. 
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2 Methods to be Compared 

Denote by fi(<) the OLS predictor based on the subset of variables with indices in 5, and 
let 

M E ( < )= N - E ( y *(xneW)- fi(xnew, <) )2 .  

P E ( P )= NO^ +M E ( < ) .  

For the particular sequence P o ,  . . . , f M  generated by the variable selection method, 
denote M E ( J )= ME(<^). Let 

and use subscript zero for full model values, i.e. ~ s s ,= R S S ( ( ~ ) .Each method given 
operates by forming an estimate &(J) of M E ( J ) ;selects the submodel cJ such that 
&(J) = min,. %(J' )  and evaluates the selected subset by its estimated model error, 

2.1 Test Set 

As a benchmark procedure, a test set { y ; ,  xA) n = 1 ,  . . . ,N is sampled, independent 
of the original data set, but of the same size. For any subset 5;, the test set estimate of 
P E ( < )is 

where $(xA, P) is the predicted value for the nth case of the test set, calculated using the 
subset of coefficients estimated from the original data. 

To convert this into an M E  estimate an estimate of ~a~ has to be subtracted. A 
reasonable a2estimate is 

where R S S ~is the residual-sum-of squares obtained from an OLS full model fit to the data 
( y ; ,  x;).  Thus, we use as our test set M E  estimate 

2.2 Complete Cross -Validation 

In complete cross-validation, the nth case ( y , ,  x , )  is deleted from the data. The 
variable selection process is then carried out on the remaining N - 1 cases resulting in a 
sequence of subsets <g),# ) ,  . . . , <$),and corresponding predictors {P , (x ,  < p ) ) ) .  This 
is done in turn for n = 1, . . . ,N .  For each J ,  J  = 0, . . . ,M ,  the P E  estimate is 

The G ( J )  estimate is gotten by subtracting NZr2, where Zr2 = R S S ~ / ( N-M ) .  Complete 
cross-validation can be a very computer intensive process, necessitating N subset selection 
procedures. For this reason, we test it only at sample size 60. 
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2.3 V-fold Cross -Validation 

This procedure is a more aggregated and less expensive form of complete cross-
validation. Let V be a small integer and divide the cases as nearly as possible into V equal 
groups. Denote these groups by L , ,  . . . ,L ,  and let 

L'" '=L-L")  v = 1 ,  . . . , v 
where L =all data. Using only the cases in L'"), do the subset selection getting the 
sequence { f p ) )and predictors &(x, f p ) ) .Form the estimate 

and subtract N~ to get the $(J )  estimate. The initial tests of this estimate were done 
with V = 10. There are some proposed variants of V-fold cross-validation. Burman (1990) 
has given a first-order correction term. Stratification of the cross-validation samples has 
been suggested. An open question is how many 'folds' to use, i.e. how big should V be? 

2.4 Bootstrap 

The unconditional version of the bootstrap goes as follows: sample with replacement N 
times from the original data { y , ,  xn} .  Denote the sample by { y : ,  x:). Using the 
bootstrap sample, do the submodel selection getting the sequence { f f }  and predictors 
P B ( x ,  f f ) .  Define 

~ B ( J )= C (yn- P B ( x ~ ,L-18))'- C ( y f l - PB(x:, C f ) ) ' .  
n n 

Then eB(J)is an estimate of the bias in RSS(J)in estimating PE(J).Repeat the bootstrap 
process and let e(J)=AVBeB(J).Define the bootstrap P E  estimate as 

and the corresponding M E  estimate by subtracting N8'. 
In the simulation we use 50 bootstrap repetitions. Note that we do not use the 

bootstrap at sample size 60. The reason is that, on the average, a bootstrap sample will 
omit a fraction e-' of the cases. With 60 cases and 40 variables, this means that often, 
when the matrix X'X is formed from the bootstrap sample, it is singular. 

We could not see any method, both simple and reasonable, to get around this. A 
smoothed version of the bootstrap would not encounter this difficulty, but it is not at all 
clear how to smooth in a 40 dimensional space. Skipping any bootstrap sample where X'X 
was nearly or exactly singular was another possibility, but we reasoned that this would 
destroy the distributional rationale for bootstrap. 

2.5 Partial Cross -validation 

Unlike the methods above, partial cross validation only uses the main sequence of 
subsets I;,, I;,, . . . initially selected. Given any subset of variables with indices in I;  and 
OLS predictor P(x, f ) ,  the cross-validated estimate for the P E  is 

where the { r n ( f ) )are the residuals yn - P(xn,f )  and h,( f )  =xnS-'xn, S =X'X where 
X'X is formed using only the variables {x , ;  m E f ) .  Again, $ ( f )  is formed by 
subtracting N@. This equation is applied to each of the { f J )  to get the $ ( J )  estimates. 
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The idea here is based on this reasoning: in complete cross-validation, when a single 
case is left out, the sequence of selected subsets #), 1;(,"), . . . should usually be identical 
to the sequence of subsets to,.. . selected using the same procedure on all the data. 
Therefore, we can approximate complete cross validation (and drastically reduce 
computing time) by assuming that 

Under this assumption, complete cross-validation reduces to what we call 'partial 
cross-validation.' 

2.6 Organization 

Our plan is to first give results for the test set benchmark estimate of Section 2.1 and 
for the 4 estimates defined in 2.2 to 2.5. These latter are, to us, the current serious 
contenders. In Section 6, we give some simulation results relevant to other estimates. 

