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The Little Bootstrap and Other Methods 
for Dimensionality Selection in Regression: 

X-Fixed Prediction Error 
LEO BREIMAN* 

When a regression problem contains many predictor variables, it is rarely wise to try to fit the data by means of a least squares 
regression on all of the predictor variables. Usually, a regression equation based on a few variables will be more accurate and certainly 
simpler. There are various methods for picking "good" subsets of variables, and programs that do such procedures are part of every 
widely used statistical package. The most common methods are based on stepwise addition or deletion of variables and on "best 
subsets." The latter refers to a search method that, given the number of variables to be in the equation (say, five), locates that 
regression equation based on five variables that has the lowest residual sum of squares among all five variable equations. All of these 
procedures generate a sequence of regression equations, the first based on one variable, the next based on two variables, and so on. 
Each member of this sequence is called a submodel and the number of variables in the equation is the dimensionality of the submodel. 
A complex problem is determining which submodel of the generated sequence to select. Statistical packages use various ad hoc 
selection methods, including F to enter, F to delete, Cp, and t-value cutoffs. Our approach to this problem is through the criterion 
that a good selection procedure selects dimensionality so as to give low prediction error (PE), where the PE of a regression equation 
is its expected squared error over the points in the X design. Because the true PE is unknown, the use of this criteria must be based 
on PE estimates. We introduce a method called the little bootstrap, which gives almost unbiased estimates for submodel PEs and 
then uses these to do submodel selection. Comparison is made to Cp and other methods by analytic examples and simulations. Little 
bootstrap does well-Cp and, by implication, all selection methods not based on data reuse give highly biased results and poor subset 
selection. 

KEY WORDS: Best subsets; Mallows's Cp; Subset selection; Variable selection. 

I .  INTRODUCTION 

In a regression problem with many predictor variables, 
data analysts often attempt to reduce the dimensionality of 
the model by running a procedure such as "best subsets," 
stepwise forward addition of variables, or stepwise backwards 
deletion of variables. These dimensionality reduction meth- 
ods are among the most frequently used programs in such 
packages as SAS, SPSS, and BMDP. 

Any one of these procedures produces a sequence of pos- 
sible regression equations, each of which uses a subset of the 
predictor variables. Any such regression equation will be 
called a "submodel," and the dimensionality of a submodel 
will be the number of predictor variables it uses. The goal is 
to choose one out of this sequence of submodels as the pre- 
ferred model. 

From a theoretical point of view, submodel dimensionality 
selection is a trade-off between bias and variance. By de- 
creasing the number of predictor variables in the model, its 
predictive capabilities will be enhanced because of the de- 
crease in variance involved in parameter estimation. On the 
other hand, bias will be increased because the "true model" 
is usually not in the range of the lower dimensional models. 

To get optimal prediction functions, we would like to bal- 
ance the gain in variance against the loss in bias. There is 
additionally a desire to minimize the complexity of the model 
by reducing dimensionality. In going, say, from a 40-variable 
model to a five-variable model, the apparent structure of the 
data is considerably simplified. Only the relationship between 
a few variables needs to be examined (although, in fact, this 
apparent simplicity can be quite deceptive). 

* Leo Breiman is Professor, Department of Statistics, University of Cal- 
ifornia, Berkeley, CA 94720. This research was supported by NSF Grant 
No. DMS-87 18362. 

Two major difficulties with these submodel procedures 
are ( 1) selecting the dimensionality of the submodel to be 
used and (2)  evaluating the model selected. By this is meant 
choosing the dimensionality to get a near-optimum balance 
between bias and variance, and then giving a realistic as- 
sessment of the predictive capability of the selected submodel. 

In selection of dimensionality, a number of ad hoe meth-
ods are commonly used. In stepwise methods, use of F-to- 
enter, F-to-delete, and adjusted R2 are prevalent. In "best 
subsets" the use of the Mallows C, criterion has become 
common. Once the subset is selected, then another ad hoe 
figure of merit is attached to it, often the residual-sum-of- 
squares, R~ or adjusted R 2 ,  Cp,etc. 

This usage has long been a quiet scandal in the statistical 
community. It is clear that selecting a sequence of submodels 
in terms of an optimum or suboptimum fit to the data can 
produce severe biases in all statistical measures used for the 
classical linear model. In recent years, with recognition of 
the shortcomings of the commonly used ad hoe methods, 
use of resampling methods such as bootstrap and cross-val- 
idation has been advocated. Their performance in the present 
context has not been systematically explored however. 

My interest in this problem is when the data is thin com- 
pared to the number of variables-a common situation in 
many applied problems. For instance, in the simulation pre- 
sented in Section 5 we go down to 60 cases with 40 variables. 
This is a land strange to asymptopia. 

There is a substantial literature on this and related prob- 
lems. Excellent reviews, together with complete lists of ref- 
erences, were given by Miller ( 1984, 1990). These works- 

O 1992 American Statistical Association 
Journal of the American Statistical Association 

September 1992, Vol. 87, No. 419, Theory and Methods 
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particularly the 1990 book-pointed out the biases inherent 
in the problem and examined the weaknesses of some of the 
standard procedures for dealing with it. 

1.1 	 Criteria for Dimensionality Selection 
and Evaluation 

We assume data of the form (y,, x,), n = 1, . . . ,N, where 
x, is an M-variate vector. Suppose that p(x) is a prediction 
function for y in terms of x.  We need, at least, a conceptual 
definition of how good a model p(x) is. The definition used 
in this paper is the x-fixed prediction error (PE) and the 
corresponding model error (ME). 

The x-fixed error measures are computed using the same 
values of x l ,  . . . , XN as in the data. Suppose that the true 
model is 

with {c,} i.i.d. with mean 0 and variance a2. Once the model 
has been fitted to the existing data, consider the gedanken 
experiment of generating new data of the form 

yEeW= /A*( xn) + cEeW, 

with the {c:" } independent of the {en } but having the same 
distribution. 

We use the notation 

Taking expectations only over the { cEew} , define the pre- 
diction error as 

PE = Ellynew- p(x)/I2 = N u 2  + lip- p*1I2. 

This leads to the definition of the x-fixed model error as 

The PE is thus a sum of two components: a Na2 error due 
to the inherent noise level in the regression and the error in 
fitting the true model. Because there is a little that can be 
done with the Na2 term, we prefer to work directly with 
the ME. 

