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Submodel Selection and Evaluation in
Regression. The X-Random Case

Leo Breiman and Philip Spector
Statistics Department, University of California, Berkeley, CA 94720

Summary

Often, in a regression situation with many variables, a sequence of submodels is generated
containing fewer variables by using such methods as stepwise addition or deletion of variables, or
‘best subsets’. The question is which of this sequence of submodels is ‘best’, and how can submodel
performance be evaluated. This was explored in Breiman (1988) for a fixed X-design. This is a
sequel exploring the case of random X -designs.

Analytical results are difficult, if not impossible. This study involved an extensive simulation. The
basis of the study is the theoretical definition of prediction error (PE) as the expected squared error
produced by applying a prediction equation to the distributional universe of (y,x) values. This
definition is used throughout to compare various submodels.

There can be startling differences between the x-fixed and x-random situations and different pE
estimates are appropriate. Non-resampling estimates such as Cp, adjusted R?, etc. turn out to be
highly biased methods for submodel selection. The two best methods are cross-validation and
bootstrap. One surprise is that 5 fold cross-validation (leave out 20% of the data) is better at
submodel selection and evaluation than leave-one-out cross-validation. There are a number of other
surprises.

Key words: Regression; variable selection; cross-validation; bootstrap; prediction error; subset
selection.

1 Introduction

In previous research (Breiman, 1988) we explored the issue of submodel selection and
evaluation when the X-design was fixed and results were conditional on the fixed
X-design. In this present work we look at the situation where the X-design is random.

More specifically, we assume that there is data of the form (y,, x,), n=1,...,N
where x,, is an M-variate vector. The analyst runs a program that produces regressions
based on subsets of the variables, such as a ‘best subsets’ program or stepwise forward
variable addition or stepwise backwards variable deletion. This produces a sequence of
subsets Lo, . .., Cu, Where {, denotes the indices of the J variables in the regression and
we use the notation || to indicate the number of variables in a given subset; thus |&,| = J.

The problem is to select the ‘best’ one of these submodels and to give some estimate of
the predictive capability of the submodel selected. In the previous paper we set up some
definitions to give some precision to the concept of ‘best’ and predictive capability. The
basic definitions were the x-fixed and x-random prediction errors.

Suppose we have a predictor fi(x) for y based on x. In the x-fixed case, consider new
data (y;*", x,), n=1, ..., n where the y;°* have the same distribution as the original y,.
Define the prediction error for this x-fixed case as

PEr = E ||y™ — a(x)||?
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where we use the notation ||a||* =X a2, and the expectation is over the { y2*} only. If the
model generating the {y,} is
Yo=u*x,)+¢€,, n=1,..., N (1.1)
with Eg, =0, Eg,¢, = 6°5,,. Then
PEp = No* + |lu* — ||
We referred to the term ||u* — (|| as the x-fixed model error ME;. The assumptions for

the x-random case are the (y,, x,,) are i.i.d. sampled from the distribution of (Y, X). In
this case, the predictor error is defined as

PEg = N - E(yncw _ ‘a(xnew))z

where (y™¥, x"*") is a random vector with the distribution of (Y, X), but independent of
the (y,, x,), n=1,..., N and the expectation is over (y"°*,x"¥) only. If Y and X are
related by

new
b

Y=u*X)+¢,
Ee =0, Ee*= 0%, and ¢ independent of X, then
PEg = No* + N - E(u*(x"") — f(x""))>.

The second term is the x-random model error ME;. Then the submodel selection and
evaluation problem is formulated as follows: let Me({) be the model error for oLs
regression based on the subset of variables with indices in {. In the sequence &, . . ., §y
estimate the J that minimizes ME({,) and estimate min; ME({,) for the selected submodel.

1.1 X-Fixed vs X-Random

If we assume a classical linear model then for the full M-variable model the expected
x-fixed model error is Ma?, or o” per variable. In the X-random case, the expected model
error is cMa?, where ¢ can be substantially larger than one.

In the latter case, more is gained by variable deletion, the ‘best’ submodel is smaller
than in the X-fixed case and has larger model error. As the sample size — these
differences become small. But they can be quite significant for sample sizes not large
compared to the number of variables.

The model error in the X-random case reflects both the variability due to the noise
components {¢,} and that due to the randomness in the {x,} as a sample from the X
distribution. If M is a substantial fraction of the sample size N, the latter variability can
contribute more to the ME than the former.

To illustrate this, we look at the full model ME assuming

px) =2 Brxm
Ax) =2, Bk

where B,,, are the oLs estimates. Let S = X'X where X is the data matrix. Then, denoting
F,‘j = EX,X’

mep = (B — B*)S(B - B*)
MEg = (B — B*)NT(B - B*)
MEg = (B — B*)(NT'S™)S(B — B*). (1.2)

or,
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The extent to which NT'S™! differs from the identity will govern how much ME; and MEg
differ. One useful estimate for NT'S™! is given by cross-validation,

NTS™'=> x'x,S°}

where S_, is the inner product matrix X‘X formed with the exclusion of the nth case. If
we use the identity

1, TR (S 'R

1
S-n=S$ 1—h,
where h, =x,5 " 'x,, then we get
h, .
MEg = MEf + Z 1-#h (1*(xn) — (%))

Under (1.1), taking expectations only over {¢,},

h2
1-h,
The average h,, is h = M/N. If the {h,} are fairly constant,

E(MER)=~Mdo*+ 0*- D, (1.3)

N
E(MER) = <m) - Mo
For M =40 and N =60, this gives E(MEg) =3Mo°. But if the X-distribution is skewed
and long tailed, some of the {h,} can get close to one, with the result that
E(MEg) = cMo?, with c¢ as high as 6-7. This will be further illustrated by our simulation
results.

1.2 Which Schema Should be Used?

In some applications the x-variables are actually controlled and fixed. Here there is no
question of the appropriateness of fixed x methods. But in many other situations, e.g.
observational data, where there is no hope of controlling or replicating the x-variables,
should pE. or PE be used as the ‘standard’?

An interesting discussion relevant to this issue is in an article by J. Wu (1986).
Referring to the fact that unconditional confidence interval estimates need the assumption
that the {x,} are i.i.d. samples, he states ‘In data analysis how often do analysts bother to
find out what the sampling design is? On the other hand, a conditionally valid
procedure . . . does not require such a stringent condition on the sampling design’. In the
discussion, Tibshirani refers to both conditional and unconditional procedures as being
based on different ‘gold standards’ and argues that it is not clear which one to use if the
x-design is not a priori fixed. Tibshirani’s point is a good one. Much of statistics has to do
with the establishing of standards for the presentation of results and for the understanding
of these results.

