
Objective Bayesian Variable Selection
George CASELLA and Elías MORENO

A novel fully automatic Bayesian procedure for variable selection in normal regression models is proposed. The procedure uses the posterior
probabilities of the models to drive a stochastic search. The posterior probabilities are computed using intrinsic priors, which can be
considered default priors for model selection problems; that is, they are derived from the model structure and are free from tuning parameters.
Thus they can be seen as objective priors for variable selection. The stochastic search is based on a Metropolis–Hastings algorithm with a
stationary distribution proportional to the model posterior probabilities. The procedure is illustrated on both simulated and real examples.

KEY WORDS: Intrinsic prior; Metropolis–Hastings algorithm; Monte Carlo Markov chain methods; Normal linear regression.

1. INTRODUCTION

In this article the variable selection problem in normal re-
gression models is analyzed from an objective Bayesian model
choice perspective. A dependent random variable Y and a set
{X1, . . . ,Xk} of k potential explanatory regressors are consid-
ered. It is assumed that every regression model with regres-
sors {Xi1, . . . ,Xiq}, where q = 0,1, . . . , k and {i1, . . . , iq} is a
combination of the set of indices {1, . . . , k}, is a priori a plau-
sible model to explain the variable Y . The problem consists of
choosing one of the foregoing alternative models based on the
information provided by a sample (y,X1, . . . ,Xk). Typically,
if interest is in prediction rather than model choice, then the
prediction can be taken to be a convex combination of the pre-
dictions under every model, where the weights are the model
posterior probabilities. Hence in such a case there seems to be
no selection problem. But when it is impossible to compute
every model (as in Example 4), then before doing any model
averaging, we must first select a number of good models to av-
erage. Thus prediction will be preceded by model selection in
some cases.

We focus on two distinct aspects of the model selec-
tion problem. First, we want the selection mechanism to be
criterion-based and fully automatic. A criterion-based selection
mechanism allows us to clearly understand the properties of the
selected models; that is, we are selecting models that perform
well on the criterion. A fully automatic algorithm eliminates
the need for specification of tuning parameters, hyperparame-
ters, and other aspect, which makes it easy to implement and
eliminates the need for a sensitivity analysis.

Second, we note that the model selection problem is funda-
mentally a problem of multiple-hypothesis testing, making it
important to exactly specify the hypotheses to be tested at each
model evaluation. Because we are typically looking for a re-
duced model that adequately explains the data, the evaluation
of model MR should be

H0 : MR = a reduced model versus
(1)

HA : M = the full model,

where the full model is the model with all predictor variables.
Thus the full model is taken to be the overall reference model.
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This is the correct approach to take because the full model is
the one given to us by the subject matter. We should assume
that all of the predictors have some importance, and our task is
to examine whether a smaller subset is adequate. Also, because
we are going to use a Bayesian method to evaluate (1), it is
important that the prior distribution be centered at H0 and be
specific to each null model MR under consideration.

Two difficulties arise in computing the model posterior prob-
abilities. First, with respect to the prior distribution on the pa-
rameters in each model, because we are not confident about
any given set of regressors as explanatory variables, little prior
information on their regression coefficients can be expected.
(If we were confident about a particular model, then there would
be no model selection problem!) This argument alone justi-
fies the need for an objective model choice approach in which
vague prior information is assumed. Hence within each model
we would like to consider default prior distributions on the re-
gression coefficients and the error variance. Unfortunately, de-
fault priors for the normal regression parameters are improper
and thus cannot be used for either model choice or prediction
in the presence of alternative models.

Nonobjective Bayesian variable selection has a long his-
tory, having been considered by Atkinson (1978), Smith and
Spiegelhalter (1980), Pericchi (1984), Poirier (1985), Box and
Meyer (1986), George and McCulloch (1993, 1995, 1997),
Clyde, DeSimone, and Parmigiani (1996), Geweke (1996), and
Smith and Kohn (1996), among others. The proposed prior dis-
tributions on the regression coefficients and the error variance
within each model are typically either conjugate priors or some
closely related distributions. That is, multivariate normal dis-
tributions are usually considered for the regression coefficients
and inverse gammas are usually considered for the error vari-
ances. It is also typical to center the normal at 0, so that in
the underlying testing problem the role of the null hypothe-
sis is played by the model with no regressors. The covariance
matrices and the hyperparameters in the inverse gamma often
are fixed with the help of some subjective/empirical criteria.
More recently, Brown, Vanucci, and Fearn (2002) considered
a Bayesian model selection formulation implemented with a
variation of a random-walk Metropolis–Hastings algorithm.
They used the results of their stochastic search to minimize a
decision-theoretic criterion for future prediction.

Some attempts at solving the problem in a form as “objec-
tive as possible” were made by Mitchell and Beauchamp (1988)
and Spiegelhalter and Smith (1982). Mitchell and Beauchamp
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(1988) assumed that regression coefficients were a priori inde-
pendent and identically distributed with a prior distribution that
concentrates some probability mass on 0 and distributes the rest
uniformly on a compact set. Conventional improper priors were
used for the error variance. Their variable selection problem
is essentially an estimation problem that avoids the difficulties
with improper priors but needs some criteria to specify the point
masses. Spiegelhalter and Smith (1982) used conventional im-
proper priors for the regression coefficients, but with the error
variance and the arbitrary constants determined using subjec-
tive information on the value of the ratio of marginal densities
at a sample point. We note that the Bayes factor involved in their
analysis does not satisfy the strict definition of a Bayes factor.

A fully automatic analysis for model comparison in regres-
sion was given by Berger and Pericchi (1996). They used an
encompassing approach and an empirical measure for model
comparison—the intrinsic Bayes factor—which does not de-
pend on any subjective information. For moderate or large sam-
ple sizes, this empirical measure closely approximates a Bayes
factor for the so-called intrinsic priors.

In this article we derive a model choice solution based on in-
trinsic priors. The procedure that we use is as follows. For each
reduced model MR, we consider the pair {MR,M} and calculate
the model posterior probability Pr(MR|data). Then we order all
reduced models with respect to their posterior probability. The
interpretation is that the model with highest posterior proba-
bility represents the most plausible reduction in complexity of
the full model, the second highest represents the second-most
plausible model, and so on.