The x-random definition of PE assumes {y,, x, } i.i.d. 
selected from some underlying distribution (Y, X)  and as- 
sesses the PE in a predictor p as its expected squared error 
in predicting ynew from p(xnew), where (ynew, xnew) is selected 
from (Y, X ) independently of { y,, x, } .The x-random def- 
inition and its consequences were explored in Breiman and 
Spector ( 1989). 

Whether the x-fixed or x-random definition of PE is used 
leads to conceptual or methodological differences. For in- 
stance, cross-validation tries to estimate the x-random PE, 
which generally is larger than the x-fixed PE (Efron 1986). 
In regression there are two versions of the bootstrap. The 
one commonly used (the unconditional bootstrap) gives x- 
random PE estimates. Another version (the conditional 
bootstrap) was developed for x-fixed estimates and is dis- 
cussed in Section 2.2 (see Bickel and Freedman 1982). 

The x-fixed ME for the full model has expectation Ma2; 

that is, a penalty of a 2  in variance is paid per coefficient 
estimated. The x-random definition leads to higher ME val- 
ues, particularly for thin sample sizes and skewed long-tailed 
x distributions. Thus it is important to distinguish between 
the two definitions and use appropriate methodology. We 
note that the x-fixed, x-random terminology was used in an 
earlier review article by Thompson ( 1978), where the dif- 
ference was stressed; see also Copas ( 1983). 

Other definitions of PE are possible and often desirable. 
The x-fixed definition used previously assesses predictability 
only at the points {x, } in the given X design. Both referees 
point out that frequently the desidiratum is an accurate pre- 
diction at x points not in the X design. Examination of the 
difference between the x-fixed and x-random definitions 
shows that the real distinction is whether the new data points 
{xnew} at which predictions are desired are known and fixed, 
not whether they are points in the present X design. This 
contrasts with the situation in which the future {xnew} are 
random. Thus a better terminology might be future X-fixed 
versus future X-random. The conclusions of this article can 
be generalized to the future X-fixed situation (see Sec. 4). 

1.2 	 Notation and a More Precise Problem 
Statement 

Denote by f any subset of indices { 1, . . . ,M }  ;denote by 
HZthe projection matrix of any N vector into the column 
space of {x,; m E 0 ;  denote by b({) the ordinary least 
squares (OLS) predictor based on the variables {x,; m E {) ; 
and let 

We assume that some well-defined procedure (such as best 
subsets or stepwise) has been applied to the data and resulted 
in a sequence of M + 1 submodels with variables having 
indices in 

~ o , ~ I , . . . , { M( l o = @ ' ) ,  

where IlJ1 = J, ( I I = cardinality). Associated with each 
OLS predictor b( lJ) is the ME( lJ) value. The sequence lo, 
. . . , j r M ,  the predictors ji( CJ), and the values ME(lJ) are 
random, depending stochastically on the { en } . 

Define the best submodel in the sequence as the one with 
the minimum value of ME( lJ). Because the { ME( lJ) } de-
pend on the unknown p*, it is not obvious how to construct 
a submodel selection procedure that will produce low ME 
values. Our approach is to construct good estimates 
M^E( lJ) of ME ( CJ) and select the submodel having minimum 
r n l J ) .  

The exploration in this article is based throughout on the 
assumption of a classical linear model 

Y n  = 2 P%xmn+ c,, n = I , .  . . ,N, 
m 

with {c,) i.i.d. N(0, a2) .  That is, the true prediction function 
is 

Sub-M will be used to denote full model values; that is, b, 
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is the full model OLS predictor, RSSM is the full model re- 
sidual sum of squares, and MEM is the full model error. 

1.3 Organization and Results 

Among methods currently in use or advocated as estimates 
of ME, the ones having some theoretical justification or ra- 
tionale are Mallows Cpand the conditional bootstrap. 

In Section 2 we look at some properties of these estimates. 
Although C, is easy to compute, there is no reason why it 
should perform well in a dimensionality selection context. 
(Although Mallows [ 1973] pointed this out, nevertheless the 
naive use of C, persists.) We give examples, both analytic 
and simulated, to illustrate the potentially severe bias of this 
approach. It tends to select submodels of too high dimen- 
sionality and give ME estimates that are far too low. 

We also give a simple example showing that the condi- 
tional bootstrap can have considerable bias and give non- 
sensical results. In Section 3 we introduce the paradigm of 
the replicate data set. This procedure provides insight into 
the structure of the problem and is useful as a benchmark. 

In Section 4 we introduce a procedure for estimating the 
{ ME( lJ) } that we call the little bootstrap. This procedure 
has some similarities to the conditional bootstrap, but also 
some interesting differences. We show that it gives almost 
unbiased estimates of the { ME( S j )  } when the submodels 
are generated by the commonly used methods of subset se- 
lection. This procedure also works in the more general future 
X-fixed case. 

We introduce the concept of rss-extreme in Section 5.  
Given the sequence of submodels with indices in {o, . . . , 
lM,a criterion is defined that designates some (usually a 
small fraction) of these to be rss-extreme. 

In Section 6 we report on an extensive simulation testing 
of the little bootstrap procedure using backwards variable 
deletion with 40 variables and either 60, 160, or 600 cases 
with a variety of coefficients. This procedure is compared 
with the use of C, and a replicate data set method; the results 
indicate that little bootstrap at the original sample size is 
almost competitive with the replicate data set method using 
double the sample size in evaluation, but is not quite as good 
in dimensionality selection. It also shows that in selection 
there is a gain in accuracy by restricting selection to the rss- 
extreme submodels. 

We revisit the bias versus variance tradeoff in minimizing 
ME and give some simulation results in Section 7, and in 
Section 8 we discuss what information is available after di- 
mensionality selection. In Section 9 we provide brief con- 
clusions. 

2. 	 Cp AND CONDITIONAL BOOTSTRAP DO NOT 
ALWAYS WORK 

2.1 Mallows C, 

Let ;({) be the OLS estimator on the subset { with I { I  
= J .  The C, criterion is based on the following simple re- 
lation: 

RSS(0  = I ~ Y - Cl({)I12 = I~P*+ & - i({)1I2 
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Now P({) = H<(W*+ E ) ,  SO the last term in (2.1) can be 
written as 

If I {I = Jand the choice of {does not depend on the data, 
then the expectation of (2.2) is -2 J U ~ .  Thus the C, estimate 
of ME({) is 

where G 2  is estimated in the usual way from the full model. 
If {depends on the data, then this argument fails. To see 

what can happen, we repeat the example given by Mallows 
( 1973). Using an orthogonal design, (x,, x,~) = 6,,1, the 
OLS estimates of 6%are 6, = P% + Z,, with {Z,) i.i.d. 
N(0, a2) .  