Suppose, for example, that a faculty member has his freshman class fill out a
questionaire with, say, 40 responses and then regresses the first response on the other 39.
Would the x-fixed or x-random PE be a better measure of the accuracy of the results?
What standard should he use? To argue that in the absence of knowing that the
x-variables are i.i.d. selected from a well-defined universe, it is better to assume they are
fixed (replicable, controlled) is an argument for a poor standard. In this context, the
x-random ME is a much more realistic standard.
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Not only that, but if the faculty member decides to repeat the questionaire on the
following years’ freshman class and use the new data to estimate the prediction error of
the equation derived the previous year, then his estimate is clearly much closer in concept
to the x-random PE than the x-fixed.

Our belief is that for observational data, where the x-variables are gathered in an
uncontrolled manner, the x-random PE is a better standard, both conceptually and also in
terms of estimating prediction accuracy on future data gathered in a similar way (i.e.
another freshman class).

This is a practical issue as well as the conceptual one. Methods for estimating the
prediction or model error depend on whether one wishes to estimate the x-fixed or
x-random values. As Efron (1986) points out, cross-validation gives an estimate of the
x-random pE, and should not be used as an estimate of the x-fixed PE unless the sample
size is large enough to make their difference small.

1.3 Outline of Paper

In the arena of submodel selection and evaluation, exact analytic results are hard to
come by. Some were given in the previous paper for the x-fixed case. But the x-random
case seems to be a harder nut to crack. However, the problem is too important and
pressing to be put off pending the appearance of analytical results. The standard methods
used in estimating PE and selecting submodels are highly biased and usually do poor
selection. Here, by standard methods we mean such things as adjusted R? C,,
F-to-enter, F-to-delete etc. Reviews of these appear in Miller (1984) and Thompson
(1978). Miller’s recent book (1990) gives a good exposition of the biases encountered in
variable selection.

Data resampling methods such as cross-validation and the bootstrap have become a hot
item in this arena and are being advocated as better pE estimators and submodel selectors.
However, no telling results have yet been published. For these reasons, we decided to
embark on a simulation study having much of the same structure as the earlier study in
Breiman (1988). It uses 40 variables at sample sizes 60 and 160.

The basic structure is this: the {x,} are i.i.d. sampled from an underlying X
distribution. The {y,} are formed from

Vo =B*x, + €,, {&,}i.i.d. N(O, d?).

Backwards deletion of variables is used to get the sequence {, . . ., {y. The model using
all M variables is called the full model.

The exact ME and PE for each submodel are computed using the values of the oLs
coefficient estimates and the known true values of these coefficients. Therefore, we know
what the best submodel in the sequence is and what its ME is. This is then compared to the
submodels in the sequence selected by various estimation procedures and the ME
estimates for the selected submodels.

In Section 2, we give an outline of the methods to be compared. Section 3 discusses the
structure of the simulation. Section 4 gives the global simulation results, and Section 5 the
results relevant to submodel selection and evaluation. Section 6 discusses the results of
some substudies, and 7 presents our conclusions.
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2 Methods to be Compared

Denote by () the oLs predictor based on the subset of variables with indices in §, and
let

ME(E) =N - E(u*(x™") — a(x"", £)).
PE({) = No® + ME(§).

For the particular sequence &y, ..., {y generated by the variable selection method,
denote ME(J) = ME(E;). Let

rRss(£) = lly — a(Q)II?

and use subscript zero for full model values, i.e. Rss,=Rss({y). Each method given
operates by forming an estimate ME(J) of ME(J); selects the submodel ; such that
ME(J) = min,- ME(J') and evaluates the selected subset by its estimated model error,
ME(J).

2.1 Test Set

As a benchmark procedure, a test set {y,, x,} n=1,..., N is sampled, independent
of the original data set, but of the same size. For any subset £, the test set estimate of

PE({) is
PE(8) = 2 (yn — fi(xs, ©))

where fi(x,, §) is the predicted value for the nth case of the test set, calculated using the
subset of coefficients estimated from the original data.

To convert this into an ME estimate an estimate of No’ has to be subtracted. A
reasonable o estimate is

62 =Rssy/(N — M)

where Rss is the residual-sum-of squares obtained from an oLs full model fit to the data
(¥, X,,). Thus, we use as our test set ME estimate

ME(L) = PE(L) — N&™.

2.2 Complete Cross-Validation

In complete cross-validation, the nth case (¥, X,,) is deleted from the data. The
variable selection process is then carried out on the remaining N — 1 cases resulting in a

sequence of subsets £{, &{™, ..., &%, and corresponding predictors {f,(x, £$)}. This
is done in turn forn=1,..., N. ForeachJ,J =0, ..., M, the pE estimate is

l;l?(]) = E (yn - .an(xnr an)))z‘

The ME(J) estimate is gotten by subtracting N6, where &= Rssy/(N — M). Complete
cross-validation can be a very computer intensive process, necessitating N subset selection
procedures. For this reason, we test it only at sample size 60.
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2.3 V-fold Cross-Validation

This procedure is a more aggregated and less expensive form of complete cross-
validation. Let V be a small integer and divide the cases as nearly as possible into V equal
groups. Denote these groups by L,, ..., L, and let

L=L-L,, v=1,...,V

where L =all data. Using only the cases in L, do the subset selection getting the
sequence {5} and predictors fi,(x, £§*’). Form the estimate
liE\(J) = 2 2 (yn - ﬂv(xm C.(IU)))Z;
v (ymxn)€L,
and subtract N6° to get the ME(J) estimate. The initial tests of this estimate were done
with V = 10. There are some proposed variants of V-fold cross-validation. Burman (1990)
has given a first-order correction term. Stratification of the cross-validation samples has
been suggested. An open question is how many ‘folds’ to use, i.e. how big should V be?

2.4 Bootstrap

The unconditional version of the bootstrap goes as follows: sample with replacement N
times from the original data {y,, x,}. Denote the sample by {y2, x®}. Using the
bootstrap sample, do the submodel selection getting the sequence {{7} and predictors
fs(x, £¥). Define

eB(J) = Z (yn - ﬂB(xm 5)))2 - z()’f - .aB(xE’ 5)))2

Then eg(J) is an estimate of the bias in rss(J) in estimating PE(J). Repeat the bootstrap
process and let e(J) = Avgeg(J). Define the bootstrap pE estimate as

PE(J) = Rss(&)) + e(J)

and the corresponding ME estimate by subtracting N&°.