In computing Pr(MR|data), we assume a priori that
Pr(MR) = Pr(M) = 1/2, and use the intrinsic priors for the
parameters of the null model MR and the full model M.
Justifications for using the intrinsic priors have been given
by Berger and Pericchi (1996, 1997a,b, 1998) and Moreno
(1997). The method provides sensible priors for a wide vari-
ety of model selection problems involving nested models (see
Berger and Pericchi 1996, 1998; Girón, Martínez, Moreno, and
Torres 2003; Moreno and Liseo 2003; Moreno, Bertolino, and
Racugno 1998, 1999, 2000; Moreno, Torres, and Casella 2005).
We use the intrinsic priors because (a) the intrinsic prior distrib-
ution for the parameters of the full model takes into account the
null hypothesis MR, (b) they are automatically derived from the
models, (c) there are no hyperparameters to be adjusted, (d) for
any sample size they provide either Bayes factors or statistics
that are as close as we want to Bayes factors, and (e) model
posterior probabilities are easily computed.

But when k is not small, the number of competing mod-
els, say 2k−1 (the intercept is always included), is huge and
precludes the calculation of all model posterior probabilities.
Therefore, to avoid all of these calculations, a search for models
having “high” posterior probability is needed. This is a second
difficulty that we deal with here.

Modern search algorithms for variable selection were first
developed by George and McCulloch (1993), using an ap-
proach based on the Gibbs sampler (see Chipman, George, and
McCulloch 2001 for more recent developments). The novel idea
of this approach was to use a stochastic search algorithm to
visit models having high probability, and the advantages are that
rather than returning the “best” model, a ranking of models is

obtained, and there is some assurance that the search will not
get stuck in local modes. But models are not ranked accord-
ing to any criterion, and the relationship between the frequently
selected models and models that are optimal against some cri-
terion is not clear.

Here, because the models are ranked according to their pos-
terior probabilities, we require that a stochastic search based
on a Markov chain should have a stationary distribution that is
proportional to the model posterior probabilities. This can be
accomplished by using a Metropolis–Hastings algorithm. We
develop such an algorithm to search through the model space.

The article is organized as follows. In Section 2 we formu-
late the models, and in Section 3 we derive intrinsic priors
for variable selection and formulas for computing model pos-
terior probabilities. We detail the stochastic search in Section 4,
where we develop an independent Metropolis–Hastings algo-
rithm with stationary distribution proportional to the posterior
probabilities. We provide illustrations of the method using both
simulated and real data in Section 5, and give concluding re-
marks in Section 6. We provide some technical details in two
appendixes.

2. EVALUATING THE MODELS

Consider the standard normal regression model

y = Xα + ε,

where y = ( y1, . . . , yn)
t is the vector of observations, X =

[X1, . . . ,Xk] is the n × k design matrix, α = (α1, . . . , αk)
t is

the k × 1 column vector of the regression coefficients, and ε is
an error vector distributed as ε ∼ Nn(0, σ 2In), where the error
variance σ 2 is a nuisance parameter. This is the full model for y
and is denoted by Nn(y|Xα, σ 2In).

2.1 Hypothesis Tests

Let γ denote a vector of length k with components equal to
either 0 or 1, and let Qγ denote a k × k diagonal matrix with
the elements of γ on the leading diagonal and 0 elsewhere. Be-
cause we want to include the intercept in every model, the first
component of each γ is equal to 1. We let � denote the set of
2k−1 different configurations of γ .

When some of the components of α are 0, the meanings of
the remaining components, and of the error variance, change,
and we will change the notation accordingly (see Berger and
Pericchi 1996; Clyde 2001). Therefore, when y is assumed to be
explained by a given subset of regressors, the sampling model
is written as Nn(y|Xβγ , σ 2

γ In), where βγ = Qγ α and γ is a
configuration to be interpreted as

γi =
{

0 if αi = 0
1 otherwise

for i = 1, . . . , k. Hence the set of sampling models to be consid-
ered is {Nn(y|Xβγ , σ 2

γ In),γ ∈ �}.
To complete the specification of each model, we take a prior

on the parameters (βγ , σγ ), so we have the Bayesian model

Mγ :
{
Nn(y|Xβγ , σ 2

γ In),π(βγ , σγ )
}
, γ ∈ �.
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For a set of data (y,X), the Bayes factor of a generic
model Mγ , when compared with the full model M1, is given
by the ratio of marginal distributions

Bγ 1(y,X) = mγ (y,X)

m1(y,X)

=
∫

Nn(y|Xβγ , σ 2
γ In)π(βγ , σγ )dβγ dσγ∫

Nn(y|Xα, σ 2In)π(α, σ )dα dσ
, (2)

where γ = 1 corresponds to the full model. For Pr(Mγ ) =
Pr(M1) = 1/2, the posterior probability of Mγ is

Pr(Mγ |y,X) = Bγ 1(y,X)

1 + Bγ 1(y,X)
, γ ∈ �.

We note that Pr(Mγ |y,X) is an increasing function of
Bγ 1(y,X). Therefore, ranking the models according to their
posterior probabilities {Pr(Mγ |y,X), γ ∈ �} is the same as
ranking them according to their Bayes factors {Bγ 1(y,X),

γ ∈ �}. Furthermore, the ordering is not altered by normal-
izing the Bayes factor against all models. This yields the set of
probabilities

Prc(Mγ |y,X) = Bγ 1(y,X)

1 + ∑
γ∈�,γ �=1 Bγ 1(y,X)

, γ ∈ �. (3)

This forms the basis of our evaluation of model Mγ through the
hypothesis test

H0: M = Mγ versus M = M1,

with (3) measuring the relative support for H0. The advantage of
this construction is that for the multiple tests carried out, each of
the individual tests can be centered at its null (see Lemma 1 in
Sec. 3.1), and the full model is taken to be the overall reference
model.

2.2 Default Priors

To remove subjectivity from the choice of π(βγ , σγ ), and to
make our procedure automatic, we want to use some type of de-
fault or “automatic” prior. We first consider the standard default
prior on parameters (βγ , σγ ), giving the Bayesian model

Mγ :
{
Nn(y|Xβγ , σ 2

γ In),π
N(βγ , σγ ) = cγ /σ 2

γ

}
, γ ∈ �,

where cγ is an arbitrary positive constant that cannot be deter-
mined because the integral of πN(βγ , σγ ) is infinite.