The best subset lJof size J consists of those variables 
having the J largest values of I 6, I. The subset selected by 
minimum C, consists of all variables x, such that 6; 
r 2G2. For this subset {the CpME estimate is 

C ( 6 2  - G2) - 2 (p^&- 222). (2.3) 
m m e  f 

Suppose all P%= 0. Then the expectation of the first term 
in (2.3) is 0, whereas the second term is always negative. 
Assuming G 2  = a2, the expected value of the C, ME estimate 
is - . 2 6 ~ a ~  Fur-and the expected ME value is . 5 8 ~ a ~ .  
thermore, E(I {I) = .16M. 

2.2 The Conditional Bootstrap 

As in the previous section, let b({) be based on {and let 
S j  be the best subset of dimension J ;  that is, 

Then consider trying to estimate 

With P*, a 2  unknown, one is tempted to compute the 
maximum likelihood estimate dJ(p l ,  . . . ,BM, G2). This lat- 
ter is essentially what the conditional bootstrap does. Proceed 
as follows: 

1. Fit the full model, getting 

2. Generate { E n )  i.i.d. N(0, G2) to get data 

3. Using the (9,x )  data, find the best subset fJ of di- 
mension J and OLS predictor jl( fJ). 

4. Estimate ME( S j )  by 

5. Repeat many times and average. 

The conditional bootstrap resamples residuals. Instead we 
have i.i.d. sampled from N(0, G2). With this minor modi- 
fication, conditional bootstrap is seen as a Monte Carlo 
method for evaluating $J(6, G2). For M fixed and N large, 
conditional bootstrap should have all of the maximum like- 
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lihood asymptotic properties. But this is not applicable to 
the situation where N / M  is of modest size. 

To examine finite sample behavior, look at the orthogonal 
model used in Section 2. To avoid complications, assume 
u2known. Recall that fi,, = P*, + Z,, {Z,,} i.i.d. N(0, u2) .  
The bootstrap data is 

and the estimated coefficients of the bootstrap model are 

= f in+ 2 ,  2, i.i.d. N(0, u2)  

and { i , ,)  independent of {Z, } . 
Let 3; be the indices of the J largest Ifi, I. Then for the 

origina! data, 3; is the best subset of size J and 

ME(!L) = C Z i  + C PZ2.  
m E  f~ m4 f~ 

Take all P*, = 0. Denoting by R(Zm)the rank of I ZmI in 
I Z1 1, . . . , I ZMI and letting I (A)  be the indicator function 
ofA, 

ME(3j) = C Z~I(R(Z,) 5 J ) .  
m 

Now letting R(Zm+ 2,) be the rank of I Zm+ 2, I among 
the values of I Z ,  + 2,I, . . . , I Z, + i M l ,  the bootstrap 
estimate of ME ( J )  is 

= C Z; + (2 ;  - z$)Z(R(Z,, + 2,) s J ) .  
m m 

Thus 

E(ME(lJ ) )  = C E(Z?n(I(R(Zm)5 J)), 
m 

It is simple to verify that ME( CJ) is always larger than ME( S j )  
for J < M / 2  and is larger in a way that prevents effective 
subset selection. ME( CJ) decreases as J decreases and iden- 
tifies the best subset as the empty one, but M^E( CJ) has con- 
stant expectation for all J. 

This admittedly is a quite specialized example. But the 
Freedman, Navidi, and Peters ( 1987)simulation results also 
found that the conditional bootstrap has a large upward bias 
in a less specialized case. This does not mean that boot- 
strapping doesn't work, but only that this method of applying 
it doesn't work. What does work is discussed in Section 4. 

3. THE REPLICATE DATA SET PARADIGM 

Conceptually, one method for dimensionality selection is 
to replicate the data. Use the first data set to do the model 
fitting and get the sequence of submodels, then use the second 
set to get the PE and ME estimates for the submodels. 

This procedure is hardly ever used in practice. But it is a 
useful paradigm for two reasons. First, the resulting analytic 
structure is fairly simple and can be understood more easily 

than that resulting from resampling methods. Second, it gives 
a measure against which to judge resampling methods. Re- 
sampling methods attempt to make the original data set do 
double service-first to fit with and then, under resampling, 
to serve as ME estimators. How well they succeed can be 
measured against the yardstick of a replicate data set. 

Denote the replicate data set by y' = p* + c', {c'} inde-
pendent of {c) . Then for any submodel (,the replicate data 
set PE estimate is 

so that 

The second term has expectation NU^, and the last term has 
zero expectation. But better estimates than Nu2 of Ilc' 1 1  are 
available. Denote the full model PE estimate by P%,. Fit a 
full model to the { y' ) and denote the residual sum of squares 
by RSS,, Then the estimate of Ilc'il given by 

has expected squared error of 2hfu4 (expectation over both 
( c )  , {c'}) as compared to 2Nu4 using Nu2 as the estimate. 
Thus we use the ME estimate 

Going back to (3.1), note that 

The term on the right side has mean 0. Its variance, condi- 
tioned on {c}, is ~ u ~ - I ~ ~I b(3j) 11 2.To  the extent that this 
term stays small, M^E( CJ) will track the changes in ME(lJ) 
and give accurate estimates of the minimum ME submodel. 

4. THE LITTLE BOOTSTRAP 

In most practical situations, we have only one data set 
and no replication. What can be done? To temporarily sim- 
plify notation, let b = b(  3 j ) ,  and start with 

= 1 I & 1 l 2  + IIP* - b1I2+ 2(c, P* - b) .  

Therefore, 

The term lip* - = (c,  Hc) can be estimated by 
MG2. The critical issue is estimating the last term. The C, 



approximation is 

2 ( & ,  j i ~  - ji) = 2 ( & ,  ( H  - H f ) ( p * + E ) )  

g 2G2(M- J ) .  

As pointed out previously, this cannot be accurate if { is 
data-selected. The little bootstrap procedure uses the data to 
compute a variable B ( { ) such that 

when the sequence { 3j} is data-selected using any of the 
common selection methods. Then the little bootstrap ME( 3 j )  
estimate is taken as 

Note that there is no guarantee that B ( S j )  z ( e ,  iM- ji), 
but only that their expectations over { c }  are nearly equal. 
The fact that resampling methods in general can at best re- 
cover only expectations of error rate corrections has been 
emphasized by Efron ( 1986)and Gong ( 1986). 