In the simulation we use 50 bootstrap repetitions. Note that we do not use the
bootstrap at sample size 60. The reason is that, on the average, a bootstrap sample will
omit a fraction e™! of the cases. With 60 cases and 40 variables, this means that often,
when the matrix X‘X is formed from the bootstrap sample, it is singular.

We could not see any method, both simple and reasonable, to get around thls A
smoothed version of the bootstrap would not encounter this difficulty, but it is not at all
clear how to smooth in a 40 dimensional space. Skipping any bootstrap sample where X‘X
was nearly or exactly singular was another possibility, but we reasoned that this would
destroy the distributional rationale for bootstrap.

2.5 Partial Cross-validation

Unlike the methods above, partial cross validation only uses the main sequence of
subsets &y, &y, . . . initially selected. Given any subset of variables with indices in { and
oLs predictor fi(x, §), the cross-validated estimate for the pE is

PE(E) = 2 (ra(8)/(1 = B, (§))) 21

where the {r,(§)} are the residuals y, — fi(x,, £) and h,({) =x,57'x,, S=X'X where
X'X is formed using only the variables {x,;m e {}. Again, ME({) is formed by
subtracting No>. This equation is applied to each of the {,} to get the ME(J) estimates.
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The idea here is based on this reasoning: in complete cross-validation, when a single
case is left out, the sequence of selected subsets £§, £{™, . . . should usually be identical
to the sequence of subsets §, ... selected using the same procedure on all the data.
Therefore, we can approximate complete cross validation (and drastically reduce
computing time) by assuming that

&, 8, . =C0, iy

Under this assumption, complete cross-validation reduces to what we call ‘partial
cross-validation.’

2.6 Organization

Our plan is to first give results for the test set benchmark estimate of Section 2.1 and
for the 4 estimates defined in 2.2 to 2.5. These latter are, to us, the current serious
contenders. In Section 6, we give some simulation results relevant to other estimates.

3 Simulation Structure

(a) For each run, the X-distribution was fixed, as were the coefficients of the full
model. In each repetition the x-variables were independently sampled from the
underlying X-distribution. Normal noise was generated and added to give the y-values.
Backwards deletion was then carried out to give the sequence of submodels. There were
always forty variables and either 60 or 160 cases. In each run, there were 500 repetitions
(with one exception noted later).

(b) In each repetition the true ME was computed for each submodel selected by the
backwards deletion. Various ME estimates for each submodel were derived using the
methods listed in Section 2.

(c) Two general behavioral characteristics were observed. The first was the behavior
of the ME estimates over the entire sequence of submodels. Since the true ME was known,
the behavior of the estimates could be compared to it and systematic differences noted.
We call this the global behavior.

The second type of behavior studied was the ability of these estimates to select
submodel dimensionality and estimate the ME of the selected submodel. Knowing the true
ME, we knew the optimal dimensionality. Using each ME estimate, in each repetition we
selected the submodel having the minimum estimated ME. For this submodel we
computed its dimensionality and the value of its ME estimate. The selected dimensionality
was compared with the optimal dimensionality. The ME estimate for this submodel was
also compared with the true M of the submodel. We refer to these results as the
submodel selection and evaluation behavior.

3.1 Detailed Structure

Two X-distributions were used. The first was a multivariate mean-zero normal with
E(X,X;)=p"7', with p=0-7. The second was a multivariate mean-zero lognormal with
the same covariance matrix and coefficient of variation 1-4. In both cases N(0, 1) noise
was added. The non-zero coefficients were in three clusters of adjacent variables with the
clusters centered at the 10th, 20th, and 30th variables. For the variables clustered around
the 10th variable, the initial coefficients values were given by

Blo+i=(h—=j), ljl<h
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The coefficient clusters at 20 and 30 had the same shape. All other coefficients were zero.
The coefficients were then multiplied by a common constant to make the theoretical R
equal to 0-75.

We used the h-values 1, 2, 3, 4. This gave, respectively, 3, 9, 15, 21 non-zero
coefficients. For h =1, there were three strong, virtually independent variables. At the
other extreme, h = 4, each cluster contained 7 weak variables. These four different sets of
coefficients are designated by H1, H2, H3, H4 in the tables and figures. Some ¢-values for
the coefficients are graphed in Breiman (1988). We also ran the case with all coefficients
zero. This is designated by a Z in the tables and figures.

3.1 Comments on the Simulation Structure

When the X-distribution is multivariate normal, the simulation is identical to that in the
X-fixed case (Breiman (1988)) except that the x-variables are randomly selected in each
of the 500 repetitions in a run, instead of being selected at the beginning of the run and
held fixed.

Sampling from the multivariate normal gives relatively short tailed symmetric data
distributions. The multivariate lognormal distribution is of the form

X; = a,(e” = B))

with the Z; multivariate normal, such that EX;=0, EX,X;=p"”, p=0-7, and
sp(e%)/E(e%) = 1-4. This lognormal distribution is skewed and long tailed. A few high
leverage cases in each repetition is a normal occurrence. The effects of the randomness of
the x-sample using this distribution are very marked.

The X-fixed simulation was run on sample sizes of 60, 160, 600, and required many
hours of cray cpu time. The X-random simulation required even more intensive
computations. To keep the computing requirements within bounds, we eliminated the
runs with sample size 600.

4 Global Results

The best way to understand the global behavior of the estimates is to look at the graphs
in Figs. 1-4. In these graphs the following abbreviations are used for the various
estimates: ME(True) =True Model Error; 1s = Test Set; ccv = Complete Cross Valida-
tion, cv/10=10-fold Cross Validation; pcv = Partial Cross Validation and BooT=
Bootstrap. The graphs on the left side of the page are the average of the ME(J) estimates
over the 500 repetitions in a run plotted as a function of J. The solid line is the average of
the true ME(J).

The graphs on the right side of the page are the RMs (root mean square) differences
between the ME(J) estimates and the true Me(J) computed and averaged over the 500
repetitions and plotted against J. The rms differences were calculated by taking the square
root of the average squared difference between the estimate in question and the true
ME(J). The solid line is the standard deviation of the true Me(J).

The most immediately striking result is the increase in ME over the X-fixed case. In that
case, the average full model ME was close to 40 (o = 1). Here, for N = 60, the full model
MEs are around 120 in the multivariate normal case and above 300 in the lognormal. The
effect is less pronounced at N = 160, but the lognormal ME is almost 100 at J = 40.

