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Locally Weighted Regression: An Approach to 
Regression Analysis by Local Fitting 

WILLIAM S. CLEVELAND and SUSAN J. DEVLIN* 

Locally weighted regression, or loess, is a way of estimating a regression surface through a multivariate smoothing procedure, 
fitting a function of the independent variables locally and in a moving fashion analogous to how a moving average is computed 
for a time series. With local fitting we can estimate a much wider class of regression surfaces than with the usual classes of 
parametric functions, such as polynomials. The goal of this article is to show, through applications, how loess can be used for 
three purposes: data exploration, diagnostic checking of parametric models, and providing a nonparametric regression surface. 
Along the way, the following methodology is introduced: (a) a multivariate smoothing procedure that is an extension of 
univariate locally weighted regression; (b) statistical procedures that are analogous to those used in the least-squares fitting of 
parametric functions; (c) several graphical methods that are useful tools for understanding loess estimates and checking the 
assumptions on which the estimation procedure is based; and (d) the M plot, an adaptation of Mallows's C, procedure, which 
provides a graphical portrayal of the trade-off between variance and bias, and which can be used to choose the amount of 
smoothing. 

1. INTRODUCTION 

Locally weighted regression, or loess, is a procedure for 
fitting a regression surface to data through multivariate 
smoothing: The dependent variable is smoothed as a func- 
tion of the independent variables in a moving fashion anal- 
ogous to how a moving average is computed for a time 
series. The basic framework is this. Let yi (i = 1, . . . , 
n) be measurements of the dependent variable, and let xi 
-- (xil, . . . , xip), i = 1, . . . , n, be n measurements of 
p independent variables. Suppose that the data are gen- 
erated by yi = g(xi) + E ~ .As in the most commonly used 
framework for regression, we suppose that the E~ are in- 
dependent normal variables with mean 0 and variance a2. 
In the usual framework, we would also suppose that g is 
a member of a parametric class of functions, such as poly- 
nomials, but here we will suppose only that g is a smooth 
function of the independent variables. With local fitting 
we can estimate a wide class of smooth functions, much 
wider, in fact, than what we could reasonably expect from 
any specific parametric class of functions. 

Smoothing by local fitting is actually an old idea that is 
deeply buried in the methodology of time series, where 
data measured at equally spaced points in time were 
smoothed by local fitting of polynomials (Macaulay 1931). 
Watson (1964), Stone (1977), and Cleveland (1979) intro- 
duced local-fitting methods into the more general case of 
regression analysis. Hastie and Tibshirani (1986) took local 
fitting one step further; in any situation where a dependent 
variable depends on independent variables, we can carry 
out a local likelihood procedure. Cleveland (1979) intro- 
duced the specific local-fitting methodology that is the 
subject of this article, locally weighted regression, and 
Devlin (1986) expanded the methodology and addressed 

* William S. Cleveland is in Statistics Research, AT&T Bell Labo- 
ratories, Murray Hill, NJ 07974. Susan J. Devlin is in Measurements 
Research. Bell Communications Research. Piscatawav. NJ 08854. This 
article benefited greatly from discussions with Trevor ast tie, who shared 
his substantial experience with the backfitting algorithm. The authors 
are grateful to John Chambers, Trevor Hastie, Jon Kettenring, and Colin 
Mallows for helpful suggestions about the methods. They also thank two 
editors and three referees whose comments led to a substantial improve- 
ment of the exposition. 

mathematical properties; in this article we further expand 
the methodology.- he original methodology also included 
a robust version in which M estimation is incorporated so 
that the assumption of normality can be relaxed, but we 
do not address robustness here. 

The applications in this article illustrate three major uses 
of the local-fitting methodology. The first is simply to pro- 
vide an exploratory graphical tool; graphing smooth sur- 
faces that are fitted to the data can give us insight into the 
behavior of the data and help us choose parametric models. 
The second is to provide additional regression diagnostics 
to check the adequacy of parametric models fitted to the 
data. The third is to use the loess estimate as the estimated 
regression surface, without resorting to a parametric class 
of functions. While presenting these three uses we intro- 
duce new methods and review and apply some old ones. 