To begin, we define the relevant class of submodel selection 
procedures. Denote the data by { y,, x,  ) . 

Dejnition 4.1. The subset selection method is scale- 
invariant if for each J ,  0 IJ s M ,  the function SJ (  { y,, 
xn } ) such that (J  = h({ Yn } ) satisfies h({ CY n cxn ) ) 
=h({ y,, X, )) for any constant c + 0. 

All commonly used data-dependent methods of submodel 
selection are scale-invariant. For instance, in best subsets CJ 
is the minimizer of R S S ( ( ) ,  I {I = J .  With y; = cy,, x ;  
= cx,, R S S r ( { )= c 2 ~ S S ( r )and the same lJminimizes 
RSSr({) , ( {( = J. It is easily verified that stepwise forward 
addition of variables and stepwise deletion are also scale- 
invariant. 

Use a scale-invariant procedure to select the { l J } ,and 
denote 

Assume a2is known and generate data 

with { e l )i.i.d. N ( 0 ,  t2a2),  t > 0, and { e l }  independent of 
{ c ). Get the subsets f J  of dimension J ,  J  = 0 ,  . . . ,M ,  by 
applying the same selection procedure to the data { y", ,x,  ) . 
Denote OLS predictors based on { y", , x ,  } by i.Then the 
following theorem can be stated. 

Theorem 4.1. 
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This result is used to get the little bootstrap ME estimate as 
follows: 

1. Fit the full model, getting RSSM and G2.  Do variable 
selection, getting the sequence of subsets of indices l o ,  1 1 ,  
. . . , rM,and the values RSS(  lJ). 

2. Generate { e l , } , n = 1 , .  . . ,Nasi.i.d. N ( 0 , t222)and 
form the new y data 

3. Using the data (y",, x,), find the subset sequence 
{ f J }  using the same procedure as in step 1, and compute 
the predictors jiMand G ( f J )based on the full model and [J. 

4. Calculate 

5. Repeat steps 2 ,3 ,  and 4 a number of times and average 
the quantities computed in step 4. Denote this average by B,(J).  

6.  The little bootstrap estimate is 

M^E({j )= R S S ( { j )- RSSM + MG2 - 2Br(J ) .  

The little bootstrap also can give almost unbiased estimates 
in the more general future X-fixed context. Assume that the 
new data to be tested on a given linear regression equation 
p ( x )  is {yiSW,  n r = 1 ,  . . . ,N', where the X'X matrix 
for the { xisw} is assumed known, say V = X'X.  Then define 

with the second term defined to be the ME 
Let bMand b., denote the OLS coefficients in jiM and 

ji( 3 j ) .  Let A denote the matrix such that 

Then 

and 

Now 

Writing the third term as (bM- A C ) ' V ( ~ J-bM)gives 

ProoJ: See the Appendix. 	 The first term in (4 .5 ) is estimated using (4 .4 ) ;the second 
As a consequence of Theorem 4.1, for t small, 	 term is calculable from the data. The third term is estimated 

using little bootstrap in a manner similar to the x-fixed case 
described previously. Note that by taking V = I,we get es- 
timates of ))bj- P*(J2. 
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Just because little bootstrap gives almost unbiased esti- 
mates of the submodel ME's does not necessarily imply that 
selecting the submodel that minimizes M^E( CJ) gives a good 
selection procedure. We rely on the simulations in Section 
6 to give a picture of how well the little bootstrap estimates 
perform in the selection and evaluation processes. 

5 .  RSS-EXTREME SUBMODELS 

Assume a sequence of submodels h, . . . ,CM, and denote 

Definition 5.1. Call CJ a rss-extreme submodel if there is 
an a 2 0 such that 

R S S ( J ) + a J = m i n [ R S S ( J ' ) + a J ' ] .  (5.2) 
J'80 

It is clear that the smallest and largest submodels, &, and 
S;M, are always rss-extreme. The others are characterized as 
follows. 

Proposition 5.1. S j ,  J E (0, M), is rss-extreme iff for 
every J' < J < J "  with J = tJ' + ( 1 - t )  J", 

The proof is a simple convexity argument. 
Proposition 5.1 characterizes the rss-extreme submodels 

as those with a RSS at an extreme point of the lower convex 
envelope of the graph { k, RSS(k) ) , k = 0, . . . , M. The 
isotone regression algorithm can be adapted to give an effi- 
cient method for finding the rss-extreme submodels. 

Note that the subset selected by C, minimizes RSS(J) 
+ 2C2J. Other candidate selection rules (Thompson 1978) 
are to minimize RSS(J) + cC2J, where c is larger than 2 
and can range as high as 6 or 7. Guided by this, we restrict 
attention to rss-extreme submodels with a in the range of 
2C2 to 10C2. The number of such submodels usually is a 
small fraction of the total number Mof submodels. Selecting 
from these gives a substantial savings in computations and 
allows the analyst to focus on only a few competing sub- 
models. 

The question now is: If we select from only among the 
rss-extreme submodels, how much do we lose? The simu- 
lation results in Section 6 show that not only do we not lose, 
but in fact the restriction often helps matters. 

6. SIMULATION EXPERIMENTS 

6.1 Description 

The simulation was complex and so will be described in 
the following stages: 

1. For each run, the X design was fixed, as were the coef- 
ficients of the full model. In each repetition, normal noise 
was generated and added to give the y values. Backwards 
deletion then was carried out to give the sequence of sub- 
models. There were always 40 variables and either 60, 160, 
or 600 cases. In each run there were 500 repetitions. 

2. In each repetition the ME was computed for each sub- 
model selected by the backwards deletion. ME estimates for 
each submodel were derived using a replicate data set 
and C,. 
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3. In each repetition little bootstrap was applied. We tested 
to see how many repetitions of little bootstrap were necessary, 
by trying 20, 40, and 80 iterations. We found that 40 was 
an improvement on 20, but that 80 gave only a marginal 
improvement over 40; thus we stuck with 40 over the course 
of the simulation. 

We also were unsure of the appropriate values for t, the 
multiplier of C2. In all initial runs we tried t = .2, .6, and 
1.0. In some initial runs we tried other values of t such 
as .5, .7, and .8. We comment further on the results in 
Section 6.2. 