Another striking effect is the decrease in ME achieved by going from the full model to
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the minimum ME model. For the models studied, one wins big in the X-random case by
going to small submodels. Even for the model with twenty-one non-zero coefficients (H4),
examination of Fig. 1 shows that the lowest model error was obtained with models
including only four to six x variables (when N = 60) or nine to eleven variables (when
N =160).
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Looking at the global behavior of the various estimates, we pick out the following
features

(i) Complete cross-validation has uniformly low bias and rMs error.
(i) At N =60, ten fold cross-validation is biased upwards with larger rMs error at
the higher dimensional submodels. This bias is considerably reduced at N = 160.
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(iii) Bootstrap has fairly low bias and rMs error at N = 160, with the estimate tending
to be slightly low.

(iv) Partial cross-validation is heavily biased downward with generally high Rwms
error.
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Lognormal N=160
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5 Selection and Evaluation Behavior

The most important role of the PE/ME estimates is in submodel selection and evaluation;
i.e. how good a submodel does it select and how good is the ME estimate of the selected
submodel.

To answer the question of how good the selection is, the criterion used is the average
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true ME value for the selected submodel. This is given in Table 5.1. The abbreviations
used in the tables are the same as those listed in Section 4.

The next comparison is between the average dimension as selected by the true ME and
by each of the estimates, together with the rms differences between them. This is given in
Table A.1 of the Appendix where the numbers in parentheses are the rms differences,
except that the number following the average dimension selected by the true ME is the
standard deviation.

In terms of the ability of the estimate to evaluate the subset selected, we give two
tables, listed in the Appendix. The first (Table A.2) compares the average estimated ME
value for the subset selected by the estimate to the average true ME value for the same
subset. In this table, the numbers in parentheses are the true ME averages. Table A.3
gives the rms differences between the true ME and the estimated ME for the subset selected
over the 500 repetitions in a run (1000 for lognormal n = 60).

5.1 Summary to Date

The major surprise here is that ten-fold cross-validation is uniformly better in
selection/evaluation than complete cross-validation. Complete cross validation has better
global behavior. But the critical issue in selection is the shape of the estimates ME(J) curve
near the minimum value of the true ME(J) curve, rather than global behavior. Where it
counts cv/10 gives better performance than ccv.

At sample size 160, cv/10 and bootstrap give very competitive results. In selection,
there is very little to choose between them. In evaluation, bootstrap has a slight edge.
Partial cross validation’s performance is not in the same league. It is so poor that it should
not be seriously considered for submodel selection/evaluation in regression. We ignore it
in the rest of the discussion.

Generally, all estimation methods (except pcv) select dimensionalities close to the
optimal selection by MEg(True). All estimates of ME for the selected submodels had
appreciable downward bias (see Table A.3). But, in general, this bias was not the major
factor in their rMs error (see Table A.3). In comparing the rMs errors of all estimates
(including test set) to the average ME being estimated (Table 5.1), one is disappointed by
how large the RMSE/ME ratio is.

Often the RMSE is about the same size as the ME it is trying to estimate. At best it is not
less than about half of the ME. This persists even as sample is increased to 160. If
ME << No?, the ME term makes a small contribution to pE and the major variation in
estimating PE is in the estimation of No®. The latter quantity can be estimated with small
coefficient of variation for N — M > 1. In fact, some approximate calculations indicate
that the coefficient of variation for estimating pE in the normal case for the subsets
selected by either cv/v or Boort is around 0-15 for N = 160 but over 0-3 for N = 60. The
reason for the noisiness in the ME estimates was discussed in Breiman (1988). It is intrinsic
in the nature of the problem. There is some evidence that using these estimates to
compare submodels is more reliable. That is, given two submodels with indices in &,, §,,
it seems possible to estimate ME({,) — ME({,) with much less variability than either of
ME(L;), ME(E,) separately. Thus, using bootstrap or cross-validation to compare
procedures operating on the same data may give reasonable results. But answers to these
issues aren’t known yet.

6 Some Substudies

In the studies discussed below, the summary statistics for some of the estimates may
differ somewhat from the same summary statistics for the same estimates given in the
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previous sections. This is because different random numbers may have been used. But
whenever two or more procedures are compared below, the comparison is on runs on the
same data.

6.1 Other Fixed Path Estimates

By fixed path estimates of ME/PE we mean estimation methods that work with the given
sequence Gy, . . ., {a of submodels only. For example, partial cross validation is a fixed
path estimate. But 10-fold cross-validation generates 10 different sequences of submodels
in addition to the initial sequence. We refer to estimates that generate other sequences of
submodels as alternative path estimates.

Partial cross-validation is the most complicated of the fixed path estimators. Others in
common use are the Cp estimate of PE({,) given by,

rss(&)) +26%7

and the S, estimate given by (approximately)

N 2

(st

Various asymptotic optimality properties can be given for some of these estimates, if no
data driven submodel selection is used.

But in realistic situations, such as in the structure of this simulation, fixed path
estimates are hopelessly biased and do poorly in subset selection. This was the case for Cp
in the X-fixed study and for partial cross-validation in the present study. We also
calculated and used Cp in the present study. The results were similar to those using partial
cross-validation, and are shown in Fig. 5 for the N = 60 normal case.

We did not run the S, estimate. One reason is that, at least in the normal case, it
should be close to the partial cross-validation value. Looking at the definition of the
latter, note that if the h,(&,) are almost constant, then since Y, h,({;)=J, we can
approximate the 1/(1— h,(&;))* term in (2.1) by N?/(N —J)* This gives the corrected
residual-sum-of-squares estimate

N 2
Vest)

PE) = <N—J

which is very close to the Sp statistic recommended by Thompson (1978) in her review
article. For an asymptotic justification of S see Breiman & Freedman (1983).

6.2 Correcting and Stratifying the cv/10 Estimate

Burman (1989) gives a first order correction to the V-fold cv estimate of pE. Another
issue in this estimation method is how to select the V subsets into which the N cases are
grouped. The simplest method is ordinary random selection. But the question has been
raised as to whether some sort of stratified selection might improve accuracy.

In particular, in the lognormal x-distribution, a few very high leverage cases usually
occurred in the full model. Thus, sampling from strata determined by the leverage values
(diagonals of the hat matrix) in the full model, might give a more homogeneous grouping
and increased stability. More specifically, the data were sorted by their full model 4,
values and divided into N/V groups. One observation from each of these groups was then
randomly selected (without replacement) to form each of the L,, ..., Ly.

For the normal case, N = 60, Fig. 6 gives plots of the global behavior of the estimate
(cv/c) resulting from correcting cv/10, the estimate (cv/s) resulting from stratifying and
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then doing 10 fold cross-validation, and the estimate (cv/cs) resulting from both
correcting and stratifying. The correction does improve accuracy for the larger sub-
models. It is not clear that the stratification has any effect.