In Section 2 we introduce the multivariate smoother: It 
is a straightforward extension of the univariate loess 
smoother discussed by Cleveland (1979). Section 3 has an 
application to velocity measurements of galaxy NGC 7531. 
Locally weighted regression is used to fit a velocity surface 
as a function of position on the celestial sphere. In Section 
4 we discuss the statistical properties of loess. Fortu- 
nately, analogs of the statistical procedures used in para- 
metric function fitting-for example, analysis of variance 
(ANOVA) and t intervals-involve statistics whose dis- 
tributions are well approximated by familiar distributions. 
Section 5 has an application to measurements of ozone 
concentration and three meteorological variables. Locally 
weighted regression is used to provide a regression surface 
and to carry out prediction. In Section 6 we introduce the 
M plot, using Mallows's Cp idea (Mallows 1966, 1973) with 
appropriate modifications for the new context, and graph- 
ing an estimate of mean squared error against degrees of 
freedom of the fit. The use ofthe M is to 

the amount of smoothing, that is, the neighbor- 
hood size of the multivariate smoother. Section 7 has an 
application to data from an industrial experiment mea- 
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suring the abrasion loss of rubber specimens. A locally 
weighted regression analysis suggests that there is no in- 
teraction between the two independent variables, so the 
regression surface is estimated by additive fitting (Hastie 
and Tibshirani 1986). Section 8 has an application to mea- 
surements of NO, in engine exhaust. The history of these 
data includes an estimation of the regression surface by 
alternating conditional expectations (ACE) (Breiman and 
Friedman 1985), a procedure that transforms the depen- 
dent variable and fits an additive surface to the data. An 
analysis by locally weighted regression shows that the 
regression surface of these data is such that no nontrivial 
transformation of the data could lead to additivity. Section 
9 describes simulations that investigate the distributional 
approximations of Section 4. Section 10 discusses quali- 
fications to the methodology and discusses other methods. 

We also introduce graphical methodology in addition to 
the M plot. Because it is easier to discuss these methods 
with graphs at hand, however, we introduce this meth- 
odology in the applications sections. Sections 5 and 7 set 
forth conditioning plots, Section 7 presents component- 
residual plots, and Section 5 discusses diagnostic plots for 
checking the assumptions made about ci. 

The shortened name loess has some semantic substance. 
A loess (pronounced "15' is") is a deposit of fine clay or 
silt along river valleys; in a vertical cross-section of earth, 
a loess would appear as a narrow, curve-like stratum run- 
ning through the section. 

2. MULTIVARIATE SMOOTHING 
Locally weighted regression provides an estimate g(x) 

of the regression surface at any value x in the p-dimen- 
sional space of the independent variables. Let q be an 
integer, where 15 q 5 n. The estimate of g at x uses the 
q observations whose xi values are closest to x. That is, 
we define a neighborhood in the space of the independent 
variables. Each point in the neighborhood is weighted ac- 
cording to its distance from x;  points close to x have large 
weight, and points far from x have small weight. A linear 
or a quadratic function of the independent variables is 
fitted to the dependent variable using weighted least squares 
with these weights; g(x) is taken to be the value of this 
fitted function at x. Of course, we must do this compu- 
tation for each value of x for which we want g(x), and thus 
loess is a computer-intensive method, but algorithms exist 
for doing the computations efficiently (Cleveland, Devlin, 
and Grosse 1988). 

To carry out locally weighted regression we must have 
a distance function p in the space of the independent vari- 
ables. For one independent variable we let p be Euclidean 
distance. For the multiple-regression case it is sensible to 
take p to be Euclidean distance in applications where the 
independent variables are measurements of position in 
physical space; for example, the independent variables 
might be geographical location and the dependent variable 
temperature. If the independent variables are measured 
on different scales, then it is typically sensible to divide 
each variable by an estimate of scale before applying a 
standard distance function. For the applications of Sec- 

tions 5 and 7, we divide each independent variable by its 
standard deviation and then use Euclidean distance. (In 
applications where one or more of the univariate sample 
distributions of the independent variables has outliers, it 
is sensible to standardize with a resistant measure of scale 
such as the interquartile range.) For the application of 
Section 3 we use Euclidean distance without adjusting the 
scale. 