Using this default prior leads to the expression (2) with mar-
ginal distribution

mN
γ (y,X) = cγ

∫ Nn(y|Xβγ , σ 2
γ In)

σ 2
γ

dβγ dσγ

and Bayes factor BN
γ ,1(y,X) defined up to the multiplicative

constant cγ /c1. Hence the posterior probability of model Mγ is
not uniquely defined when the default prior is used. A solution
to this problem, that will still yield an automatic procedure is
given in the next section.

3. INTRINSIC PRIORS

The intrinsic methodology was introduced by Berger and
Pericchi (1996) to overcome the difficulty arising with conven-
tional default priors in model selection and hypothesis testing.
Here, for completeness and readability, we give a brief sum-
mary of these developments.

Suppose that we have two Bayesian models, Mi : { fi(x|θi),

πN
i (θi)}, i = 1,2, where f1(x|θ1) is nested in f2(x|θ2) and πN

i (θi)

are the conventional priors. Because πN
i (θi) is typically im-

proper, we can write πN
i (θi) = cihi(θi), where hi(θi) is a non-

integrable function and ci is an arbitrary constant that cannot
be determined. Berger and Pericchi (1996) proposed replacing
BN

21(x) with the arithmetic intrinsic Bayes factor BAI
21(x), a par-

tial Bayes factor that is justified as follows. The sample x is split
into two parts, (x(�), x(n − �)). The part x(�), called a training
sample, is designed to convert the improper prior πN

i (θi) into a
proper posterior, that is,

πN
i

(
θi|x(�)

) = fi(x(�)|θi)π
N
i (θi)

mN
i (x(�))

, i = 1,2,

where x(�) is such that 0 < mN
i (x(�)) < ∞. With the remain-

der of the data, x(n − �), the Bayes factor is computed using
πN

i (θi|x(�)) as the prior. This gives the partial Bayes factor,

BP
21(x) =

∫
f2(x(n − �)|θ2)π

N
2 (θ2|x(�))dθ2∫

f1(x(n − �)|θ1)π
N
1 (θ1|x(�))dθ1

= BN
21(x)BN

12(x(�)).

Note that BP
21(x) corrects BN

21(x) with the term BN
12(x(�)), and

that the arbitrary constants c1 and c2 cancel out.
It should be noted that for a given sample x, we can consider

different training samples x(�), and hence there exists a mul-
tiplicity of partial Bayes factors, one for each training sample.
To avoid dependence on a particular training sample, Berger
and Pericchi first suggested considering all possible subsam-
ples x(�) for which there is no proper subsample satisfying the
inequalities 0 < mN

i (x(�)) < ∞ for any ci. They termed this
subsample a minimal training sample. Second, they considered
the arithmetic mean of BP

21(x) for all minimal training samples.
This produces the so-called “arithmetic intrinsic Bayes factor,”
defined as

BAI
21(x) = BN

21(x)
1

L

L∑
�=1

BN
12(x(�)),

where L is the number of minimal training samples contained
in the sample. Other ways of “averaging” BP

21(x) are possible,
but whereas the arithmetic mean produces priors for model se-
lection, other methods may not necessarily do the same.

Note that BAI
21(x) is not a Bayes factor. Furthermore, stability

of BAI
21(x) is also a matter of concern. Conceivably, for a given

sample x, the number of minimal training samples might be
small, and minor changes in the data could cause this number
to vary substantially. Moreover, the equality BAI

21(x) = 1/BAI
12(x)

is not necessarily satisfied, so the coherent equality Pr(M1|x) =
1 − Pr(M2|x) does not hold. To be coherent, it is important to
know whether BAI

21(x) corresponds to a Bayes factor for sensible
priors. If so, then consistency of the BAI

21(x) is ensured. With
the so-called intrinsic priors, the foregoing question has been
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asymptotically answered. There are priors π I
1(θ1) and π I

2(θ2)

for which the corresponding Bayes factor,

B21(x) =
∫
�2

f2(x|θ2)π
I
2(θ2)dθ2∫

�1
f1(x|θ1)π

I
1(θ1)dθ1

and BAI
21(x) are asymptotically equivalent under the two models

M1 and M2. Note that if we use intrinsic priors for computing
the Bayes factor instead of the improper priors that we started
from, then coherency is ensured. By equating the limit of BAI

21(x)

and B21(x) as n → ∞ under the two models, Berger and Peric-
chi showed that intrinsic priors satisfy the functional equations

EM1
x(�)|θ1

BN
12(x(�)) = π I

2(ψ2(θ1))

πN
2 (ψ2(θ1))

πN
1 (θ1)

π I
1(θ1)

and

EM2
x(�)|θ2

BN
12(x(�)) = π I

2(θ2)

πN
2 (θ2)

πN
1 (ψ1(θ2))

π I
1(ψ1(θ2))

.

The expectations in these equations are taken with respect to
f1(x(�)|θ1) and f2(x(�)|θ2); ψ2(θ1) denotes the limit of the max-
imum likelihood estimator θ̂2(x) under model M1 at point θ1,

and ψ1(θ2) denotes the limit of θ̂1(x) under model M2 at point
θ2.

For nested models, as is our case in variable selection, the
foregoing functional equations collapse into a single equation.
Although the solution (π I

1,π
I
2) to this single equation is not

unique, and the resulting class is not robust (Moreno 1997),
a sensible selection is to take the conditional intrinsic prior
for θ2 as

π I
2(θ2|θ1) = πN

2 (θ2)E
M2
x(�)|θ2

f1(x(�)|θ1)∫
�2

f2(x(�)|θ2)π
N
2 (θ2)dθ2

and the intrinsic prior for θ1 as π I
1(θ1) = πN

1 (θ1). (For a justifi-
cation for choosing this pair, see Moreno et al. 1998.)

3.1 Intrinsic Priors for Variable Selection

For each configuration γ , the Bayes factor BN
γ 1(y,X) com-

pares the model {Nn(y|Xβγ , σ 2
γ In),π

N(βγ , σγ )} with the

full model {Nn(y|Xα, σ 2In),π
N(α, σ )}. Because the sampling

model Nn(y|Xβγ , σ 2
γ In) is nested in Nn(y|Xα, σ 2In) we can

apply the intrinsic method to derive intrinsic priors for compar-
ing model Mγ and M1, for any γ ∈ �.