However, the story in subset selection and evaluation indicates that neither the
correction or stratification are useful. For instance, Table 6.1 gives the true average ME
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for the submodels selected by the different estimates for sample size 60. The thought
might occur that even if cv/c did not do as well in submodel selection, it might be a better
ME estimator at the subset it selects. Not so! In every case the corrected estimate does
worse than the uncorrected estimate. Thus, using the correction term makes selection and
evaluation less accurate. Our method of stratification seemed to neither help or harm.

6.3 How Many Folds in Cross-validation?

The preceding sections have produced some surprises concerning cross-validation. Ten
fold validation gave better selection and evaluation results than complete cross-validation,
even though the latter is a better global estimate. Similarly, adding a correction term
gives a better global estimate, but a poorer selection/evaluation method. This raises the
possibility that 5-fold or even 2-fold cross-validation estimates might be reasonable good
in selection/evaluation. For N =60, 2-fold was not possible, leading to a singular X'X
matrix.

Thus, we compared cv/10 to cv/5 at N = 60 and cv/10, cv/5 and cv/2 at N = 160. The
global results are as expected: cv/5 and cv/2 have larger bias and rwms error at the larger
submodels (see Figs. 7 and 8 for graphs in the normal case.) To compare the
selection/evaluation performance, we created Table 6.2 and A.4. Table 6.2 gives the true
average ME for the selected subset, and Table A.4 of the Appendix gives the rRms error for
the ME estimate of the selected subset.

We see again the interesting phenomenon that although cv/S is not as good an
estimator globally as cv/10, it does as well on submodel selection and evaluation. But two
folds are not enough and Tables 6.2 and A.4 show cv/2 breaking down in accuracy. The
breakdown of cv/2 seems to have its source in that with a sample size of only 80, cv/2
tends to select models that are too small.

6.4 How Many Bootstraps are Needed?

In our main simulation, we used 50 bootstrap iterations. The question of how much this
can be reduced without significant loss in accuracy is an important practical issue. Fifty
bootstrap iterations is a considerable amount of computing (see the next section).

To look at this issue we ran the sample size 160 cases using 50, 20, 10 and 5 bootstrap
iterations (see Figs. 9, 10). Tables 6.3 and A.5 compares the selection/evaluation
performance. Table 6.3 gives the true average ME for the selected subset and A.S gives
the RMS estimate error for the ME estimate of the selected subset.

The accuracy of BooT holds up even with a sharply reduced number of bootstrap
iterations. Globally, there is no increase in bias and the rRms error only shows appreciable
increases at 5 iterations. The submodel selection and evaluation accuracy holds up even
for as few as 5 bootstraps. The differences between 50 and 20 are small, and dropping
even lower creates few ripples. Past 10-20 bootstrap iterations, the increase in accuracy is
marginal compared to the computing time required.

6.5 Restriction to Cost-Admissible Submodels

The idea of cost-admissible submodels was introduced in Breiman (1988), (1989) and is
similar to the notion of cost-complexity submodels used in regression and classification
trees (Breiman et al. (1985)). Briefly, given a sequence o, ..., §a, call §, a cost
minimizer if there is an a = 0 such that J minimizes rss ({;) + aJ’, 0<J' <M. Call &, cost
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admissible if it is a cost minimizer and some value of a for which it is a cost minimizer is
between 262 and 106”. (6° the full model estimate).

In the x-fixed simulation, the results indicated that restricting the submodel selected to
be cost admissible had a uniformly beneficial effect on the selection/evaluation procedure.
We conducted a similar study in the present X-random situation.
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Let Jj, . .., Jx be the dimensions of the cost admissible submodels. Usually, there are

only a few such submodels. In fact, for all runs in the simulation, out of 41 submodels, on
the average about 5 are cost-admissible. Now, for any ME(J) estimate, select that
Je{l,...,Jx} which minimizes ME(J).

The effects of restricting choice to cost admissible submodels was carried out in a
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separate simulation. To keep computing time down, we explored only its effect on cv/10
and BooT results and summarized in Table 6.5, A.6 and A.7. Along with the
abbreviations listed in Section 4, we use the following: cv/10/ca = 10-fold cross validation
estimate restricted to cost admissible models and Boot/ca = bootstrap estimated restr-
icted to cost admissible models. Table 6.4 compares the true ME of the selected subsets.
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Table A.6 compares the RMsME estimate errors, and Table A.7 gives the average
dimension selected and its rRMs difference from that selected by the true ME.

These results show that selection/evaluation is about as good, and often slightly better
when the submodel selected is restricted to be cost admissible. Table A.7 shows, in
particular, that the restriction has a stabilizing effect on the dimensionality selection.
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6.6 Computational Aspects

Dimension

Dimension

Dimension

There are two interesting computational aspects we ran across in this work. The first
was that after using about 50 hours of cRAY xMp-2 cpu time, we realized that we were only
about half way through the simulation and almost out of cRAY money.
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The rest of the simulation was done on 25 networked sun 3/50’s in the Statistical
Computing Facility at the U.C. Berkeley Statistics Department. Each run of 500
iterations was split into 25 runs. The compiled code for this smaller run using a random
number as a seed to the simulation’s random number generator was executed in parallel
on each suN 3/50 and the individual output files sent to the ‘mother’ file system for
processing.

The programs were run on low priority to avoid conflict with the normal interactive suN
usage. Since these machines are rarely used from late at night to early in the morning, the
simulation had virtually exclusive use of them for 10 hours a day. Our estimate is that 25
SUN 3/50’s are about 1/4 of a cRAY xmp-2. But because we did not have to wait in a queue
with other crAY users, our turn-around time was usually at least as good.

Another issue of practical importance is computational efficiency of the various
estimation procedures. The fixed path procedures are most efficient but also least useful.
The two most accurate estimates are cv/v and BooT. In addition to the original regression
and submodel sequence generation, cv/v and Bootr do additional regressions and
submodel sequence generation. In each such replicate the operations necessary consist of
two main components. The first is in the formation of the X‘X matrix, where about NM?
operations are needed. The second is in generating the sequence of submodels. If simple
stepwise variable deletion or addition is used and implemented by Gaussian sweeps, then
about 2M> operations are used. Many more are required if a best subsets algorithm is
used.