Locally weighted regression also requires a weight func- 
tion and a specification of neighborhood size. The weight 
function used in all of our examples is the tricube function: 
W(u) = (1 - for 0 5 u < 1, and 0 otherwise. We u ~ ) ~  
now show how the weight function is used. Let d(x) be 
the distance of the 9th-nearest xi to x. Then the weight 
for the observation ( y , , xi) is 

Thus wi(x) as a function of i is a maximum for xi close to 
x, decreases as the xi increase in distance from x, and 
becomes 0 for the 9th-nearest xi to x. Instead of thinking 
in terms of q, the number of points in the neighborhood, 
we think in terms o f f  = qln, the fraction of points in the 
neighborhood. As f increases, g(x) becomes smoother. 
The M plot, which is discussed in Section 6, is an aid to 
choosing f in applications. 

If locally linear fitting is used, the fitting variables are 
just the independent variables. If locally quadratic fitting 
is used, the fitting variables are the independent variables, 
their squares, and their cross-products. Locally quadratic 
fitting tends to perform better in situations where the 
regression surface has substantial curvature, such as local 
maxima and minima (e.g., see the application in Sec. 3). 

3. NGC 7531 VELOCITY DATA: AN APPLICATION 
ILLUSTRATING THE BEHAVIOR OF THE 

MULTIVARIATE SMOOTHER 
NGC 7531 is a spiral galaxy in the Southern Hemisphere 

with a very bright inner ring. Buta (1987) made measure- 
ments of the velocities of this galaxy at a collection of 
points in the celestial sphere that covered about 200 arc 
seconds in the north-south direction and about 135 arc 
seconds in the east-west direction. The measurements were 
derived from nine spectrograms taken at Cerro Tololo 
Inter-American Observatory in July and October 1981. 
Each spectrogram was made along a narrow slit, and the 
velocity measurements were made at points along the slit 
by observing the redshift. The locations of these velocity 
measurements are shown in Figure 1.As can be seen from 
the figure, there are seven unique positions of the nine 
slits, since two positions were used twice; the seven unique 
slit lines intersect at a point in the middle of the obser- 
vation region. The maximum velocity measurement is 1,785 
kilometers per second and the minimum is 1,409 kmlsec. 
The data are scattered because of measurement noise and 
do not form a smooth velocity field. 

The velocity surface was estimated by locally quadratic 
fitting with f = .4. Figure 2 is a contour plot. The fitted 
surface does a good job of following the underlying pattern 
in the data. For example, the surface follows the peaks 



Journal of the American Statistical Association, September 1988 

- 70 -30 10 50 90 

+ East East-West Coordinate (Arc Seconds) 

Figure 1.NGC 7531 Velocity Data. The plot shows the locations in 
the celestial sphere at which the NGC 7531 velocity measurements 
were made. 

and troughs in the data: The maximum value of the esti- 
mates at the positions where the measurements were made 
is 1,757 kmtsec, and the minimum value is 1,440 kmtsec. 
When locally linear fitting is used, the fit is poorer and 
cannot track the substantial curvature unless f is taken to 
be very small, about . l ,  in which case the estimated surface 
is very noisy. 

The velocity pattern revealed by the contours is inter- 
esting. There appears to be an axis of symmetry of about 
108" (the axis is shown by the dotted line in Fig. 2). As 
we move from north to south along this axis, the velocity 
increases by about 320 kmtsec. Suppose that the only mo- 
tions of the galaxy (relative to the earth) were a rotation 
about an axis through its center and a recession due to the 
expansion of the universe. Then the velocity surface would 
be linear, the contours would be straight lines parallel to 
the projection of the axis of rotation on the viewing plane 
from the earth, and the velocity along this projection would 
be equal to the recession velocity. Figure 2 does not follow 
such a pattern. The velocity is not linear along the 108" 
axis: As we move from the center outward along the axis, 
the rate of change of the velocity decreases rather than 
staying constant. Furthermore, the contours are curved, 
bending one way below the 1,580 kmtsec contour and the 
other way above this contour. Nevertheless, the contours 
suggest that the predominant motion of the galaxy (aside 
from the recession) is circular. The motion superimposed 
on this rotation, which results in the bending of the con- 
tours, is not yet known (Buta 1987). 

+ East East -West Coordinate (Arc Seconds) 

Figure 2. NGC 7531 Velocity Data. The velocity surface was esti- 
mated by locally quadratic fitting with f = .4. The figure shows surface 
contours. The dotted line has a slope of 10V; the surface is roughly 
symmetric about this line. 