We first take an arbitrary but fixed point (βγ , σγ ) in the null
space, and then find the intrinsic prior for (α, σ ) conditional on
(βγ , σγ ). To do this, we note that a theoretical minimal training
sample for this problem is a random vector yts of dimension
k + 1 such that it is Nk+1(yts|Ztsβγ , σ 2

γ In) distributed under

the null model and is Nk+1(yts|Ztsα, σ 2In) distributed under the
full model. Here Zts represents a (k + 1) × k unknown design
matrix associated with yts, to which we return in Section 3.2.

Therefore, application of the standard intrinsic method yields
the formal expression for the conditional intrinsic prior,

π I(α, σ |βγ , σγ )

= πN(α, σ )

× Eyts|α,σ

Nk+1(yts|Ztsβγ , σ 2
γ In)∫

Nk+1(yts|Ztsα,σ 2In)πN(α, σ )dα dσ
.

The resulting distribution is given in the following lemma.

Lemma 1. The intrinsic prior for parameters α and σ condi-
tional on a fixed point (βγ , σγ ) is given by

π I(α, σ |βγ , σγ )

= Nk
(
α|βγ , (σ 2

γ + σ 2)W−1) 1

σγ

(
1 + σ 2

σ 2
γ

)−3/2

, (4)

where W = ZtZ and Z is a theoretical design matrix of dimen-
sions (k + 1)× k. The unconditional intrinsic prior for α and σ ,
obtained by integrating out βγ and σγ against πN(βγ , σγ ), is

π I(α, σ ) = cγ

∫
Nk

(
α|βγ , (σ 2

γ + σ 2)W−1)

× 1

σ 3
γ

(
1 + σ 2

σ 2
γ

)−3/2

dβγ dσγ .

For the proof see Appendix A.
We note that π I(α, σ |βγ , σγ ) is, by construction, a probabil-

ity density. In (4) it is factored as

π I(α, σ |βγ , σγ ) = π I(α|σ,βγ , σγ )π I(σ |σγ ),

so that the intrinsic prior for α, conditional on the null (βγ , σγ ),

depends on the nuisance parameter σ . The distribution of σ de-
pends only on σγ . The marginal of α,

π I(α|βγ , σγ )

=
∫

Nk
(
α|βγ , (σ 2

γ + σ 2)W−1) 1

σγ

(
1 + σ 2

σ 2
γ

)−3/2

dσ,

is an elliptical multivariate distribution with mean vector βγ .
Therefore, the intrinsic prior for α is centered at the null, which
seems a natural requirement for a sharp null hypothesis (Morris
1987). This requirement is not fulfilled for many of the variable
selection priors proposed in the literature.

Second-order or higher-order moments of α do not exist, be-
cause the second-order moment of the mixing distribution is
infinite. This implies that the intrinsic prior for α, conditional
on the null (βγ , σγ ), has a very heavy tail as expected for a
default prior.

The pair {πN(βγ , σγ ),π I(α, σ )} is called the intrinsic prior
for comparing Mγ and M1, and although they are improper, they
are well calibrated because both depend on the same arbitrary
constant cγ . Further, they are a well-established limit of proper
priors (Moreno et al. 1998).

3.2 Evaluating the Intrinsic Prior and the Model
Posterior Probabilities

The matrix W−1 in (4) is defined by the regressors of a theo-
retical training sample of minimal size for the full model k + 1.
A way of assessing W−1 is to use the original idea of the arith-
metic intrinsic Bayes factor (Berger and Pericchi 1996). This
entails averaging over all possible training samples of minimal
size contained in the sample. This would give the matrix

W−1 = 1

L

L∑
�=1

(
Zt(�)Z(�)

)−1
,
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where {Z(�), � = 1, . . . ,L} is the set of all submatrices of X of
order (k + 1) × k of rank k.

For the data (y,X), the Bayes factor for comparing models
Mγ and M1 with the intrinsic priors {πN(βγ , σγ ),π I(α, σ )} has
the formal expression

Bγ 1(y,X) =
∫

Nn(y|Xβγ , σ 2
γ In)π

N(βγ , σγ )dβγ dσγ

×
(∫

Nn(y|Xα, σ 2In)π
I(α, σ |βγ , σγ )

× πN(βγ , σγ )dβγ dσγ dα dσ

)−1

,

and from this expression, it clearly does not depend on any arbi-
trary constant. Computation of this Bayes factor is quite simple,
as we show in the next lemma, whose proof is straightforward
(and hence is omitted).

In what follows we partition the design matrix X as
X = (X0γ |X1γ ), where X1γ contains the column j of X if the
configuration γ is such that γj = 1. Therefore, the dimension of
X1γ is n × kγ , where kγ = ∑k

i=1 γi.

Lemma 2. The Bayes factor for comparing models

Mγ :
{
Nn(y|Xβγ , σ 2

γ In),π
N(βγ , σγ )

}

and

M1 :
{
Nn(y|Xα, σ 2In),π

I(α, σ )
}

is given by

Bγ 1(y,X)

= (|Xt
1γ X1γ |1/2(yt(In − Hγ )y

)(n−kγ +1)/2
Iγ

)−1
, (5)

where Hγ = X1γ (Xt
1γ X1γ )−1Xt

1γ ,

Iγ =
∫ π/2

0

dϕ

|Aγ (ϕ)|1/2|B(ϕ)|1/2Eγ (ϕ)(n−kγ +1)/2
,

B(ϕ) = (sin2 ϕ)In + XW−1Xt,

Aγ (ϕ) = Xt
1γ B−1(ϕ)X1γ ,

and

Eγ (ϕ) = yt(B−1(ϕ) − B−1(ϕ)X1γ A−1
γ (ϕ)Xt

1γ B−1(ϕ)
)
y.

Although here we consider only models with an intercept, so
that γ1 = 1, the comparisons can be extended to consider all
models. In this case we need a special calculation for the model
with no regressors, which comes as a corollary to Lemma 2.