After the additional regressions have been done, they have to be combined to give the
ME(J) estimates for each J. If R is the number of bootstraps or the number of folds, then
this costs about 3/2M°>R operations. In cv/v the X‘X computing can be reduced. Take

{n'} to be a random permutation of {1, ..., N}. Let
XXP= Y XX
Ny<n'<Ny 1y

where N, =[N(v—1)/V]. Then X'X =Y, XX, and the sum-of-squares matrix with
the vth group deleted is X‘X — X'X™. This reduces all sum-of-squares computations in
cv/v from NM?*V operations to about NM? operations.

Another place where computation can be reduced is in the restriction to cost admissible
submodels. The number of operations needed to compute the Me(J) estimate is 3/2M?*R
per submodel for bootstrap and cv/v respectively. If these estimates are computed only
for the cost admissible submodels, then the operations required in forming estimates drop
by the proportion of non-cost admissible submodels.

Here are some typical suN 3/50 timing runs (cpu seconds) in cell H; of the simulation
(Table 6.5):

The time for a single sequence of variable deletions is 7-7 cpu seconds.

7 Conclusions
7.1 Submodels in x-Random v.s. x-fixed

The full model x-random ME has an expectation of about 120 for simulated normal data
with sample size 60. In the x-fixed case it is 40. For the H3 coefficients the true Me
minimum submodels have an average ME of 31-9 (Table 5.1). This is 26% of the full
model ME.

In the x-fixed case for the same coefficients, the similarly selected submodels had
average MEs 54% of the full model ME. This is typical across Z, H1, H2, H3, H4. In the
x-random case submodel selection results in a much larger reduction of full model M
than in the X-fixed case.
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This is not so pronounced for normal data at N = 160. Here, the submodel selected in
the x-random setting under H3 has a ME that is 54% of the full model ME compared to
62% for the x-fixed case.

The reduction can be even more drastic if the X -distribution is skewed and long-tailed.
In the lognormal N = 60 case, with H3 coefficients, the full model ME is reduced to 15% of
its value by selecting the minimum ME submodel. The message is clear: You may win big
by using submodel selection in the x-random case, especially for thin sample sizes and
irregular X -distribution.

Another thing that shows up is that we win more by selecting smaller submodels in the
x-random case. For instance, Table 7.1 is a comparison of the average dimension selected
in the N =60, normal runs using true ME for selection. In the H3, H4 coefficients there
are a number of weak variables. In the x-random situation there is more incentive to peel
these off and reduce x-variability than in x-fixed. There is still evidence of this effect at
N =160, but not as strongly. For x-fixed the average dimension in H4 is 11-6. For
x-random it is 10-8.

7.2 Which ME/PE Estimator to Use?

We hope this present simulation will drive another nail into the practice of using fixed
path estimators when data driven submodel selection is in operation.

Surprisingly, cv/v for V as low as 5 does better selection/evaluation than complete
cross-validation. Bootstrap, when the sample size is large enough to use it, does as well as
cv/v in selection with a small edge in evaluation, and accuracy is not significantly
decreased with as few as 5 bootstrap iterations. On the other side of the scale is
bootstrap’s computational expense compared with cv/v.

But no matter which method is used, it seems fairly clear that restricting attention to
the small class of cost effective submodels has a number of advantages and no apparent
disadvantages.

7.3 Submodel Evaluation

As mentioned earlier in Section 5, ME estimators for the selected submodels are noisy,
with large RMSE/ME ratios. This problem has not been given sufficient attention, and many
conclusions have been shaded in the literature based on the assumption that bootstrap or
cross-validation give accurate estimates of the pE. We conjecture that comparison of
different models using differences of the Me/PE estimates have more reliability than the
absolute magnitudes of the ME/PE estimates.
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Appendix
Table A.1
Dimension selected
VA H1 H2 H3 H4
Normal N =60
ME(True) 0-0(0-0) 3-2(0-7) 4-1(1-3) 4-5(1-9) 5-5(2-7)
TS 0-9(1-1) 4-1(1-5) 4-3(2-6) 5-1(3-0) 6-1(4-2)
ccv 1-9(2-3) 5-6(3-5) 1-7(3-8) 5-9(5-0) 6-7(5-8)
cv/10 0-8(1-1) 4-4(2-7) 5-5(2-8) 4.7(3-4) 5-5(4:2)
PCV 11-1(12-3) 12-9(11-1) 14-6(12-1) 15-1(11-7) 15-1(11-0)
Lognormal N =60
ME(True) 0-0(0-0) 3:2(0-9) 3-6(1-2) 4-1(1-5) 4-6(1-7)
TS 0-4(0-9) 3-7(27) 4-3(3-1) 4-6(3-2) 5-2(3-7)
ccv 0-6(1-7) 3:9(29) 4-5(3-9) 5-0(3-7) 5-3(4-6)
cv/10 0-4(1-0) 3-4(1-9) 4-0(3:0) 4-3(2-9) 4-6(3-6)
PCV 9-9(11-4) 12:6(5-7) 13-4(11-3) 14-0(5-3) 13-6(10-3)
Normal N =160
ME(True) 0-0(0-0) 3-:0(0-0) 4-2(1-6) 3-6(3-2) 10-8(4-3)
TS 0-3(0-9) 3-3(0-9) 5-3(4-0) 9-3(5-2) 12-2(6-8)
BOOT 0-2(0-7) 3:3(1-0) 5-9(5-2) 2-7(10-5) 17-6(13-6)
cv/10 0-5(1-3) 3-7(1-7) 5-1(4-0) 1-1(6-7) 12-1(8-9)
PCV 7-7(8-4) 9-8(7-5) 12-0(8-5) 13-4(6-5) 14-2(6-4)
Lognormal N = 160
ME(True) 0-0(0-0) 3-0(0-1) 4-0(1-6) 7-3(3-4) 9-2(4-0)
TS 0-3(0-7) 3:3(0-9) 4-8(3-1) 8-8(6:1) 11-3(7-6)
BOOT 0-1(0-4) 3:2(0-8) 4-5(27) 7-3(5:7) 9-3(6-8)
cv/10 0-4(1-1) 3-5(1-5) 4-8(3-5) 8-1(7-0) 10-1(8-0)
PCV 7-9(8-8) 10-1(8-0) 11-6(8:6) 12:9(7-6) 13-7(7-2)
Table A.2
Average estimated ME
VA H1 H2 H3 H4
Normal N =60
TS -1-2(1-4) 6-0(9-6) 19-7(23-0) 28-7(35-1) 35-0(41-9)
ccv —2-7(5-8) 4-9(16-5) 18-1(30-9) 28-0(46-8) 31-4(55-1)
cv/10 -1-9(2:7) 10-6(13-4) 24-9(28-8) 37-1(43-0) 41-5(51-2)
PCV —13-4(56-2) —10-6(62-4) —8-4(78-8) —7-6(83-0) —8-0(83-2)
Lognormal N =60
TS -0-1(1-7) 25-1(36:7) 38:9(51-4) 44-4(60-3) 49-9(67-9)
ccv -1-7(8-3) 25-0(52-7) 42-7(73-8) 46-2(86-1) 47-0(92-2)
cv/10 -1-3(5-1) 35-5(52-7) 47-8(66-1) 59-3(80-6) 58-2(86-0)
PCV —12-0(108-2) —8-7(149-1) —6-3(168-2) —6-2(174-6) —6-5(166-8)
Normal N =160
TS -0-1(1-3) 2-3(4-2) 15-2(21-0) 25-8(32-0) 32:1(38:8)
BOOT 0-3(1-7) 2:9(5-6) 17-9(26-3) 29-0(41-7) 32:7(49-1)
cv/10 -0-7(3-4) 2:0(7-9) 14-4(24-5) 27-3(40-0) 35-4(49-3)
PCV —10-2(29-2) -6-9(30-2) —3-7(38-0) —1-5(40-9) —0-4(46-2)
Lognormal N = 160
TS -1.0(1-2) 3.0(5-5) 19-3(26-6) 34-0(47-3) 45-2(59-2)
BOOT 0-3(1-5) 8-0(7-0) 26-4(31-2) 42-8(57-5) 49-9(70-8)
cv/10 —0-5(3-6) 4-5(8:6) 21-0(31-7) 40-6(59-5) 51-2(72-7)
PCV —10-4(44-6) -7-0(45-9)  -3:5(57-1) —0-5(66-7) 0-0(73-9)