3 Simulation Structure 

(a) For each run, the X-distribution was fixed, as were the coefficients of the full 
model. In each repetition the x-variables were independently sampled from the 
underlying X-distribution. Normal noise was generated and added to give the y-values. 
Backwards deletion was then carried out to give the sequence of submodels. There were 
always forty variables and either 60 or 160 cases. In each run, there were 500 repetitions 
(with one exception noted later). 

(b) In each repetition the true ME was computed for each submodel selected by the 
backwards deletion. Various ME estimates for each submodel were derived using the 
methods listed in Section 2. 

(c) Two general behavioral characteristics were observed. The first was the behavior 
of the ME estimates over the entire sequence of submodels. Since the true ME was known, 
the behavior of the estimates could be compared to it and systematic differences noted. 
We call this the global behavior. 

The second type of behavior studied was the ability of these estimates to select 
submodel dimensionality and estimate the ME of the selected submodel. Knowing the true 
ME, we knew the optimal dimensionality. Using each ME estimate, in each repetition we 
selected the submodel having the minimum estimated ME. For this submodel we 
computed its dimensionality and the value of its ME estimate. The selected dimensionality 
was compared with the optimal dimensionality. The ME estimate for this submodel was 
also compared with the true ME of the submodel. We refer to these results as the 
submodel selection and evaluation behavior. 

3.1 Detailed Structure 

Two X-distributions were used. The first was a multivariate mean-zero normal with 
E(XiX,)=p"-", with p =0.7. The second was a multivariate mean-zero lognormal with 
the same covariance matrix and coefficient of variation 1-4. In both cases N(0, 1) noise 
was added. The non-zero coefficients were in three clusters of adjacent variables with the 
clusters centered at the loth, 20th, and 30th variables. For the variables clustered around 
the 10th variable, the initial coefficients values were given by 
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The coefficient clusters at 20 and 30 had the same shape. All other coefficients were zero. 
The coefficients were then multiplied by a common constant to make the theoretical R2 
equal to 0.75. 

We used the h-values 1, 2, 3, 4. This gave, respectively, 3, 9, 15, 21 non-zero 
coefficients. For h = 1, there were three strong, virtually independent variables. At the 
other extreme, h = 4, each cluster contained 7 weak variables. These four different sets of 
coefficients are designated by H I ,  H2, H3, H4 in the tables and figures. Some t-values for 
the coefficients are graphed in Breiman (1988). We also ran the case with all coefficients 
zero. This is designated by a Z in the tables and figures. 

3.1 Comments on the Simulation Structure 

When the X-distribution is multivariate normal, the simulation is identical to that in the 
X-fixed case (Breiman (1988)) except that the x-variables are randomly selected in each 
of the 500 repetitions in a run, instead of being selected at the beginning of the run and 
held fixed. 

Sampling from the multivariate normal gives relatively short tailed symmetric data 
distributions. The multivariate lognormal distribution is of the form 

with the Z, multivariate normal, such that EX, = 0, EX,X, = pi'-", p = 0.7, and 
s ~ ( e ~ ~ ) / ~ ( e ~ j )= 1.4. This lognormal distribution is skewed and long tailed. A few high 
leverage cases in each repetition is a normal occurrence. The effects of the randomness of 
the x-sample using this distribution are very marked. 

The X-fixed simulation was run on sample sizes of 60, 160, 600, and required many 
hours of CRAY CPU time. The X-random simulation required even more intensive 
computations. To keep the computing requirements within bounds, we eliminated the 
runs with sample size 600. 

4 Global Results 

The best way to understand the global behavior of the estimates is to look at the graphs 
in Figs. 1-4. In these graphs the following abbreviations are used for the various 
estimates: ME(True) =True Model Error; TS = Test Set; ccv = Complete Cross Valida- 
tion, cv/10 = 10-fold Cross Validation; PCV = Partial Cross Validation and BOOT = 
Bootstrap. The graphs on the left side of the page are the average of the ME(J) estimates 
over the 500 repetitions in a run plotted as a function of J.  The solid line is the average of 
the true ME(J). 

The graphs on the right side of the page are the RMS (root mean square) differences 
between the ME(J) estimates and the true ME(J) computed and averaged over the 500 
repetitions and plotted against J.  The RMS differences were calculated by taking the square 
root of the average squared difference between the estimate in question and the true 
ME(J). The solid line is the standard deviation of the true ME(J). 

The most immediately striking result is the increase in ME over the X-fixed case. In that 
case, the average full model ME was close to 40 ( a2  = 1). Here, for N = 60, the full model 
MES are around 120 in the multivariate normal case and above 300 in the lognormal. The 
effect is less pronounced at N = 160, but the lognormal ME is almost 100 at J =40. 

Another striking effect is the decrease in ME achieved by going from the full model to 
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Normal N=60 

z 

0 10 20 30 40 0 10 20 3 0  40 

Dmenson D~ntension 


10 20 30 40 0 10 20 30 40 

D~mens~an Dmenson 


Figure 1. 

the minimum ME model. For the models studied, one wins big in the X-random case by 
going to small submodels. Even for the model with twenty-one non-zero coefficients (H4), 
examination of Fig. 1 shows that the lowest model error was obtained with models 
including only four to six x variables (when N =60) or nine to eleven variables (when 
N = 160). 
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Figure 2. 