Corollary 1. The Bayes factor for comparing the model

M0 :
{
Nn(y|0, σ 2

γ In),π
N(βγ , σγ )

}

and

M1 :
{
Nn(y|Xα, σ 2In),π

I(α, σ )
}
,

where M0 corresponds to the simplest model with no regressor,
is given by

B01(y,X)

=
(

(yty)(n+1)/2
∫ π/2

0

dϕ

|B(ϕ)|1/2E0(ϕ)(n+1)/2

)−1

, (6)

where

E0(ϕ) = ytB−1(ϕ)y.

For any γ ∈ �, the probability of Mγ for the intrinsic priors
is

Prc(Mγ |y,X) = Bγ 1(y,X)

1 + ∑
γ∈�,γ �=1 Bγ 1(y,X)

, (7)

where Bγ 1(y,X) is as given in (5) for any γ �= 0 and B01(D)

is as given in (6). Simulations presented in Section 5 show that
the intrinsic priors behave extremely well.

4. STOCHASTIC SEARCH

We have now developed a mechanism for ranking the candi-
date models based on their intrinsic posterior probabilities. To
now choose the “best” model, or to examine a range of good
models, we would like to rank the models by their posterior
probabilities. However, except in small problems, this is not
possible, because the number of models can be prohibitively
large. (For example, for a regression with three independent
variables x1, x2, and x3, if the squares and all interactions
were included in the models, then there would be 18 predic-
tor variables, not counting the intercept, which would result in
218 = 262,144 models.) Thus a search algorithm is needed.

Because we cannot calculate all of the posterior probabilities,
the next best action would be to draw independent samples from
a distribution Pr(Mγ |y,X). But this may also be impossible,
because it would entail the exhaustive calculation of all of the
posterior probabilities.

What is possible is to construct an MCMC algorithm with
Pr(Mγ |y,X) as the stationary distribution. Such an algorithm,
if properly constructed, would not only visit every model, but
also would visit the better models more often. Thus a frequency
count of visits to the models is directly proportional to the pos-
terior probabilities.

In theory, constructing of such an algorithm is easy. At iter-
ation t, if the chain is in model Mγ t

, then we draw a candidate
model from a candidate distribution G, say Mγ ′

t
, and move to

this new model with probability

min

{
1,

Pr(Mγ ′
t
|y,X)G(Mγ t

)

Pr(Mγ t
|y,X)G(Mγ ′

t
)

}
. (8)

If the draws from G are independent, then this is a reversible
ergodic Markov chain with stationary distribution Pr(Mγ |y,X).
[Note that the denominator of the probability in (7) cancels out
in (8) and hence does not have to be calculated. This is good,
because in large problems this sum may not be calculable.]

The one difficulty is specifying a good candidate distribu-
tion G. Although G can be completely arbitrary (e.g., can be
taken to be uniform on the model space), a completely arbitrary
G will almost certainly will not be a good choice. We want our
candidate distribution to be able to adequately explore the en-
tire space, so as to not get trapped in local modes, and to often
visit models that have a high posterior probability. To ensure
these properties, we construct our candidate distribution in two
parts. First, we do the following:
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1. Write the set of models as B = ⋃
i Bi, where

Bi = {
Mγ :γ = {1,γ ′},

γ ′ has exactly i components equal to 1
}
.

2. For fixed ν < 1, select a random sample of size ν × 2k−1

from B in such a way that 100 × ν percent is sampled
from each Bi. (The constant ν is selected so that ν × 2k−1

is a reasonable number.)
3. For the selected models, calculate the posterior proba-

bilities, pij, of model j in Bi. The probability
∑

j∈Bi
pij/∑

ij pij is an estimate of the posterior probability of Bi.

The estimated (and true) posterior probabilities can be highly
variable, with some close to 0. To ensure that we adequately
explore the model space, we add a second term to our can-
didate distribution to keep the chain “hot” at the beginning
of the search [similar in spirit to the simulated tempering of
Geyer and Thompson (1995)]. Thus at iteration t, the distribu-
tion G = (P̂0, . . . , P̂k) on the subsets Bi, i = 0, . . . , k, given by

P̂i ∝ 1

k + 1

1

log(t + 1)
+

∑
j∈Bi

pij

/∑
ij

pij

is our candidate distribution. Moreover, at each iteration when
we calculate a new Bayes factor, we update the second term.
The stochastic search is then done as follows:

1. At iteration t, choose a candidate model Mγ t′ by first se-
lecting Bi according to the distribution G and then select-
ing γ t′ at random from Bi.

2. With probability (8), move to Mγ t′ .

The candidate distribution estimates the distribution that
is proportional to the posterior probabilities and focuses the
search on subsets that have higher posterior probabilities. How-
ever, it moves around randomly in the subsets, allowing for
good mixing. As we show in the next section, the search al-
gorithm performs quite well.

5. EXAMPLES

In this section we look at a number of examples to exam-
ine the behavior of the intrinsic posterior probabilities and the

search algorithm. Example 1 verifies that the true model typi-
cally will have the maximum posterior probability. Examples
1 and 2 show that the posterior probabilities are a reason-
able tool for finding the true model, and that the stochastic
search finds models with high posterior probabilities. Exam-
ples 3 and 4 apply our method to some real data, illustrating its
usefulness.

Example 1. In this example we consider the full model to be

y = β0 + β1x1 + β2x2 + β3x2
1 + β4x2

2 + ε,

where ε ∼ N(0, σ 2). The xi values are generated uniformly in
the interval (0,10), and we included the squares to make it a bit
more difficult to find the true model.

We simulated 1,000 datasets, each with n = 10 observations,
using two different true models. In the first case (Table 1), we
generated data from the model

y = β0 + β1x1 + ε, (9)

with β0 = β1 = 1, and calculated the posterior probabilities of
all 24 = 16 models.

The performance of the intrinsic posterior probability is quite
good, as shown in Table 1. The true model had an average pos-
terior probability of .41 and was selected 57.9% of the time.
When the true model was not chosen, the alternates seemed
quite reasonable. In contrast, the performance of Mallows’ Cp

was not that good. It chose the correct model only 22.6% of the
time and when it did not choose the correct model, it tended
to choose more complex models. For example, it chose the full
model 9% of the time, and chose models with three regressors
almost 25% of the time.