Table A.3
RMS differences in MEs

z H1 H2 H3 H4
Normal N =60
TS 16-0 169 20-4 21-7 22-5
cev 20-0 27-5 31-0 36-1 40-7
cv/10 16-4 23-0 26-3 269 30-3
PCV 76-7 82-7 977 98-0 81-5
Lognormal N =60
TS 16-1 31-8 42-8 42-8 41-8
cev 277 61-3 119-7 78-7 832
cv/10 217 59-3 62-2 68-5 64-2
PCV 151-3 193-7 2101 212-4 201-5
Normal N =160
TS 10-8 10-7 15-0 16-4 17-6
BOOT 9-7 10-1 15-1 19-9 22-6
cv/10 11-8 13-6 16-9 21-4 24-6
PCV 41-1 39-0 432 443 48-7
Lognormal N = 160
TS 11-0 11-9 20-0 26-0 32-5
BOOT 10-9 14-1 20-5 30-7 36-3
cv/10 14-1 17-4 26-1 369 41-3
PCV 60-4 58-5 66-3 72-8 78-7
Table A.4
RMS error
H1 H2 H3 H4
Normal N =60
cv/10 163 124 30-8 42-5 53-4
cv/S 15-8 11-5 289 41-0 539
Lognormal N = 60
cv/10 17-6 65-4 56-5 66-1 65-4
cv/5 16-8 65-7 62-1 61-1 62-9
Normal N = 160
cv/10 11-9 12-8 16-8 20-9 229
cv/s 10-9 11-7 14-6 19-2 22-4
cv/2 10-0 14-8 23-4 30-9 36-2
Lognormal N =160
cv/10 14-1 19-6 28-1 37-7 40-4
cv/5 12-1 19-2 28-1 36-0 40-8
cv/2 10-7 68-7 549 63-1 69-9
Table A.5
RMS error
z H1 H2 H3 H4
Normal N = 160
BOOT/50 10-9 10-9 15-0 19-1 24-1
BOOT/20 11-6 11-1 15-8 19-0 23-1
BOOT/10 12-6 11-9 16-8 20-1 217
BOOT/S 141 13-6 189 22-1 20-8
Lognormal N =160
BOOT/50 11-0 13-8 229 30-9 340
BOOT/20 11-9 15-4 24-2 329 35-5
BOOT/10 13-4 15-8 25-4 34-8 37-6
BOOT/5 15-3 17-1 27-5 37-8 40-9
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Table A.6
RMS error
VA H1 H2 H3 H4
Normal N =60
cv/10 17-7 219 26-4 29-3 33.5
cv/10/ca 17-9 20-8 26-0 284 323
Lognormal N = 60
cv/10 17-1 50-2 59-4 79-1 64-1
cv/10/ca 17-0 55-4 66-3 86-7 64-2
Normal N =160
cv/10 13-0 12-7 17-6 220 23-3
cv/10/ca 13-0 12-7 17-3 21-4 229
BOOT 10-4 10-7 16-7 21-1 22-5
BOOT/CA 10-4 10-7 15-3 183 19-4
Lognormal N = 160
cv/10 15-6 16-8 26-8 35-5 40-3
cv/10/ca 14-1 16-4 26-4 38-8 424
BOOT 11-0 13-8 20-8 277 34.7
BOOT/CA 11-0 13-6 222 28-6 33-3
Table A.7
Dimension selected
H1 H2 H3 H4
Normal N =60
ME(True) 0-0(0-0) 3-1(0-5) 3-5(1-1) 4-5(1-8) 4.5(1-8)
cv/10 0-5(1-7) 3-6(19) 4-2(2:8) 5-0(4-0) 5-7(5-1)
cv/10/ca 0-4(1-7) 3-6(1-5) 4-2(1-9) 5-2(3-0) 5-6(2-7)
Lognormal N =60
ME(True) 0-0(0-0) 3-2(0:9) 3-6(1-2) 4-1(1-4) 4-5(1-7)
cv/10 0-3(0-7)  3-5(2-1) 4-0(3-:0) 4-2(3:6) 4-3(3-1)
cv/10/ca 0-2(0-7) 3-7(1-7) 4-1(2-4) 4-3(2:6) 4-5(2-7)
Normal N = 160
ME(True) 0-0(0-0) 3-0(0-0) 4-2(1-7) 8:6(3-0) 11-3(4-9)
cv/10 0-6(1-4) 3-5(1-:2) 5-1(4-1) 9-0(7-1) 12:5(9-6)
cv/10/ca 0-5(1-4)  3.5(1-1) 5-1(3-1) 7-7(4-1) 9-9(4-3)
BOOT 0-2(0-6)  3-1(0-5)  6:5(6:9) 13-5(11-8)  17-0(12-7)
BOOT/CA 0-2(0-6) 3-1(0-4) 5-8(4:0) 10-0(5-1) 12-3(4-9)
Lognormal N = 160
ME(True) 0-0(0-0) 3-0(0-1) 4-0(1-6) 7-2(2'9) 9-5(4-5)
cv/10 0-4(1-5) 3-5(1-5) 4-7(3-7) 7-8(6'9) 9-9(8-3)
cv/10/ca 0-3(1-0)  3-4(1-2) 4:6(2:4) 6-9(3-6) 8-4(4-1)
BOOT 0-1(0-4)  3-2(0-7) 4-5(2-8) 7-1(5°1) 8:9(6-9)
BOOT/CA 0-1(0-4)  3-2(0:7) 4-4(2-3) 6-8(3-6) 8-4(3-8)
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Table 5.1
True ME of submodels selected
z H1 H2 H3 H4
Normal N =60
ME(True) 0-0 79 20-5 319 37-8
TS 1-4 9-6 23-0 35-1 419
ccv 5-8 16-5 30-9 46-8 55-1
cv/10 27 13-4 28-8 43-0 512
PCV 56-2 62-4 78-8 83-0 83-2
Lognormal N =60
ME(True) 0-0 31-3 428 524 57-4
TS 1.7 36-7 51-4 60-3 67-9
ccv 83 52-7 73-8 86-1 92-2
cv/10 51 527 66-1 80-6 86-0
PCV 108-3 149-1 168-2 174-6 166-8
Normal N = 160
ME(True) 0-0 3-0 182 286 353
TS 13 4.2 21-0 320 38-8
ccv 17 56 26-3 41.7 49-1
cv/10 34 7-9 24-5 4n-0 49-3
PCV 29-1 30-2 38-0 40-9 462
Lognormal N =160
ME(True) 0-0 41 231 41.7 52-3
TS 12 55 266 47-3 59-2
ccv 15 7-0 312 57-5 70-8
cv/10 36 8-6 31-7 59-5 72-7
PCV 44-6 45-9 57-1 66-7 739
Table 6.1
True ME values
z H1 H2 H3 H4
Normal N =60
cv/10 27 13-4 28-8 43-0 51-2
cv/c 36 17-4 33:5 46-4 54-4
cv/s 32 13-2 28-8 44-1 52-7
cv/cs 45 16-6 335 46-6 55-3
Lognormal N = 60
cv/10 51 52-7 66-1 80-6 86-0
cv/c 9-1 60-0 72-5 85-4 92-9
cv/s 5-4 527 69-0 81-0 84-6
cv/cs 11-5 58-4 74-4 90-1 94-0
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Table 6.2