Looking at the global behavior of the various estimates, we pick out the following 
features 

(i) Complete cross-validation has uniformly low bias and RMS error. 
(ii) At 	N = 60, ten fold cross-validation is biased upwards with larger RMS error at 

the higher dimensional submodels. This bias is considerably reduced at N = 160. 
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Lognormal N=60 

z 
i 1 1 


Figure 3. 

(iii) Bootstrap has fairly low bias and RMS error at N = 160, with the estimate tending 
to be slightly low. 

(iv) Partial cross-validation is heavily biased downward with generally high RMS 

error. 
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Lognormal N=160 

z 
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Figure 4. 

5 Selection and Evaluation Behavior 

The most important role of the PE/ME estimates is in submodel selection and evaluation; 
i.e. how good a submodel does it select and how good is the ME estimate of the selected 
submodel. 

To answer the question of how good the selection is, the criterion used is the average 
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true ME value for the selected submodel. This is given in Table 5.1. The abbreviations 
used in the tables are the same as those listed in Section 4. 

The next comparison is between the average dimension as selected by the true ME and 
by each of the estimates, together with the RMS differences between them. This is given in 
Table A . l  of the Appendix where the numbers in parentheses are the RMS differences, 
except that the number following the average dimension selected by the true ME is the 
standard deviation. 

In terms of the ability of the estimate to evaluate the subset selected, we give two 
tables, listed in the Appendix. The first (Table A.2) compares the average estimated ME 

value for the subset selected by the estimate to the average true ME value for the same 
subset. In this table, the numbers in parentheses are the true ME averages. Table A.3 
gives the RMS differences between the true ME and the estimated ME for the subset selected 
over the 500 repetitions in a run (1000 for lognormal n =60). 

5.1 Summary to Date 
The major surprise here is that ten-fold cross-validation is uniformly better in 

selection/evaluation than complete cross-validation. Complete cross validation has better 
global behavior. But the critical issue in selection is the shape of the estimates ME(J) curve 
near the minimum value of the true ME(J) curve, rather than global behavior. Where it 
counts cv/lO gives better performance than ccv. 

At sample size 160, cv/lO and bootstrap give very competitive results. In selection, 
there is very little to choose between them. In evaluation, bootstrap has a slight edge. 
Partial cross validation's performance is not in the same league. It is so poor that it should 
not be seriously considered for submodel selection/evaluation in regression. We ignore it 
in the rest of the discussion. 

Generally, all estimation methods (except pcv) select dimensionalities close to the 
optimal selection by true). All estimates of ME for the selected submodels had 
appreciable downward bias (see Table A.3). But, in general, this bias was not the major 
factor in their RMS error (see Table A.3). In comparing the RMS errors of all estimates 
(including test set) to the average ME being estimated (Table 5.1), one is disappointed by 
how large the RMSE/ME ratio is. 

Often the RMSE is about the same size as the ME it is trying to estimate. At best it is not 
less than about half of the ME. This persists even as sample is increased to 160. If 
ME<< ~ o the~ ME, term makes a small contribution to PE and the major variation in 
estimating PE is in the estimation of N o 2 .  The latter quantity can be estimated with small 
coefficient of variation for N -M >> 1. In fact, some approximate calculations indicate 
that the coefficient of variation for estimating PE in the normal case for the subsets 
selected by either cv/v or BOOT is around 0.15 for N = 160 but over 0.3 for N = 60. The 
reason for the noisiness in the ME estimates was discussed in Breiman (1988). It is intrinsic 
in the nature of the problem. There is some evidence that using these estimates to 
compare submodels is more reliable. That is, given two submodels with indices in i;,, c , ,  
it seems possible to estimate ME(^;^) - ME(^;^) with much less variability than either of 
ME(^;^), ME(^^) separately. Thus, using bootstrap or cross-validation to compare 
procedures operating on the same data may give reasonable results. But answers to these 
issues aren't known yet. 

6 Some Substudies 
In the studies discussed below, the summary statistics for some of the estimates may 

differ somewhat from the same summary statistics for the same estimates given in the 
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previous sections. This is because different random numbers may have been used. But 
whenever two or more procedures are compared below, the comparison is on runs on the 
same data. 

6.1 Other Fixed Path Estimates 

By fixed path estimates of ME/PE we mean estimation methods that work with the given 
sequence co, . . . , c, of submodels only. For example, partial cross validation is a fixed 
path estimate. But 10-fold cross-validation generates 10 different sequences of submodels 
in addition to the initial sequence. We refer to estimates that generate other sequences of 
submodels as alternative path estimates. 

Partial cross-validation is the most complicated of the fixed path estimators. Others in 
common use are the Cp estimate of P E ( ~ ~ )  given by, 

RSS(&)+ 26'J 

and the Sp estimate given by (approximately) 

Various asymptotic optimality properties can be given for some of these estimates, if no 
data driven submodel selection is used. 

But in realistic situations, such as in the structure of this simulation, fixed path 
estimates are hopelessly biased and do poorly in subset selection. This was the case for Cp 
in the X-fixed study and for partial cross-validation in the present study. We also 
calculated and used Cp in the present study. The results were similar to those using partial 
cross-validation, and are shown in Fig. 5 for the N = 60 normal case. 