4. STATISTICAL PROPERTIES 

The loess estimate, g(x), is a linear combination of the 
Yi, 

where the li(x) depend on xk for k = 1, . . . , n, W, p,  
and f ,  but not on they,. Let j, = g(x,) be the fitted values, 
let 2, = y, - ji be the residuals, and let y = (y,, . . . , 
yn)', j = ( j l ,  . . . , j,)', and 2 = ( i l ,  . . . , 2,)'. Since 
each ji is a linear combination of the elements of y, we 
have that j = Ly, where L (locally weighted regression) 
is an n x n matrix and 2 = ( I  - L)y, where I is the n 
x n identity matrix. This is analogous to parametric least 
squares: For least squares, the fitted values are Gy, where 
G (Gauss) is the projection operator onto the space spanned 
by the fitting variables. If we apply both G and L to the 
values of one of the fitting variables, we get the same 
values back. One way to write this is GG = G and L G  
= G. But unlike G,  L is neither symmetric nor idempotent 
(Devlin 1986). 

There are three key ingredients for discussing the sam- 
pling variability of the loess estimate: (a) that g(x) is a 
linear combination of the y,; (b) the assumption that y has 
a normal distribution; and (c) the assumption that g(x) 
estimates g with no bias. For locally linear fitting the as- 
sumption of no bias can only be exactly true when g is 
linear, and for locally quadratic fitting it can only be ex- 
actly true when g is quadratic. Nevertheless, the goal of 
part of the diagnostic checking (discussed in Sec. 5) and 
the M plot (discussed in Sec. 6) is to find estimates with 
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negligible bias. Note that lack of bias also underlies the 
distributional results of parametric regression. 

The major conclusion of this section is that several sta- 
tistics defined analogously with those used in fitting para- 
metric functions by least squares have distributions that 
are well approximated by those used in parametric regres- 
sion. This is good news, because familiar techniques can 
thus be used in making inferences based on loess. In the 
remainder of this section we present the distributional ap- 
proximations, and in Section 9 we describe simulations 
that studied the quality of the approximations. 

4.1 	 Distributions of Residuals, Fitted Values, and 
Residual Sum of Squares 

Because of the linearity and normality, 9 and 2 have 
normal distributions with covariance matrices a2LL' and 
a2(I - L)(I - L)', respectively. Now 

n 


2'2 = x 2f = residual sum of squares. 
i =  1 

Because of the unbiasedness, E(2'2) = a2tr(I - L)'(I -
L), and we can estimate a2by 

e2= 2'2ltr(I - L)(I - L)'. 

Thus, since the variance of g(x) is 

we can estimate it by 

We can approximate the distribution of a quadratic form 
in normal variables such as 2'2 by the distribution of a 
constant multiplied by a x2variable; the degrees of free- 
dom and the constant are chosen so that the first two 
moments of the approximating distribution match those 
of the distribution of the quadratic form (Kendall and 
Stuart 1977). Let 61 = tr(I - L)(I - L)' and let 62 = 
tr[(I - L)(I - L)'I2. Using this method of approximation, 
the distribution of (6:B2)l(62a2) is approximated by a x2 
distribution with 6:/62 df, and the distribution of (g(x) -
g(x))l&(x) is approximated by a t distribution with 6:lb2 
df. We can use this result to get approximate confidence 
intervals for g(x) based on g(x). 

4.2 	 Analysis of Variance 

Suppose that Ny and Ay are two vectors of fitted values 
for two regression procedures. We think of N as yielding 
a fit for a null hypothesis and A as yielding a fit for an 
alternative hypothesis. For example, N might be linear 
least squares so that N = G and A might be loess so that 
A = L, or A might be loess with a small value of f ,  say 
.3, and N might be loess with a larger value of f ,  say .9, 

that = L.9 and A = L.3' Let y'RNy = ''(I - N)(z 
- N)'y and y t R ~ y= y'(I - A)(z - A)'y be the 
sum of Squares of the two fits. If we want to test N against 
A, the likelihood ratio test leads us to (ytRNy)l(y'RAy) 

> c. Thus we will use in analogy with ANOVA a test based 
on (ytRNy - y'RAy)lytRAy.In this test the reduction due 
to A in the residual sum of squares is compared with the 
residual sum of squares of A. [Devlin (1986) discussed a 
somewhat different approach to testing for the special case 
where N = G.] Let v1 = tr(RN- RA),v2 = tr(RN- RA)', 
61 = tr RA, and d2 = tr R i .  The idea is to use the two- 
moment x2approximation for the numerator of the afore- 
mentioned statistic and the denominator, and approximate 
the test statistic by an F distribution. That is, 

is the test statistic and its distribution is approximated by 
an F distribution with v:lv2 and 6:/62 df. We refer to v1 as 
the numerator divisor of the F test and to v:lv2 as the 
numerator degrees of freedom. Similar terminology holds 
for 61 and 6:/d2. 