4. Two general behavioral characteristics were observed. 
The first was the behavior of the ME estimates over the entire 
sequence of submodels. Since the MEs were known, the ac- 
curacy of the estimates could be computed and systematic 
errors noted. We call this the global behavior. 

In the second type of behavior we looked at how well these 
estimates did in selecting dimensionality and evaluating the 
submodel selected. Knowing the ME's, we knew the optimal 
dimensionality. 

Using the replicate data estimate, in each repetition we 
selected the subset having the minimum estimated ME. For 
this subset we computed its dimensionality and the value of 
its replicate data ME estimate. The selected dimensionality 
was compared to the optimal dimensionality. The replicate 
data ME estimate for this subset also was compared to the 
actual ME of the subset. This was repeated for the subset 
selected by C, and by little bootstrap; we refer to these results 
as the submodel selection and evaluation behavior. We also 
did these computations for the rss-extreme subset having 
minimum little bootstrap ME estimate. 

5. Details: The X distribution was generated from a mul- 
tivariate mean zero normal with E(X,X,) = p '-'I, with p 
= .7. The generated X design was then held fixed for all runs. 
In all cases N(0, 1 ) noise was added. The nonzero coefficients 
were in three clusters of adjacent variables, with the clusters 
centered at the loth, 20th, and 30th variables. 

For the variables clustered around the 10th variable, the ini- 
tial coefficients values were given by 

The coefficient clusters at 20 and 30 had the same shape. All 
other coefficients were zero. The coefficients were then mul- 
tiplied by a common constant to make the theoretical R 2  
equal to .75 (theoretical R 2  = (P*'XfXP*)/(P*'X'XP*
+ a2)). 

We used the h values 1, 2, 3, and 4. This gave 3, 9, 15, 
and 21 nonzero coefficients. For h = 1, there were three 
strong, virtually independent variables. At the other extreme, 

Table I .  Bias and RMS Error for Different t Values 

Sample size 60 Sample size 160 

t Bias RMS Bias RMS 

.2 .7 16.4 .6 15.0 

.6 .6 14.1 .8 11.9 
1 .O .8 13.8 1.1 11.4 
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Table 2. Average Bias of the Little Bootstrap and CP Procedures 

Sample size 60 Sample s~ze 160 
--

Sample size 600 

Procedure Z H I  H2 H3 H4 Z H I  H2 H3 H4 Z H I  H2 H3 H4 

h = 4, each cluster contained seven weak variables. These 
four different sets of coefficients are designated by HI, H2, 
H3, H4 in the tables and figures. The t values for the coef- 
ficients are graphed in Figure 1 for the three sample sizes. 

We also ran the case with all coefficients 0. This is desig- 
nated by a Z in the tables and figures. Many preliminary 
runs were done with other coefficients and X designs before 
settling on the scheme for the final runs. Note that each run 
involved 500 repetitions, each with 4 1 sequences of 40 vari- 
able deletions. This required a nontrivial amount of CRAY- 
XMP time; I thank Ludolf Meester, who transferred my code 
to the CRAY and did the graphs. 

6.2 	 What Value Should t Have? 

The smaller t ,  the less bias. But we suspected (and our 
simulations confirmed) that the smaller t is, the larger the 
variance of the ME estimates. We did some preliminary runs 
to check the effects of different values of the parameter t .  
For each submodel of dimension J we averaged the values 
of the ME( S j )  little bootstrap estimates over the 500 runs 
and compared these to the average of the ME( {J). We refer 
to the difference as the bias. Also, for each M E ( S ~ )  little 
bootstrap estimate we computed the RMS difference over 
the 500 runs between the estimate and the ME(Sj) value. 

We used the t values .2, .6, and 1.0. The bias generally 
increases slightly from t = .2 to t = .6 and does not increase 
drastically even for t = 1.O; however, the RMS error decreases 
markedly from t = .2 to t = .6 and usually is the lowest at t 
= 1.0. 

In a set of preliminary runs at sample sizes 60 and 160, 
we used four different sets of coefficients (including 2)sim-
ilar to-but not the same as-the coefficients described pre- 
viously. For each run of 500 we averaged the absolute value 
of the bias over J, as well as the RMS errors. Then we av- 
eraged over the four coefficient sets. The results are given in 
Table 1 on the preceding page. 

Although the best performance in terms of RMS error is 
given by t = 1.O, its theoretical justification is weak. Fur- 
thermore, in running a case at sample size 60 with X design 
and coefficients different than those described previously, we 
found that the bias and RMS error using t = 1.O increased 

sharply at important values of J. For these reasons, we do 
not feel that we can recommend using t = 1.0. Even when 
t = 1.0 yields lower RMS than t = .6, the improvement is 
small. For general use we prefer the .6-.8 range. The re- 
mainder of the simulation results are based on t = .6. 

6 . 3  	Global Comparison: Little Bootstra~, C p ,  

and Replicate Data 

In our final runs we compared the little bootstrap proce- 
dure to Cpand a replicate data set method. The average of 
the absolute values of the bias over J for little bootstrap and 
Cpare given in Table 2. (The replicate data bias is 0 within 
limits of variability.) 

The "average" over J of the RMS differences between the 
estimates and the ME({J) values are given in Table 3. The 
first row is the standard deviation of the ME(3;-) over the 
500 runs "averaged" over J (RD = replicate data). 

The reason for quotes around the word average is this: 
For small J, ME(Sj) becomes large-except in the Z case, 
when the RMS differences also become large (see Fig. 3).  
The average over all J would unduly reflect the RMSE for 
a few of the lowest J values. For this reason we averaged 
only over those J for which the 500 run average ME ( {J) was 
less than the corresponding full model MEM. 

In Figure 2 we graph the averages over the 500 runs of 
the three different estimates of ME(lJ) together with the 
ME( 5;)values. Side by side we graph the RMS errors of the 
ME(&) estimates together with the standard deviation of 
the ME( 6).Note that the C, estimates are heavily biased 
downward. Surprisingly, this persists even for sample 
size 600. 

For sample size 60 the test set estimates have substantially 
lower RMS values than those produced by the little bootstrap 
procedure. But for the two higher sample sizes, overall RMS 
values for the two procedures are very comparable. Our ap- 
proximate calculations show that the little bootstrap and the 
test set would have comparable accuracies if the exact value 
of a2were used in setting up the variance of the { c , } . We 
conjecture that the loss of accuracy at sample size 60 is due 
to the fact that only 20 degrees of freedom are available for 
the a2estimate. 