We did not run the Sp estimate. One reason is that, at least in the normal case, it 
should be close to the partial cross-validation value. Looking at the definition of the 
latter, note that if the h,(c,) are almost constant, then since C, h,(&) =J ,  we can 
approximate the 1/(1 - h,(CJ))' term in (2.1) by N2/(N -J)'. This gives the corrected 
residual-sum-of-squares estimate 

N 2
G(J) = R S S ( ~ ~ )(-1

N - J  

which is very close to the Sf statistic recommended by Thompson (1978) in her review 
article. For an asymptotic justification of Sf see Breiman & Freedman (1983). 

6.2 Correcting and Stratifying the cv/l0 Estimate 

Burman (1989) gives a first order correction to the V-fold cv estimate of PE. Another 
issue in this estimation method is how to select the V subsets into which the N cases are 
grouped. The simplest method is ordinary random selection. But the question has been 
raised as to whether some sort of stratified selection might improve accuracy. 

In particular, in the lognormal x-distribution, a few very high leverage cases usually 
occurred in the full model. Thus, sampling from strata determined by the leverage values 
(diagonals of the hat matrix) in the full model, might give a more homogeneous grouping 
and increased stability. More specifically, the data were sorted by their full model h, 
values and divided into NIV groups. One observation from each of these groups was then 
randomly selected (without replacement) to form each of the L, ,  . . . ,L,. 

For the normal case, N = 60, Fig. 6 gives plots of the global behavior of the estimate 
(cv/c) resulting from correcting cv/lO, the estimate (cvls) resulting from stratifying and 
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then doing 10 fold cross-validation, and the estimate (cvlcs) resulting from both 
correcting and stratifying. The correction does improve accuracy for the larger sub- 
models. It is not clear that the stratification has any effect. 

However, the story in subset selection and evaluation indicates that neither the 
correction or stratification are useful. For instance, Table 6.1 gives the true average ME 
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for the submodels selected by the different estimates for sample size 60. The thought 
might occur that even if cv/c did not do as well in submodel selection, it might be a better 
ME estimator at the subset it selects. Not so! In every case the corrected estimate does 
worse than the uncorrected estimate. Thus, using the correction term makes selection and 
evaluation less accurate. Our method of stratification seemed to neither help or harm. 

6.3 How Many Folds in Cross-validation ? 

The preceding sections have produced some surprises concerning cross-validation. Ten 
fold validation gave better selection and evaluation results than complete cross-validation, 
even though the latter is a better global estimate. Similarly, adding a correction term 
gives a better global estimate, but a poorer selection/evaluation method. This raises the 
possibility that 5-fold or even 2-fold cross-validation estimates might be reasonable good 
in selection/evaluation. For N = 60, 2-fold was not possible, leading to a singular X'X 
matrix. 

Thus, we compared cv/lO to cv/5 at N = 60 and cv/lO, cv/5 and cv/2 at N = 160. The 
global results are as expected: cv/5 and cv/2 have larger bias and RMS error at the larger 
submodels (see Figs. 7 and 8 for graphs in the normal case.) To compare the 
selection/evaluation performance, we created Table 6.2 and A.4. Table 6.2 gives the true 
average ME for the selected subset, and Table A.4 of the Appendix gives the RMS error for 
the ME estimate of the selected subset. 

We see again the interesting phenomenon that although cvI.5 is not as good an 
estimator globally as cv/lO, it does as well on submodel selection and evaluation. But two 
folds are not enough and Tables 6.2 and A.4 show cv/2 breaking down in accuracy. The 
breakdown of cv/2 seems to have its source in that with a sample size of only 80, cv/2 
tends to select models that are too small. 

6.4 How Many Bootstraps are Needed ? 

In our main simulation, we used 50 bootstrap iterations. The question of how much this 
can be reduced without significant loss in accuracy is an important practical issue. Fifty 
bootstrap iterations is a considerable amount of computing (see the next section). 

To look at this issue we ran the sample size 160 cases using 50, 20, 10 and 5 bootstrap 
iterations (see Figs. 9, 10). Tables 6.3 and A.5 compares the selection/evaluation 
performance. Table 6.3 gives the true average ME for the selected subset and A.5 gives 
the RMS estimate error for the ME estimate of the selected subset. 

The accuracy of BOOT holds up even with a sharply reduced number of bootstrap 
iterations. Globally, there is no increase in bias and the RMS error only shows appreciable 
increases at 5 iterations. The submodel selection and evaluation accuracy holds up even 
for as few as 5 bootstraps. The differences between 50 and 20 are small, and dropping 
even lower creates few ripples. Past 10-20 bootstrap iterations, the increase in accuracy is 
marginal compared to the computing time required. 

6.5 Restriction to Cost-Admissible Submodels 

The idea of cost-admissible submodels was introduced in Breiman (1988), (1989) and is 
similar to the notion of cost-complexity submodels used in regression and classification 
trees (Breiman et al. (1985)). Briefly, given a sequence to,. . . , GM, call CJ a cost 
minimizer if there is an a 2 0 such that J minimizes ~ s s  (CJ,)+ ad', 0 cJ' cM. Call CJ cost 
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admissible if it is a cost minimizer and some value of cu for which it is a cost minimizer is 
between 2# and 106'. (6' the full model estimate). 

In the x-fixed simulation, the results indicated that restricting the submodel selected to 
be cost admissible had a uniformly beneficial effect on the selection/evaluation procedure. 
We conducted a similar study in the present X-random situation. 
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Normal N=60 

Figure 7. 