In the second case (Table 2) we generated data from the
model

y = β0 + β1x1 + β2x2 + ε, (10)

with β0 = β1 = 1 and β2 = 2. The performance, in terms of
correctness of selection, is similar. We want to point out here
that the posterior probability selections tend to favor the smaller
models, in contrast to Cp, which tends toward larger models in
its incorrect choice.

Table 1. For Example 1, Average Posterior Probabilities, Percentage of Maximum Bayes Factor, and
Percentage of Maximum Mallows’ Cp, Corresponding to the Case n= 10, σ = 2

With True Model (9), 1,000 Simulations

Variables Average posterior Percent maximum Percent maximum
in model probability Standard deviation Bayes factor Cp

x1 .41 .213 .579 .226
x2

1 .259 .182 .250 .106
Intercept only .0969 .168 .104 <.001
x1, x2

1 .048 .0904 .016 .087

x1, x2
2 .0398 .06 .015 .077

x1, x2 .0387 .0489 .008 .062
x1, x2, x2

2 .0264 .0407 <.001 .045
x2, x2

1 .0257 .0389 .003 .036
x2 .0123 .0313 .004 .004
x2

2 .0121 .0258 .002 <.001

NOTE: All models contain an intercept term.
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Table 2. For Example 1, Average Posterior Probabilities, Percentage of Maximum Bayes Factor, and
Percentage of Maximum Mallows’ Cp, Corresponding to the Case n = 10, σ = 2

With True Model (10), 1,000 Simulations

Variables Average posterior Percent maximum Percent maximum
in model probability Standard deviation Bayes factor Cp

x1, x2 .309 .208 .419 .259
x2, x2

1 .215 .182 .220 .171

x1, x2
2 .11 .143 .097 .068

x2 .0961 .155 .104 .004

x2
1 , x2

2 .0787 .109 .054 .045

x2
2 .0594 .112 .053 .003

x1, x2, x2
1 .0355 .0741 .014 .146

x1, x2, x2
2 .0292 .0594 .008 .114

x2, x2
1 , x2

2 .0205 .041 .008 .080

x2, x2
2 .0157 .0554 .007 .005

NOTE: All models contain an intercept term.

Example 2. Our next example illustrates the effectiveness of
the stochastic search and the performance of the candidate dis-
tribution construction. We consider the 10-predictor model

y = β0 +
3∑

i=1

βixi +
3∑

i=1

τix
2
i +

∑
i>j

ηijxixj

+ η123x1x2x3 + ε, (11)

where ε ∼ N(0, σ 2). The xi values are generated uniformly
in the interval (0,10), and the true model is (10). There are
210 = 1,024 candidate models, and to check our search algo-
rithm, we calculated all of the Bayes factors.

Two cases are considered, corresponding to σ = 2 and σ = 5.
In the case of σ = 2, the true model, which has two predic-
tors, has posterior probability .449, almost equal to the total
posterior probability of all of the models with two predictors.
In fact, other than the true model, there are no other models
with a posterior probability >.080. Table 3 gives the results of
a 10,000-iteration search; it can be seen that the algorithm per-
forms extremely well, spending almost all of its time in the true
model.

In contrast, in the case of σ = 5, the posterior probabilities
of the models are more equal. For the same model as (11) but

Table 3. For Example 2, True Posterior Probabilities and Percentage of
Visits to the Top Five Models, Corresponding to the Cases n = 10,

σ = 2 or 5 With True Model (10), 1,000 Simulations

Model Posterior probability Proportion of visits

σ = 2

x1, x2 .449 .860
x1, x2, x2

1 .080 .035
x1, x2, x1x2 .070 .008
x1, x2, x2

2 .040 .011

x1, x2, x2
3 .035 .013

σ = 5

x1, x2 .136 .188
x1, x2

2 .075 .112
x2 .063 .075
x2

1 , x2 .051 .076

x2
2 .045 .065

NOTE: All models include the intercept term and are sorted by the true posterior probabilities.

with increased variance, the true model has a posterior prob-
ability of only .136, with competing models having posterior
probabilities somewhat closer than the case of σ = 2. Table 3
gives the posterior probabilities for the top five models and the
performance of the stochastic search. The true model is the one
that the search visits most, although the differences are not as
dramatic as in the case of σ = 2.

Example 3. For our next example, we look at an ancient and
oft-analyzed dataset, the Hald data. Although it is painful to
once again consider these data, doing so provides a comparison
of our procedure to other related procedures.

The Hald dataset comes from an experiment of the effect of
heat on the composition of cement (Wood, Steinour, and Starke
1932) and contains 13 observations on the dependent variable
(heat) and 4 predictor variables (which relate to the composi-
tion of the cement). Because there are only 24 = 16 possible
models, there is no need for a stochastic search, because we can
calculate all of the posterior probabilities. These are given in
Table 4.

We compare Table 4 with the findings of Berger and Pericchi
(1996), who compared these models using intrinsic Bayes fac-
tors and encompassing models. Based on pairwise compar-
isons, they concluded that “{x1, x2} is moderately preferred to
{x1, x4} and quite strongly preferred to {x3, x4}.” Any conclu-
sion derived from Table 4 is certainly in concert with these find-
ings; in fact, we would declare a strong preference for {x1, x2}
over both of those other models. Table 4 also agrees with the
conclusions of Draper and Smith (1981, sec. 6.1), who con-
cluded, based on R2, that the favored models are {x1, x2} and

Table 4. Posterior Probabilities for the Models of the Hald Data

Variables Posterior probability

x1, x2 .5224
x1, x4 .1295
x1, x2, x3 .1225
x1, x2, x4 .1098
x1, x3, x4 .0925
x2, x3, x4 .0120
x1, x2, x3, x4 .0095
x3, x4 .0013

NOTE: All other models had posterior probability <.00001.
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{x1, x4}, with their preference being {x1, x4} (based on the fact
that x4 is the single best predictor). Although {x1, x2, x4} also
had a high R2, Draper and Smith argued that because of the
high correlation between X2 and X4 (r24 = −.973), the variable
X4 should not be added to the equation. A similar high correla-
tion exists between X1 and X3.