-- - - -

Sample size 60 
-- 

Table 3. "Average" RMS Error 
-

Sample s~ze 160 
-

Sample size 600 

Procedure Z H I  H2 H3 H4 Z H I  H2 H3 H4 Z H I  H2 H3 H4 
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AVERAGE ME ESTIMATES AVERAGE RMS ERRORS 

z 

(-) ME Estimates. ofAverages and RMS Errors 2.Figure 
(-) Average RMS Errors: Cp.indicates 

indicates True ME; (- - - -) indicates, Test Set; (- --) indicates LB; (- -) 
indicates SD, true ME. 
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AVERAGE ME ESTIMATES AVERAGE RMS ERRORS 

Figure 2. (continued) 
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AVERAGE M E  ESTIMATES AVERAGE RMS ERRORS 

Figure 2. (continued) 
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Table 4. Average ME's Produced by the Selection Procedure 

Sample size 60 	 Sample size 160 Sample size 600 

Procedure Z H1 H2 H3 H4 Z H I  H2 H3 H4 Z H I  H2 H3 H4 

ME (true) .O 4.4 14.1 21.7 25.3 .O 3.1 17.2 24.7 29.1 .O 3.1 19.6 20.4 29.9 
RD 1.4 5.9 16.5 24.4 28.5 1.5 4.6 19.9 28.0 32.0 1.3 4.3 22.0 22.6 32.7 
LB 4.9 9.5 21.1 30.0 33.5 1.9 5.0 22.5 34.3 37.7 1.8 5.1 28.7 26.9 37.8 
LB/E 4.6 8.5 19.7 28.6 32.4 1.9 5.0 22.1 33.3 36.7 1.8 4.9 27.9 26.1 36.7 
CP 20.7 22.7 28.4 31.4 32.8 22.6 23.8 30.3 32.6 35.3 22.6 24.1 29.4 31.4 35.1 

6.4 	 Dimensionality Selection and Evaluation number is the average ME for the same subset. Note that 
Behavior both the RD and LB estimates have a downward bias, al- 

though over all J they are virtually unbiased. The reason is 
There are two aspects to this problem. First, is the pro- that the subset being evaluated was selected as the subset 

cedure nearly picking out the optimum dimensionality? Sec- 
minimizing the RD estimates and LB estimates. 

ond, is the estimated ME for the selected subset close to the 
actual ME for the subset? In this phase we compared the 

Table gives the RMS differences between the subset,s 

replicate data, little bootstrap, and C, procedures. The di- 
true ME, selected by the estimate, and its estimated ME. 

mensionality selected was that at the minimum ofthe ME(3j) 6.5 Discussion of Results 
estimates. We also ran a modified little bootstrap, where the 
subset selected is that rss-extreme subset having minimum These results clearly indicate the salient difficulty in sub- 
little bootstrap ME estimate. This procedure is designated model selection: the presence of a number of weak variables 
as LB/E. whose estimated coefficients can be close to zero. These vari- 

The most telling summary is the comparison of the average ables can be deleted sooner than variables with zero true 
ME for the subset selected using the ME minimum to the coefficients but estimated coefficients away from zero. When 
average ME for the subset selected using the estimating pro- these former are deleted, their nonzero coefficient values 
cedure. This is given in Table 4. make substantial contributions to the ME. 

The next comparison is between the average dimension This difficulty can be made worse by substantial correla- 
as selected using the actual ME's and by each of the estimates tions between the weak variables and other variables, weak 
together with the RMS differences between them. In Table or strong. In this case deletion of a weak variable can produce 
5 the figures in the parentheses are the RMS differences, very little RSS increase, its predictive ability can be trans- 
except that the figures in parentheses following the average ferred to a correlated variable. Thus the case of many weak 
dimension selected by the actual ME's are the standard de- correlated variables (case H4)  continues to give high ME for 
viation over the 500 runs of the dimension selected. the selected subsets, even at sample size 600. 

In terms of the estimate's ability to evaluate the subset As to the behavior of the estimates; C, is clearly very 
selected, we provide two tables. Table 6 compares the average biased. This bias persists even at sample size 600. It selects 
estimated ME value for the subset selected by the estimate models that are too large. If there are many weak variables, 
to the average ME value for the same subset. In this table, this is not too damaging because it will then retain some of 
the first number is the average estimated ME, and the second the weak variables with nonzero coefficients. For this reason, 

Table 5. Average Dimension Selected and RMS Difference 

to Dimension Selected by ME 


Table 6. Estimated ME's for the Submodel Selected 
Sample size 60 

Versus Actual ME's 
Procedure Z H 1 H2 H3 H4 

Sample size 60 

ME (true) 

RD Procedure Z H1 H2 H3 H4 

LB 
LB/E 
CP 

Sample size 160 

ME (true) Sample size 160 
RD 
LB 
LB/E 
CP 

Samole size 600 
Sample size 600 

ME (true) .O (.0) 3.0 (.0) 9.4 (1.9) 10.0 (1.7) 15.5 (3.2) 
RD 3 ( l l )  3.4(1.4) 10.2(3.9) 11.5(4.3) 17.5(6.6) RD - 8  ( 1 3 )  2.3 (4.3) 17.5 (22.0) 18.5(22.6) 27.3(32.7) 
LB .2 ( .7) 3 .3(1 .8)  10.9(6.4) 12.0(5.9) 19.0(9.4) LB - 2 ( 1 8 )  2.8(5.1) 23.6(28.7) 22.9(26.9) 32.0(37.8) 
LB/E .2 ( .7)  3.2(.7) 9.8(3.7) 11.1(3.5) 15.5(4.8) LB/E - 2 ( 8 )  2.8(4.9) 23.8(27.9) 23.1(26.1) 33.1(36.7) 
CP 6.5(7.1) 9 .0(6 .6)  13.5(5.1) 15.2(6.0) 17.3(4.4) CP -9.3(22.6) -5.8 (24.1) 1.1 (29.4) 3 .4(31.4)  6.6 (35.1) 
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Table 7. RMS Differences Between Estimated and Actual ME'S for the Submodels Selected 

Sample size 60 Sample s~ze 160 Sample size 600 

Procedure Z H I  H2 H3 H4 Z H I  H2 H3 H4 Z H I  H2 H3 H4 

Cpdoes slightly better than little bootstrap in some situations 
involving weak variables (see Table 4). But in terms of subset 
evaluation, the Cpestimates are out of the ball park. 