Let J , ,  . . . ,JK be the dimensions of the cost admissible submodels. Usually, there are 
only a few such submodels. In fact, for all runs in the simulation, out of 41 submodels, on 
the average about 5 are cost-admissible. Now, for any G ( J )  estimate, select that 
J E { J , ,  . . . ,J K )  which minimizes @ ( J ) .  

The effects of restricting choice to cost admissible submodels was carried out in a 
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separate simulation. To keep computing time down, we explored only its effect on cv/lO 
and BOOT results and summarized in Table 6.5, A.6 and A.7. Along with the 
abbreviations listed in Section 4, we use the following: c v l l O l c ~  = 10-fold cross validation 
estimate restricted to cost admissible models and BOOT~CA= bootstrap estimated restr- 
icted to cost admissible models. Table 6.4 compares the true ME of the selected subsets. 
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Table A.6 compares the RMSME estimate errors, and Table A.7 gives the average 
dimension selected and its RMS difference from that selected by the true ME. 

These results show that selection/evaluation is about as good, and often slightly better 
when the submodel selected is restricted to be cost admissible. Table A.7 shows, in 
particular, that the restriction has a stabilizing effect on the dimensionality selection. 
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6.6 Computational Aspects 

There are two interesting computational aspects we ran across in this work. The first 
was that after using about 50 hours of CRAY XMP-2CPU time, we realized that we were only 
about half way through the simulation and almost out of CRAY money. 

40 
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The rest of the simulation was done on 25 networked SUN 3150's in the Statistical 
Computing Facility at the U.C. Berkeley Statistics Department. Each run of 500 
iterations was split into 25 runs. The compiled code for this smaller run using a random 
number as a seed to the simulation's random number generator was executed in parallel 
on each SUN 3/50 and the individual output files sent to the 'mother' file system for 
processing. 

The programs were run on low priority to avoid conflict with the normal interactive SUN 

usage. Since these machines are rarely used from late at night to early in the morning, the 
simulation had virtually exclusive use of them for 10 hours a day. Our estimate is that 25 
SUN 3150's are about 114 of a CRAY XMP-2. But because we did not have to wait in a queue 
with other CRAY users, our turn-around time was usually at least as good. 

Another issue of practical importance is computational efficiency of the various 
estimation procedures. The fixed path procedures are most efficient but also least useful. 
The two most accurate estimates are cv/v and BOOT. In addition to the original regression 
and submodel sequence generation, cv/v and BOOT do additional regressions and 
submodel sequence generation. In each such replicate the operations necessary consist of 
two main components. The first is in the formation of the X t X  matrix, where about NM2 
operations are needed. The second is in generating the sequence of submodels. If simple 
stepwise variable deletion or addition is used and implemented by Gaussian sweeps, then 
about 2M3 operations are used. Many more are required if a best subsets algorithm is 
used. 

After the additional regressions have been done, they have to be combined to give the 
ME(J) estimates for each J.  If R is the number of bootstraps or the number of folds, then 
this costs about 3 1 2 ~ ~ ~  operations. In cv/v the XtX  computing can be reduced. Take 
{n') to be a random permutation of (1, . . . ,N). Let 

where N, = [N(v - l)/V]. Then XtX  = C, x'x'"), and the sum-of-squares matrix with 
the vth group deleted is X W  -XtX'").This reduces all sum-of-squares computations in 
cv/v from N M ~ V  operations to about NM' operations. 

Another place where computation can be reduced is in the restriction to cost admissible 
submodels. The number of operations needed to compute the ME(J) estimate is 3/2M2R 
per submodel for bootstrap and cv/v respectively. If these estimates are computed only 
for the cost admissible submodels, then the operations required in forming estimates drop 
by the proportion of non-cost admissible submodels. 

Here are some typical SUN 3/50 timing runs (cpu seconds) in cell H, of the simulation 
(Table 6.5): 

The time for a single sequence of variable deletions is 7.7 cpu seconds. 

7 Conclusions 
Z 1 Submodels in x-Random v.s. x-fixed 

The full model x-random ME has an expectation of about 120 for simulated normal data 
with sample size 60. In the x-fixed case it is 40. For the H3 coefficients the true ME 

minimum submodels have an average ME of 31-9 (Table 5.1). This is 26% of the full 
model ME. 

In the x-fixed case for the same coefficients, the similarly selected submodels had 
average MES 54% of the full model ME. This is typical across 2, H I ,  H2, H3, H4. In the 
x-random case submodel selection results in a much larger reduction of full model ME 

than in the X-fixed case. 
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This is not so pronounced for normal data at N = 160. Here, the submodel selected in 
the x-random setting under H3 has a ME that is 54% of the full model ME compared to 
62% for the x-fixed case. 

The reduction can be even more drastic if the X-distribution is skewed and long-tailed. 
In the lognormal N =60 case, with H3 coefficients, the full model ME is reduced to 15% of 
its value by selecting the minimum ME submodel. The message is clear: You may win big 
by using submodel selection in the x-random case, especially for thin sample sizes and 
irregular X-distribution. 

Another thing that shows up is that we win more by selecting smaller submodels in the 
x-random case. For instance, Table 7.1 is a comparison of the average dimension selected 
in the N =60, normal runs using true ME for selection. In the H3, H4 coefficients there 
are a number of weak variables. In the x-random situation there is more incentive to peel 
these off and reduce x-variability than in x-fixed. There is still evidence of this effect at 
N = 160, but not as strongly. For x-fixed the average dimension in H4 is 11.6. For 
x-random it is 10.8. 