True ME
V4 H1 H2 H3 H4
Normal N =60
cv/10 24 12-3 30-8 42-5 53-4
cv/s 1.7 11-5 289 41-0 53-9
Lognormal N =60
cv/10 32 49-4 65-7 819 88-3
cv/S 2-6 52-6 70-4 81-7 87-6
Normal N =160
cv/10 3.0 6-2 24-4 40-9 47-1
cv/s 22 52 23-3 41-3 48-0
cv/2 12 35 222 43-3 549
Lognormal N = 160
cv/10 3.7 9-6 33-6 58-6 71-4
cv/S 22 8-0 324 579 71-7
cv/2 11 9-0 322 62-4 822
Table 6.3
True average ME
z H1 H2 H3 H4
Normal N =160
BOOT/50 23 51 26-6 41-0 479
BOOT/20 26 51 27-0 41-4 48-1
BOOT/10 29 54 27-1 41-5 48-5
BOOT/5 39 6-2 27-6 41-8 48-3
Lognormal N =160
BOOT/50 1-5 69 329 58-4 67-7
BOOT/20 2-1 7-4 33-1 59-3 68-4
BOOT/10 2:6 80 33-8 59-6 69-2
BOOT/5 34 9-1 35-1 60-2 69-9
Table 6.4
True ME
z H1 H2 H3 H4
Normal N = 60
cv/10 34 124 289 41-6 52:2
cv/10/ca 32 12-4 28-5 41-8 50-7
Lognormal N = 60
cv/10 33 482 66-6 79-7 85-4
cv/10/ca 31 47-5 66-3 77-7 85-8
Normal N =160
cv/10 37 63 252 41-2 48-6
cv/10/ca 36 63 25-1 39-7 47-3
BOOT 1-6 4-4 27-2 43-5 48-8
BOOT/CA 1-6 4-4 26-3 40-4 463
Lognormal N = 160
cv/10 4-0 8-5 33-1 589 71-2
cv/10/ca 35 87 319 555 68-0
BOOT 1-6 67 319 56-6 68-8
BOOT/CA 1-6 69 31-9 559 67-8
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Table 6.5
Timings (in CPU seconds) on Sun 3/50
Regular Cost admissible

cv/5s 29-0 225
cv/10 43.5 36-5
BOOT/S 77-2 48-2
BOOT/10 146-2 88-7
BOOT/50 698-0 413-0

Table 7-1

Average dimension selected

z H1 H2 H3 H4

Normal N =60

x-fixed 0-0 32 41 6-1 7-9
x-random 0-0 32 4-1 4-5 55
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Résumé

Dans I'analyse de problémes de régression a plusieurs variables (indépendantes), on produit souvent une série
de sous-modeles constitués d’un sous-ensemble des variables par des méthodes telles que I’addition par étape, le
retrait par étape et la méthode du meilleur sous-ensemble. Le probleme est de déterminer lequel de ces
sous-modeles est le meilleur et d’évaluer sa performance. Ce probleme fut exploré dans Breiman (1988) pour le
cas d’une matrice X fixe. Dans ce qui suit on considére le cas ou la matrice X est aléatoire. La détermination de
résultats analytiques est difficile, sinon impossible. Notre étude a utilisé des simulations de grande envergure.
Elle se base sur la définition théorique de I’erreur de prédiction (EP) comme étant I’espérance du carré de
I’erreur produite en applicant une équation de prédiction a I'univers distributional des valeurs (y, x). La
définition est utilisée dans toute I’étude a fin de comparer divers sous-modéles. Il y a une différence étonnante
entre le cas ol la matrice X est fixée et celui ou elle est aléatoire. Différents estimateurs de la EP sont a propos.
Les estimateurs n’utilisant pas de ré-échantillonage, tels que le C, et le R? ajusté, produisent des méthodes de
sélection ayant grand biais. Les deux meilleures méthodes sont la validation croisée et I’autoamorgage. Une
surprise est que la validation croisée quintuple est meilleure que la validation croisée tous sauf un. Il y a
plusieurs autres résultats surprenants.
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