In terms of selection, little bootstrap has difficulty with 
weak variables. It does not select dimensionality as well as 
the replicate data procedure, although on the average it selects 
about the right dimensionality. In terms of evaluation, it 
does quite well compared to use of replicate data. It is some- 
what less accurate at sample size 60, but accuracies are com- 
parable at the two larger sample sizes. 

The RMS errors in both the replicate data and little boot- 
strap methods are substantial. They average 1 1-12, whereas 
the ME'S we are trying to estimate have a maximum value 
of around 40. This seems to be inherent in the problem, I 
doubt if there is any method that could substantially increase 
this accuracy. 

To illustrate, consider trying to estimate the full ME (E, 
HE). The estimate we used ~reviouslv was MG2. This. at 
best, is estimating a a2xLvaXable by its mean value Ma2. 
The resulting variance is MU^. The standard deviation is 
a 2 K M ;  in the simulation this equals 6 9. 

Are better estimates of (E, HE) available? The only things 
we have that approximate the { E )  are the residuals { r ) .But 
the residuals are independent of HE, SO the best estimate of 
(E, HE) that we can get using the residuals cannot improve 
on using MU^ as an estimate. The essence of this problem 
is that we are forced to estimate unobservable random vari- 
ables by their mean values. The result is substantial RMS 
error. 

But because this error changes slowly across the sequence 

OLS coefficients of { x,; m E {) in ji( {) are estimates of the 
corresponding coefficients in the reduced model p*( {). 

Now ME( {) can be split into two terms: 

Ilp* - G( {) 11 = IIP* - P*( l)11 + 11~*(l)- i (  11 2. 

The first term measures the minimum discrepancy between 
p* and any model based on { x,; m E{) .We call it the bias 
term. The second term measures the error in b ( { ) as an 
estimate of p*( {), and is called the variance term. This latter 
terminology is not, strictly speaking, correct in our present 
context. 

7 . 1  Structure of the  Var iance  Term 

If { is not data-selected, then ji( {) is an unbiased estimate 
of p*( {) and 11 p*( {) - F ( {) 11 is correctly called variance. 
If 1 {I = J ,  then 

But suppose S j  is a data-selected subset of dimension Jwith
cJ = { ml, . . . mJ) . Let p%,be the coefficient of x,, in 
p*( cJ) and let p,, be the OLS estimate in C(cJ). The distri- 
bution of Bm, - p%,may be quite complex. For instance, 
look at the orthogonal model with coefficients { P g ) .  Sup- 
pose cJ is selected; then the distribution of B,,, j = 1, . . . , 
J will depend on the relative magnitude of all of the 
{P%) For example, if I P T I U ~  2 10 and IP%/al I1, 
m > 1, then the first variable almost always will be in every 
cJ, J 2 1, and Bl - P T  will have an approximately normal 
distribution with mean 0 and variance a2. 

But now suppose there are numerous variables with 
Pg/al  in the range of 1-2. There is a competition for in- 

{,,,. . . b,of submodels the replicate data method can Iaccurately select the minimum ME submodel. Little boot- 
clusion in 3 j  between the variables. The ones that win tend 
to have the largest values of 6,strap does not do as well when weak variables are present, 

- 0%in the direction of the but it certainly improves on any other method currently used. 
The results also show that restricting selection to rss-ex- sign of 0 % .  For the weaker variables included in the model, 

the distribution of 6, - 0%,  given that they were selected, treme submodels uniformly improves the little bootstrap ac- 
curacy and significantly decreases the variability of the di- 
mensionality selected. On average, over all sample sizes and 
coefficients, about 5 of the 41 submodels are rss-extreme. 

will be skewed with nonzero means and inflated variances. 
In addition, if there are a large number of variables with 
0%= 0, then some of these will have large 18, I values and 
may be included in 6,also resulting in inflated variances. 

Thus the variance component term 11 p*( {) - ji ( {) 11For H3 and H4 the average is around 6; for Z and H 1 the 
average is around 4. can 

reflect both the bias in coefficient estimates and an inflated 
variance due to the selection process. The extent to which 7. BIAS VERSUS VARIANCE REVISITED 

We earlier referred to submodel selection as a tradeoff 
between bias and variance. We can now make this more 

the expectation of this term exceeds Ja2 is a measure of these 
selection biases. 

7.2 simulation ~ ~ ~ ~ l t ~ 
precise and give some results to quantify the tradeoff. 

The submodel predictor ji({) is a predictor not of p* but As a substudy in our simulation, in each iteration of a run 
rather of the reduced model p*( {) = H'p*. In particular the ME(J) = ME(3j)was decomposed into the bias and variance 
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components BIAS(J) and VAR(J). These were then aver- 
aged over the 500 iterations in the run. Graphs of these av- 
erages for HI ,  H2, H3, and H4 are given in Figure 3. Su- 
perimposed on the graphs is the straight line Ju2  (= J )  for 
comparison with AV (VAR ( J )  . 

To give a more quantifiable idea of how much the selection 
inflates the value of the variance term, we also computed 
the "excess." In each iteration of a run the dimensionality 
selected, Jmln ,  was defined by 

ME((Jmln)= min ME(J) .  
J 

In this iteration the excess was computed as 

VAR(Jmin ) - Jmin 

Jmin 

This quantity was then averaged over the 500 iterations. Ta- 
ble 8 gives the values of this quantity (E) together with V 
= Av(VAR(Jmin)and B = Av(BIAS(Jmin)). 

The values of the excess are surprisingly low compared to 
the higher excesses that show up in Figure 3. For instance, 
if we look at the average excess at J = 20, we get the following: 

Sample size 

Looking at this table-and especially at H1-it is clear that 
the major source of the excess is in those variables selected 
in {20 that have zero or nearly zero true coefficients. 

This also indicates that if the selected submodel has di- 
mensionality close to the minimum ME submodel, then the 
variance inflation is not substantial. Of course we can almost 
completely eliminate excess by always choosing submodels 
with small dimensionality, but only at the cost of in- 
creased ME. 

8. WHAT CAN BE DONE AFTER SELECTION? 

8.1 Do Confidence Intervals Make Sense? 

For the classical linear model there are elegant conditional 
distributional results that give confidence intervals for the 
coefficients and significance levels for tests of hypotheses. A 
nonsensical procedure often used in standard statistical 
packages is to do submodel selection, select (somehow) the 
best submodel, and then apply classical distributional theory 
to the coefficients by assuming that the other variables never 
existed. 