7.2 Which M E / P E  Estimator to Use ? 

We hope this present simulation will drive another nail into the practice of using fixed 
path estimators when data driven submodel selection is in operation. 

Surprisingly, cv/v for V as low as 5 does better selection/evaluation than complete 
cross-validation. Bootstrap, when the sample size is large enough to use it, does as well as 
cv/v in selection with a small edge in evaluation, and accuracy is not significantly 
decreased with as few as 5 bootstrap iterations. On the other side of the scale is 
bootstrap's computational expense compared with cv/v. 

But no matter which method is used, it seems fairly clear that restricting attention to 
the small class of cost effective submodels has a number of advantages and no apparent 
disadvantages. 

7.3 Submodel Evaluation 

As mentioned earlier in Section 5, ME estimators for the selected submodels are noisy, 
with large RMSE/ME ratios. This problem has not been given sufficient attention, and many 
conclusions have been shaded in the literature based on the assumption that bootstrap or 
cross-validation give accurate estimates of the PE. We conjecture that comparison of 
different models using differences of the ME/PE estimates have more reliability than the 
absolute magnitudes of the ME/PE estimates. 
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Appendix 

Table A. l  

Dimension selected 

Normal N = 60 

M E ( T ~ u ~ )  O.O(O.0) 3.2(0.7) 4.1(1.3) 4.5(1.9) 5.5(2.7) 
TS O.9(1.1) 4.1(1.5) 4.3(2.6) 5.1(3.O) 6.1(4.2) 
Ccv 1.9(2.3) 5.6(3.5) 1.7(3.8) 5.9(5.0) 6.7(5.8) 
C V / ~ O  0.8(1.1) 4.4(2.7) 5.5(2.8) 4.7(3.4) 5.5(4.2) 
Pcv ll.l(l2.3) 12.9(11.1) 14.6(12.1) 15.1(11.7) 15.1(11.O) 

Lognormal N = 60 

ME(TN~)  O.O(O.0) 3.2(0.9) 3.6(1.2) 4.1(1.5) 4.6(1.7) 
TS O.4(0.9) 3.7(2.7) 4.3(3.1) 4.6(3.2) 5.2(3.7) 
Ccv O.6(1.7) 3.9(2.9) 4.q3.9) 5.0(3.7) 5.3(4.6) 
C V / ~ O  O.4(1.O) 3.4(1.9) 4.0(3.0) 4.3(2.9) 4.6(3.6) 
PCV 9.9(11.4) 12.6(5.7) 13.4(11.3) 14.0(5.3) 13.6(10.3) 

Normal N = 160 

ME(TN~)  O.o(o.0) 3.O(O.O) 4.2(1.6) 3.6(3.2) 10.8(4.3) 
TS O.3(0.9) 3.3(0.9) 5.3(4.O) 9.3(5.2) 12.2(6.8) 
BOOT O.2(0.7) 3.3(1.O) 5.9(5.2) 2.7(10.5) 17.6(13.6) 
C V / ~ O  O.5(1.3) 3.7(1.7) 5.1(4.O) 1.1(6.7) 12.1(8.9) 
PCV 7.7(8.4) 9.8(7.5) 12.0(8.5) 13.4(6.5) 14.2(6.4) 

Lognormal N = 160 

true) O.O(O.0) 3.0(0.1) 4.0(1.6) 7.3(3.4) 9.2(4.O) 
TS O.3(0.7) 3.3(0.9) 4.8(3.1) 8.8(6.1) 11.3(7.6) 
BOOT O.l(O.4) 3.2(0.8) 4.5(2.7) 7.3(5.7) 9.3(6.8) 
CV/~O O.4(1.1) 3.5(1.5) 4.8(3.5) 8.1(7.O) 10.1(8.O) 
PCV 7.9(8.8) 10.1(8.0) 11.6(8.6) 12.9(7.6) 13.7(7.2) 

Table A.2 
Average estimated M E  

Normal N = 60 

TS -1.2(1.4) 6.0(9.6) 19.7(23.0) 28.7(35.1) 35.0(41.9) 
CCV -2.7(5.8) 4.9(16.5) 18.1(30.9) 28.0(46.8) 31.4(55.1) 
C V / ~ O  -1.9(2.7) 10.6(13.4) 24.9(28.8) 37.1(43.O) 41.5(51.2) 
Pcv -13.4(56.2) -1O.6(62.4) -8.4(78.8) -7.6(83.0) -8.O(83.2) 

Lognormal N = 60 

TS -0.1(1.7) 25.1(36.7) 38.9(51.4) 44.4(60.3) 49.9(67.9) 
ccv -1.7(8.3) 25.0(52.7) 42.7(73.8) 46.2(86.1) 47.0(92.2) 
C V / ~ O  -1.3(5.1) 35.5(52.7) 47.8(66.1) 59.3(80.6) 58.2(86.0) 
PCV -12.0(108.2) -8.7(149.1) -6.3(168.2) -6.2(174.6) -6.5(166.8) 

Normal N = 160 

TS -0.1(1.3) 2.3(4.2) 15.2(21.O) 25.8(32.O) 32.1(38.8) 
BOOT O.3(1.7) 2.9(5.6) 17.9(26.3) 29.0(41.7) 32.7(49.1) 
~ ~ 1 1 0  -0.7(3.4) 2.0(7.9) 14.4(24.5) 27.3(40.0) 35.4(49.3) 
PCV -10.2(29.2) -6.9(30.2) -3.7(38.0) -1.5(40.9) -0.4(46.2) 