5. OZONE AND METEOROLOGICAL DATA: 
AN APPLICATION ILLUSTRATING THE USE OF 
THE STATISTICAL PROPERTIES, DIAGNOSTIC 
CHECKING, AND CONDITIONING PLOTS 

The data in this application are 111 measurements of 
four variables-ozone (an air pollutant), solar radiation, 
temperature, and wind speed-on 111days between May 
1and September 30, 1973, at sites in the New York City 
metropolitan region (Bruntz, Cleveland, Kleiner, and 
Warner 1974). We analyzed these data to describe the 
dependence of ozone on the meteorological variables so 
that ozone concentrations can be predicted from forecasts 
of the meteorology. Figure 3 is a scatterplot matrix of the 
data. The first step in the analysis of these data was to 
smooth ozone as a function of the meteorological variables 
by a locally linear fitting with f = .4. 

Sdar Radiation 

Figure 3. Ozone and Meteorological Data. The figure is a scatterplot 
matrix of 111 measurements of ozone, wind speed, temperature, and 
solar radiation. The goal is to predict the ozone concentrations from 
the meteorological variables. 

0 
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The loessial methodology discussed in this article widens 
the domain of applicability compared with the much-prac- 
ticed parametric-function fitting; nevertheless, the meth- 
odology is still based on certain critical assumptions. One 
is that the errors, ci, are independently and normally dis- 
tributed with constant variance. Another is that the fitted 
function follows the pattern of the data, that is, provides 
a nearly unbiased estimate. Such assumptions must be 
checked. When assumptions are violated we can often take 
corrective actions similar to those used in parametric 
regression. There already exists a wealth of diagnostic pro- 
cedures for regression models (Belsley, Kuh, and Welsch 
1980; Chambers, Cleveland, Kleiner, and Tukey 1983; 
Cook and Weisberg 1982; Daniel and Wood 1971). Much 
of it is applicable to locally weighted regression; for ex- 
ample, one can make a normal probability plot of ti to 
check the normality assumption, make a plot of Ici( against 
ji to check the assumption of a constant variance, and 

-3 - 2  	 - 1  0 1 2 3 

Normal Quantiles 

Fitted Values 

Figure 4. Ozone and Meteorological Data. Ozone was regressed on 
the meteorological variables using locally linear fitting and f = .4. The 
top panel is a normal probability plot of the residuals. The bottom panel 
is a graph of the absolute residuals against the fitted values; the smooth 
curve is a loess fit to the data of the plot, with f = 213. The plots show 
nonnormality and a dependence of variance on the level of the de- 
pendent variable. 

graph ti against the independent variables to check for 
bias. 

Figures 4 and 5 are diagnostic plots for the locally linear 
fit to the ozone data. The top panel of Figure 4 is a normal 
probability plot of the ti.The curvature suggests that the 
ci have a distribution that is skewed to the right. The 
bottom panel of Figure 4 is a plot of (tilversus ji.The 
smooth curve is a locally linear fit to the points of the plot 
with f = Q .  The plot suggests that the variance of ci de-
pends on the level of g. Figure 5 shows plots of ti against 
the independent variables. The curves on the graphs are 
locally linear fits with f = $. No distortion appears in the 
top panel, but a small effect appears in the middle panel 
and a more serious one appears in the bottom panel, which 
suggests that the estimated surface is not following the 
pattern in the data. Of course, it is possible that the dis- 
tortion is also causing the inadequacies in Figure 4. 

Solar Radiation 

O 0 
-50 1 I I 

60 80 100 

Temperature 

O 0 
-50 I I I I 

5 10 15 20 

Wind Speed 

Figure 5. Ozone and Meteorological Data. The residuals for the ozone 
data are graphed against the independent variables; the smooth curves 
are loess fits to the data of the plots, with f = 213. The plots indicate 
that the estimated regression surface does not fit the data. 
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We could reduce the distortion by decreasing the value 
of f ,  which is .4. But since f is already fairly small, and 
since the fitted surface has substantial curvature, we de- 
cided to combat the distortion by switching to locally quad- 
ratic fitting with f = .8. The distortion disappeared, but 
the inadequacies of Figure 4 remained. Thus we took the 
cube roots of the ozone concentrations and again com- 
puted a locally quadratic fit with f = .8. This estimate 
passed the diagnostic checks. 