George and McCulloch (1993) also analyzed the Hald
dataset. Their method is based on the posterior distribution of
the vector of configurations γ , and their results depend on the
chosen values for the hyperparameters of their prior distrib-
utions on the regression coefficients, the variance errors, and
the prior on γ . Some of their chosen hyperparameter values
favor the model with no regressors (intercept only) followed
by the model with only one regressor, and visited the model
{x1, x2} < 7% of the time. This possibly illustrates a shortcom-
ing of the George and McCulloch algorithm, in that it takes
the model with no regressors (not even an intercept) as the null
model in all comparisons. With this model as the reference,
the intercept-only model (which fits the mean) can appear very
significant. However, for other hyperparameter configurations,
their stochastic search procedure identified the model {x1, x2}
as one of the best models.

Example 4. Our last example uses the ozone data analyzed
by Breiman and Friedman (1985). (See App. B for a descrip-
tion of this dataset.) Using the ACE algorithm, Breiman and
Friedman identified a set of four predictors {x7, x8, x9, x10} that
yielded (for their data; our dataset is somewhat different) an R2

of .78 when the maximum R2 with all predictors is .79. Most
recently, Breiman (2001) remarked that in the 1980s, large lin-
ear regressions were run, using squares and interaction terms,
with the goal of selecting a good prediction model. However,
the project was not successful, because the false-alarm rate was
too high. We revisit this model selection problem to assess how
the intrinsic prior stochastic search will perform.

Preliminary examination of the data reveals a high degree of
multicollinearity, causing ill-conditioned design matrices. The
variables [temperature (◦F) measured at El Monte, CA and in-
version base temperature (◦F) at LAX] are highly correlated
with a number of other predictors, and are deleted from the pre-
dictor set.

Thus we have 10 predictor variables, and we first perform
a variable selection on the set of models made up of only the
10 predictors. In this case there are 210 = 1,024 models, so an
exhaustive calculation of posterior probabilities is possible—
we do not need to do a stochastic search. Of the n = 203 obser-
vations, we randomly selected 25 to hold out of the fitting set
to used to assess prediction, so we used 178 observations to fit
the models. The results are reported in Table 5.

The intrinsic-prior posterior probabilities identified a num-
ber of good models and stayed more with simple models (fewer
predictors) than with complex models. Also, the top five models
all contain variable x7, which Breiman and Friedman identified
as “the most influential predictor variable.” We also note that all
of the models picked out by the intrinsic-prior posterior prob-
abilities had better prediction mean squared error than that of
Breiman and Friedman, as well as better R2 [and close to the
full model (linear predictors only) R2 of .708].

Next, we try to improve prediction by taking the full model
to be all linear, quadratic, and two-way interactions, giving us

Table 5. Posterior Probabilities for the Models for the Ozone Data
Using Only Linear Predictors

Posterior Average prediction
Variables probability R2 error

x6, x7, x8 .491 .686 .992
x1, x6, x7, x8, x10 .156 .699 .974
x1, x6, x7, x8, x9 .041 .696 .972
x1, x6, x7, x8 .028 .691 .964
x1, x4, x6, x7, x8 .027 .694 .968
x7, x8, x9, x10 <.00001 .669 1.056

NOTE: All other models had posterior probability <.00001. The final column is the square root
of the mean of the squared prediction errors of the 25 observations held out of the fitting set.
The last model (x7, x8, x9, x10) is the one chosen by the Breiman–Friedman ACE algorithm.

10 + 10 + 45 = 65 predictors and 265 = 36,893,488,147,419,

103,232 models. Enumeration of the posterior probabilities is
no longer possible, and we now do a stochastic search as out-
lined in Section 4. We ran our search for 50,000 iterations, and
found three models that were visited most often by the search.
The performance of these model is summarized in Table 6.

A number of other models were visited with frequencies in
the .02–.09 range, but the three given in Table 6 are the best
performers. It is interesting that the search found such a sim-
ple model as {x1x9, x1x10, x4x6, x5x8, x6x7} to be one of the best
performers. Moreover, we see that the models tend to use vari-
ables x7–x10 more often than the other variables. Both the R2

and prediction errors of the three models in Table 6 are very
good, with the third model being an exceptionally good pre-
dictor. Figure 1 shows a scatterplot of the actual ozone and the
predicted ozone, using the prediction data, for both the original
model of Breiman and Friedman and the third model in Table 6.
It turns out that the third model alone does a slightly better job
of prediction than the average of the top three models. From
Figure 1, we see that the third model is quite an improvement
over the original model (especially for the lower ozone con-
centrations) and somewhat (but not totally) alleviates the prob-
lem of overprediction. Overall, the prediction error is reduced
by 22%.

6. DISCUSSION

We have presented two distinct parts of a method to select a
linear model in regression, where each part can function inde-
pendently. First, we wanted to construct an objective Bayesian
criterion for model selection, which was accomplished using an
intrinsic prior to calculate posterior probabilities. Second, the
model selection criterion was used to direct a search algorithm
that was based on a Markov chain with stationary distribution
proportional to the criterion.

It should be clear that either part of our method can be used in
other settings. For example, we can use other priors to calculate
the posterior probabilities for model selection, and can use other
criteria (e.g., R2) to direct the stochastic search.

We also note that the approach that we take here with re-
spect to model comparisons is fundamentally different from
that of George and coworkers. When evaluating a model Mγ

against M1, we are effectively testing the null hypothesis H0:
the true model is Mγ against the alternative HA: the true model
is M1, using a prior centered on the null hypothesis. Thus each
candidate model is the null model for its comparison, and the
comparison is against the full model in which all models are
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Table 6. Posterior Probabilities for the Top Three Models for the Ozone Data Using All Linear,
Quadratic, and Two-Way Interactions

Proportion Average prediction
Variables of visits R2 error

{x2, x2
1 , x2

7 , x2
9 , x1x5, x2x6, x3x7, x4x6, x6x8, x6x10} .214 .758 .873

{x1x9, x1x10, x4x6, x5x8, x6x7} .122 .718 .908
{x6, x2

5 , x2
7 , x2

9 , x1x10, x4x7, x4x8, x5x10, x6x8} .114 .748 .818

NOTE: The final column is the square root of the mean of the squared prediction errors of the 25 observations held out of the fitting set.

nested. In comparison, George and coworkers tested the hy-
potheses H0: the true model has α = 0 against HA: the true
model is Mγ . Although this testing setup has worked well in
practical problems, we believe that testing against a model with
all zero regressors is not appropriate, and rather each candidate
model should be considered as its own null.