Lognormal N = 160 

TS -1.0(1.2) 3.0(5.5) 19.3(26.6) 34.0(47.3) 45.2(59.2) 
BOOT 0.3(1.5) 8.0(7.0) 26.4(31.2) 42.8(57.5) 49.9(70.8) 
C V / ~ O  -0.5(3.6) 4.5(8.6) 21.0(31.7) 40.6(59.5) 51.2(72.7) 
Pcv -10.4(44.6) -7.0(45.9) -3.5(57.1) -0.5(66.7) 0.0(73.9) 



Table A.3 
RMS differences in MES 

Normal N = 60 

TS 16.9 20.4 
ccv 27.5 31.0 
cv/10 23.0 26.3 
PCV 82.7 97.7 

Lognormal N = 60 

TS 31.8 42.8 
ccv 61.3 119.7 
cv/ l0  59.3 62.2 
PCV 193.7 210.1 

Normal N = 160 

TS 10.7 15.0 
BOOT 10.1 15.1 
cv/10 13.6 16.9 
PCV 39.0 43.2 

Lognormal N = 160 

TS 11.9 20.0 
BOOT 14.1 20.5 
cv/10 17.4 26.1 
PCV 58.5 66.3 

Table A.4 
RMS error 

Z H1 H2 H3 H4 

Normal N = 60 

CV/~O 16.3 12.4 30.8 42.5 53.4 
C V / ~  15.8 11.5 28.9 41.0 53.9 

Lognormal N = 60 

~ ~ 1 1 0  17.6 65.4 56.5 66.1 65.4 
C V / ~  16.8 65.7 62.1 61.1 62.9 

Normal N = 160 

Lognormal N = 160 

Table A.5 
RMS error 

Normal N = 160 

10.9 10.9 15.0 
11.6 11.1 15.8 
12.6 11.9 16.8 
14.1 13.6 18.9 

Lognormal N = 160 
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Table A.6 
RMS error 

Normal N = 60 

17.7 21.9 26.4 
17.9 	 20.8 26.0 

Lognormal N = 60 

17.1 50.2 59.4 
17.0 55.4 66.3 

Normal N = 160 

cv/lO 
C V / ~ ~ / C A  
BOOT 
BOOT/CA 

Lognormal N = 160 

cv/ l0  
cv/lO/ca 
BOOT 
BOOT/CA 

Table A.7 
Dimension selected 

Z H1 H2 H3 H4 

Normal N = 60 

true) o.O(o.0) 3.1(0.5) 3.5(1.1) 4.5(1.8) 4.5(1.8) 
C V / ~ O  O.S(l.7) 3.6(1.9) 4.2(2.8) 5.0(4.0) 5.7(5.1) 
C V / ~ ~ / C A  0.4(1.7) 3.6(1.5) 4.2(1.9) 5.2(3.0) 5.6(2.7) 

Lognormal N = 60 

true) O.O(O.0) 3.2(0.9) 3.6(1.2) 4.1(1.4) 4.5(1.7) 
cv/lO 0.3(0.7) 3.5(2.1) 4.0(3.0) 4.2(3.6) 4.3(3.1) 
C V / ~ ~ / C A  0.2(0.7) 3.7(1.7) 4.1(2.4) 4.3(2.6) 4.5(2.7) 

Normal N = 160 

true) o.O(o.0) 3.0(0.0) 4.2(1.7) 8.6(3.0) 11.3(4.9) 
cv/lO 0.6(1.4) 3.5(1.2) 5.1(4.1) 9.0(7.1) 12.5(9.6) 
c v / l O / c ~  O.S(l.4) 3.5(1.1) 5.1(3.1) 7.7(4.1) 9.9(4.3) 
BOOT 0.2(0.6) 3.1(0.5) 6.5(6.9) 13.5(11.8) 17.0(12.7) 
BOOT/CA 0.2(0.6) 3.1(0.4) 5.8(4.0) 10.0(5.1) 12.3(4.9) 

Lognormal N = 160 

true) o.O(o.0) 3.0(0.1) 4.0(1.6) 7.2(2.9) 9.5(4.5) 
C V / ~ O  0.4(1.5) 3.5(1.5) 4.7(3.7) 7.8(6.9) 9.9(8.3) 
cv/lO/ca 0.3(1.0) 3.4(1.2) 4.6(2.4) 6.9(3.6) 8.4(4.1) 
BOOT O.l(O.4) 3.2(0.7) 4.5(2.8) 7.1(5.1) 8.9(6.9) 
BOOT/CA O.l(O.4) 3.2(0.7) 4.4(2.3) 6.8(3.6) 8.4(3.8) 
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Table 5.1 
True ME of submodels selected 

Normal N = 60 

m(True) 7.9 20.5 
TS 9.6 23.0 
ccv 16.5 30.9 
cvI l0  13.4 28.8 
PCV 62.4 78.8 

Lognormal N = 60 

m(True) 31.3 42.8 
Ts 36.7 51.4 
ccv 52.7 73.8 
cvI l0  52.7 66.1 
PCV 149.1 168.2 