That significance testing results in nonsense can be clearly 
seen from the orthogonal model with all P*, = 0. Say, for 
instance, that M = 75 and a model of size four is selected. 
Then in 95% of the runs of this model, all four coefficients 
would be found significant at the 90% level (assuming G 2  
= a2) .They are significant because they havc &-.en selected. 

What is the meaning here of confidence intervals? For 
instance, how can confidence intervals be defined for the 
coefficients of the variables deleted from the equation? Or 
consider the distribution of the estimated coefficients: Over 
many simulated runs of the model, each time generating 
new random noise, and selecting, say, a subset of size four, 
the coefficient estimates of a given variable have a point mass 
at zero, reflecting the probability that the variable has been 
deleted. In addition, there is a continuous mass distribution 
over those times when the variable showed up in the final 
four-variable equation. The relation of this distribution to 
the original coefficients is obscure. 

As was pointed out in Section 6, the coefficients in k ( ( )  
are not estimates of the coefficients of {x,; m E (} in the 
full model p*, but rather are estimates of the coefficients in 
the reduced model p*( C) = Hb*. Suppose CJ is the selected 
subset of size J ,  CJ = . Let ,Ll { m l,. . . ,m ~ }  be the coefficient 
of xmj in p*( CJ). Then what we may want, in analogy to 
classical theory, is the distribution of 6, - Pgjgiven that S j  
is selected. As noted above, this distribution may be com- 
plicated, with skew and nonzero mean. 

In general, even running a simulation to estimate these 
distributions, using known {Pg } ,a 2  seems formidable. One 
would have to repeatedly generate { c } , set y = p* + c ,  look 
only at those outcomes in which CJ was selected, and using 
those outcomes construct some nonparametric estimate for 
the distribution of 6, -P*,. The problem of estimating these 
distributions for (0%)  unknown seem much more difficult. 
My opinion is that such an effort would be "love's labour's 
lost." In particular, how would such results be used? 

8.2 Useful Information for Data Analysts 

In my experience, the two most useful pieces of infor- 
mation about the structure of a problem involving submodel 
selection are first-some rough approximate idea of the rel- 
ative importance of the variables still left in the equation. 
This can be gotten from deleting a variable still in the equa- 
tion, computing the rise in the residual sum of squares, put- 
ting the variable back in and repeating this procedure with 
the next variable still in the equation. The sizes of these RSS 
increases give one measure of relative importance. 

Second-an idea of the alternative subsets of the same 
dimensionality that have nearly the same residual-sum-of- 
squares. This information can give valuable insights into the 
structure of the problem. If the "best subsets" algorithm is 
used, this information can be easily supplied. But for more 
than 30 variables, this algorithm is too slow and stepwise 
methods must be used. 

The advantage of resampling methods such as little boot- 
strap and cross-validation is that they form alternative se- 
quences of submodels. In general, each application of little 
bootstrap will result in a different sequence of submodels 
than formed using the original data. As surprising as it may 
seem, in cross-validation even the deletion of a single case 
often leads to a different sequence of submodels. 

The fact that both little bootstrap and cross-validation can 
give alternative submodel sequences is the key to the fact 
that they can produce relatively unbiased PE and ME esti- 
mates for data-selected submodels. Methods such as C, that 
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(-) ME.Bias and Variance Components of 3.Figure indicates Bias. (-- - - -) indicates Variance. 
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Figure 3. (continued) 
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Table 8. Bias, Variance, and Excess at the Submodels Selected by ME 

Sample size 60 Sample size 160 Sample size 600 

Case B V E B V E B V E 

NOTE: B = Bias; V = Variance; E = Excess 

do not provide for alternate submodel paths cannot provide 
low-bias estimates. 

This property can be used to advantage even when only 
stepwise deletion (or addition) is being used. For instance, 
suppose the analyst wants to look at alternative submodels 
containing five variables. In the, say, 40 iterations of little 
bootstrap, look at all subsets of size five selected in the 40 
deletion procedures. Now run a regression (using the original 
data) on each distinct group of five variables selected in the 
little bootstrap deletions. The residual-sum-of-squares pro- 
duced should be close to that of the subset produced by the 
original deletion process. 

9. CONCLUSIONS 

The issue of submodel selection and evaluation is critical 
in statistics. It occurs in analysis of variance, in analysis of 
discrete data, in generalized linear models, in time series, 
and in regression. In contrast to most theoretical results, 
which assume a predetermined sequence of submodels, in 
actual practice the sequence of submodels chosen is data- 
dependent. Regardless of asymptotic optimality results, cri- 
terion or estimates such as C,, AIC, BIC, and so on are 
highly biased in finite data situations because they do not 
account for the data-driven selection. The simulation results 
emphasize again what many statisticians have long sus- 
pected-that the various ad hoe methods used to evaluate 
submodels when data-driven selection occurs can be ex- 
tremely optimistic. 

Although the distribution assumptions are stringent, little 
bootstrap emerges as the only procedure so far that can give 
relatively unbiased estimates of the x-fixed ME or PE when 
data-driven submodel selection is used and the number of 
cases relative to the number of variables is moderate. An 
important subsidiary conclusion is that restricting selection 
to the class of rss-extreme submodels slightly improves model 
selection accuracy while drastically reducing the number of 
candidates. 

Little bootstrap has wider applicability than submodel se- 
lection in OLS regression. It works in contexts where the 
coefficient estimates are linear in the { y,} . Thus the theory 
and practice of little bootstrap generalizes to such situations 
as estimating optimum ridge parameters-but that is another 
research story. 

APPENDIX: PROOF OF THEOREM 4.2 

Consider the scaled response data y' = y/ u, x' = x/  u, and denote 
OLS predictors based on the (y', x') data by 2. The estimates 
;({) and G I ( { )  differ only by the scale factor u. Assuming scale- 
invariant subset selection, the same lJare selected by both data 
sets. Denoting e' = e/u, then 

Y' = x(@*/ U )  f E' 

and 

(e, - ;({J)) = u2(c', bL - L'({J)). ('4.1 
Therefore, 

e J ( @ f , .. . , DL,u2) u28~(@T/u , .  1 ) .  (A.2)= . . , P ~ I U ,  
Now, looking at the data 

note that Go - b(fJ) is a vector quantity that depends stochastically 
only on the random vector e + el .  But for any n ,  

This implies that 

Putting (A2) and (A3) together proves the theorem. 

[Received July 1989. Revised August 1991 .] 
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