We reiterate our point from Section 1. Model selection is a
multiple testing problem in which we test whether any possi-
ble reduction in complexity of the full model is plausible. We
can do this with the method presented here and obtain a com-
plete ranking of the models (in smaller problems), or identify
a suite of acceptable models (in larger problems). Unless the
comparisons are set up to allow this, simultaneous model com-
parisons may not be possible (as with the encompassing model
approach; see Moreno 2005).

Using the Metropolis–Hastings algorithm to drive a stochas-
tic search, especially one that is based on intrinsic posterior
probabilities, is a strategy that has not had much investiga-
tion. Some reviewers of this work expressed concerns about
the properties of the procedure, and we now address those con-
cerns.

Intrinsic Priors and Variable Selection. Are the intrinsic
priors good tools for variable selection? Intrinsic priors are cur-
rently the unique available objective priors for variable selec-
tion. In fact, default priors typically used for estimating model
parameters are improper, and thus they are not suitable for
computing model posterior probabilities. The commonly used

Figure 1. Scatterplot of Observed versus Predicted, Using the Pre-
diction Dataset, for the Breiman–Friedman Model (◦) and the Third
Model of Table 6 (•).

“vague priors,” a limit of a sequence of conjugate priors, is typ-
ically an ill-defined notion.

In contrast, intrinsic priors are well defined, depend on the
sampling model structure, and do not contain any tuning pa-
rameters to be adjusted. This last point is important because
variable selection is quite sensitive to the values assigned to
the hyperparameters. (See, e.g., the analysis in George and
McCullogh 1993 of the Hald data; their results depend heav-
ily on the four sets of hyperparameter values chosen.)

The essence of the variable selection problem is that of re-
ducing the complexity of the full model; hence one wants to
do multiple comparisons with different reduced models. The
intrinsic prior for the full model parameters is “centered” at
the reduced model under consideration (a widely accepted de-
sirable property) and has the expected heavy tails of a default
prior.

Stochastic Search With Many Models. When there are very
many models and the evaluation of all models becomes unfeasi-
ble, is the notion of stochastic search valuable? It is important to
realize that the goal of a search is somewhat different from the
goal of estimating a posterior distribution (the objective func-
tion in our case). We are interested in finding good models from
the (sometimes) almost infinite number of candidates, and are
less interested in estimating all of the modes. For example, in
doing multiple runs we do not get the same models that appear
in Table 6. However, all of the good models that we get are su-
perior to the ones that have been found previously. As the goal
is to find good predictors, with much less emphasis on the ac-
tual form of the model, the goal is satisfied.

This may not be a particularly pleasing answer, but it is
a practical one. Brown et al. (2002), in running a stochastic
search on a large model space, noted that “it is also possible to
find promising γ -vectors (the vectors that define the submodel)
even though one has explored a very small fraction of the space
of 2p possibilities.”

Algorithm Efficiency. Is the proposed algorithm efficient?
The stochastic search is a straightforward application of the in-
dependent Metropolis–Hastings algorithm, an algorithm with
excellent convergence properties. In implementation, one diffi-
culty arises in choosing an appropriate candidate distribution.
In large-scale searches the candidate has to be able to both find
states with large values of the criterion, and to escape from
modes to be able to adequately explore the space.

The two-part construction proposed here seems to be able to
do this. Moreover, an independent Metropolis algorithm does
not suffer from some of the disadvantages of a random-walk
algorithm, in that it does not have a tendency to get stuck in
local modes. We are also using a changing candidate distribu-
tion, one that is adapting to look more like the target. This also
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increases efficiency while preserving ergodicity. (Although the
candidate distribution changes at each iteration, each candidate
results in a kernel that satisfies the detailed balance condition
with the same stationary distribution, resulting in an ergodic
Markov chain.)

The fact remains, however, that we are searching large com-
plex spaces, and cannot hope to find every “good” model. More-
over, as a reviewer noted, the complexity of the space is a factor
in determining how many iterations to run. Rigorous evalua-
tions of these algorithms, in terms of convergence and mixing,
are quite difficult to do and, for the most part, have not been
done (Jerrum and Sinclair 1996). These same authors also make
the point that careful application of the Metropolis–Hastings al-
gorithm is among the better strategies available.

APPENDIX A: PROOF OF LEMMA 1

Consider a theoretical training sample for the full model, say
{yj, x1j, . . . , xkj, j = 1, . . . , k + 1}, that is, the vector y ∼Nk+1(y|
Zα, σ 2In). The intrinsic prior for α,σ conditional on βγ , σγ is given
by

π I(α, σ |βγ , σγ ) = πN(α, σ )Ey|α,σ B1γ (y),

where the expectation is taken with respect to the density
Nk+1(y|Zα, σ 2In). This expectation is easily found with the help of
the equality

∫

Rn

(
ytKy

2∏

i=1

Nn(y|Xθ i, σ
2
i In)

)
dy

= σ 2
2 tr(K)|XtX|−1/2

(2πσ 2
1 )(n−k)/2(1 + σ 2

2 /σ 2
1 )(n−k+2)/2

× Nk
(
θ2|θ1, (σ 2

1 + σ 2
2 )(XtX)−1)

,

where K is an n × n symmetric matrix, X is a n × k matrix of rank k
such that KX = 0, and θ i are k-dimensional vectors for i = 1,2.

APPENDIX B: DESCRIPTION OF OZONE DATA

This is a description of the ozone data taken from the BLSS data
library. The dataset comprises Los Angeles ozone pollution data from
1976, where each observation is 1 day. There were 366 observations
on 13 variables. Because of missing data, only 203 cases were used
here. The full data are available at http://www.fmrp.usp.br/augusto/ps/
breiman/breiman.html.

Two predictor variables that were in the original dataset—tempera-
ture (degrees F) measured at El Monte, CA and inversion base

temperature (degrees F) at LAX—were not used here because of
multicollinearity considerations.

[Received October 2002. Revised March 2005.]
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