Normal N = 160 

m(True) 3.0 18.2 
TS 4.2 21.0 
ccv 5.6 26.3 
cv110 7.9 24.5 
PCV 30.2 38.0 

Lognormal N = 160 

m(True) 4.1 23.1 
TS 5.5 26.6 
ccv 7.0 31.2 
cvI l0  8.6 31.7 
PCV 45.9 57.1 

Table 6.1 

True ME values 

Normal N = 60 
2.7 13.4 28.8 
3.6 17.4 33.5 
3.2 13.2 28.8 
4.5 16.6 33.5 

Lognormal N = 60 

5.1 52.7 66.1 
9.1 60.0 72.5 
5.4 52.7 69.0 

11.5 58.4 74.4 



Table 6.2 
True ME 

Normal N = 60 

12.3 30.8 
11.5 28.9 

Lognormal N = 60 

Normal N = 160 

6.2 24.4 
5.2 23.3 
3.5 22.2 

Lognormal N = 160 

9.6 33.6 
8.0 32.4 
9.0 32.2 

Table 6.3 
True average ME 

Normal N = 160 

2.3 5.1 26.6 
2.6 5.1 27.0 
2.9 5.4 27.1 
3.9 6.2 27.6 

Lognormal N = 160 

1.5 6.9 32.9 
2.1 7.4 33.1 
2.6 8.0 33.8 
3.4 9.1 35.1 

Table 6.4 
True ME 

Normal N = 60 

12.4 28.9 
12.4 28.5 

Lognormal N = 60 

Normal N = 160 

cv/10 6.3 25.2 
C V / ~ ~ / C A  6.3 25.1 
BOOT 4.4 27.2 
BOOT/CA 4.4 26.3 

Lognormal N = 160 

cv/10 8.5 33.1 
cv/lO/ca 8.7 31.9 
BOOT 6.7 31.9 
BOOT/CA 6.9 31.9 
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Table 6.5 
Timings (in CPU seconds) on Sun 3/50 

Regular Cost admissible 

Table 7.1 

Average dimension selected 

Z H1 H2 H3 H4 

Normal N = 60 

x-fixed 0.0 3.2 4.1 6.1 7.9 
x-random 0.0 3.2 4.1 4.5 5.5 

References 

Breiman, L. (1988). Submodel selection and evaluation in regression: the x-fixed case and little bootstrap, 
Technical Report No. 169, Statistics Department, U.C. Berkeley. 

Breiman, L. (1989). Additive models in regression using knot deletion, cross-validation and cost effectiveness 
(in preparation). 

Breiman, L. & Freedman, D. (1983). How many variables should be entered in a regression equation? JASA, 
V. 78, NO. 381, 131-136. 

Breiman, L., Friedman, J., Olshen, R. & Stone, C. (1985). Classification and Regression Trees. Wadsworth. 
Burman, P. (1990). Estimation of optimal transformations using LJ-fold cross-validation and repeated learning 

testing methods. Sankhya, Ser. A , ,  52, 314-345. 
Efron, B. (1986). How biased is the apparent error rate of a prediction rule? JASA, 81, 461-470. 
Freedman, D., Navidi, W. & Peters, S. (1990). On the impact of selecting variables in fitting regressions, in 

'On Model Uncertainfy and It's Statistical Implications', T . K .  Dijkstra (ed.), Springer-Verlag. 
Hocking, R.R. (1983). Developments in linear regression methodology: 1959-1982. Technometrics 25,219-230. 
Miller, A.J. (1984). Selection of subsets of regression variables (with discussion). J.R. Statist. Soc. A .  147, part 

2, 398-425. 
Miller, A.J. (1990). Subset Selection in Regression, Chapman and Hall. 
Thompson, M.L. (1978). Selection of variables in multiple regression. International Statistical Review 46, 1-49 

and 129-146. 
Wu, C.F.J. (1986). Jackknife, bootstrap, and other resampling methods in regression analysis (with discussion). 

Ann. Statistics 14, 1261-1350. 

Dans I'analyse de probEmes de rCgression a plusieurs variables (indkpendantes), on produit souvent une sCrie 
de sous-modtles constituCs d'un sous-ensemble des variables par des mCthodes telles que I'addition par Ctape, le 
retrait par Ctape et la mkthode du meilleur sous-ensemble. Le probl2me est de dCterminer lequel de ces 
sous-modtles est le meilleur et d'Cvaluer sa performance. Ce probltme fut explorC dans Breiman (1988) pour le 
cas d'une matrice X fixe. Dans ce qui suit on considkre le cas ou la matrice X est alkatoire. La dktermination de 
rCsultats analytiques est difficile, sinon impossible. Notre Ctude a utilisC des simulations de grande envergure. 
Elle se base sur la dkfinition thkorique de I'erreur de prkdiction (EP) comme Ctant I'espCrance du carrk de 
I'erreur produite en applicant une Cquation de prediction a I'univers distributional des valeurs ( y ,x). La 
dkfinition est utilisCe dans toute I'Ctude a fin de comparer divers sous-modtles. I1 y a une diffkrence Ctonnante 
entre le cas oh la matrice X est fixCe et celui oh elle est alCatoire. DiffCrents estimateurs de la EP sont propos. 
Les estimateurs n'utilisant pas de rC-Cchantillonage, tels que le C, et le R' ajustC, produisent des mCthodes de 
sClection ayant grand biais. Les deux meilleures mCthodes sont la validation croisCe et I'autoamorqage. Une 
surprise est que la validation croisCe quintuple est meilleure que la validation croisCe tous sauf un. I1 y a 
plusieurs autres resultats surprenants. 
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