Figures 6-8 are three-variable conditioning plots for the 
locally quadratic fit. In each panel of Figure 6, g is graphed 
against temperature for fixed values of solar radiation and 
wind speed, and confidence intervals (computed as de- 
scribed in Sec. 4.1) are shown at five values of tempera- 
ture. For example, in the panels of the bottom row, solar 
radiation is 50 langleys; in the panels of the leftmost col- 
umn, wind speed is 5 miles per hour. Figures 7 and 8 graph 
g against solar radiation and wind speed, respectively, for 
fixed values of the other variables. The conditioning plots 
show clearly the nonlinearity of the regression surface and 
the interaction among the independent variables. 

One major reason for fitting a regression surface to 
ozone data is prediction, either retrospective or prospec- 
tive. We want to predict the severity of ozone pollution 
from actual or predicted values of the meteorological vari- 
ables. For example, during the period of measurement, 
May 1-September 30, 1973, there were many days with 
missing ozone measurements because of malfunctioning 
equipment. Two of these days, August 10 and 11, followed 
three days of relatively high concentrations, 122, 89, and 
110 parts per billion (ppb), all of which were above the 

Wind Speed 

5 10 15 

Temperature 

Figure 6. Ozone and Meteorological Data. Because of the problems 
indicated by the diagnostic plots in Figures 4 and 5, ozone was trans- 
formed by cube roots and locally quadratic fitting with f = .8 was used. 
This figure shows a conditioning plot. Each panel shows a slice of the 
regression surface as a function of temperature for fixed values of solar 
radiation and wind speed; the vertical lines are 95% confidence inter- 
vals. 

Wind Speed 

5 10 15 

Solar Radiation 

Figure 7. Ozone and Meteorological Data. Each panel of this con- 
ditioning plot shows a slice of the regression surface as a function of 
solar radiation for fixed values of ternperature and wind speed. 

federal standard of 80 ppb. Did the pollution episode con- 
tinue on these two days, or was it reduced? We can use 
the loess surface to estimate the missing ozone concentra- 
tions from the meteorological measurements. The right 
and left endpoints of approximate 95% confidence inter- 
vals, all on the ppb scale, are the following: August 10-
68 and 97; August 11-34 and 57. Thus ozone might have 
been somewhat elevated on the loth, but with high prob- 
ability it dropped on the 11th. 

Temperature 

62 76 90 

Wind Speed 

Figure 8. Ozone and Meteorological Data. Each panel of this con- 
ditioning plot shows a slice of the regression surface as a function of 
wind speed for fixed values of ternperature and solar radiation. 



6. THE M PLOT 

Mallows (1966) invented a procedure called Cp for 
choosing a subset of the independent variables based on 
estimates of the mean squared error for each subset. Later, 
Mallows (1973) extended this to a more general class of 
estimates and applied it to choosing the parameter in ridge 
regression. We can also extend it to locally weighted 
regression to help choose the value of f .  The expected 
mean squared error summed over the xi in the sample and 
divided by a2is 

where the notation for the fitted values, gf(xi), now has a 
subscript to show the dependence on f .  Suppose that 8; 
is an estimate of a2from a smoothing where s ,  the value 
of f ,  is small, usually in the range from .2 to .4. The idea 
is to choose a small s so that the bias of g,(x,) will be 
negligible, which results in a nearly unbiased estimate of 
a2.Now, let 

and 

A simple derivation shows that we can estimate M, by M, 
= B, + Vf. B, is the contribution of bias to the estimated 
mean squared error, and V, is the contribution of variance. 
If, for a particular f ,  gf is a nearly unbiased estimate, then 
using a standard &method argument (Kendall and Stuart 
1977) the expected value of B, is nearly 0, so the expected 
value of M, is nearly V,. If as f increases bias is introduced, 
B,has a positive expected value, so the expected value of 
Mf exceeds V, . 

Here Vf is the equivalent number of parameters of the 
fit, a measure of the amount of smoothing done by the 
local-fitting procedure. We use this name because if we 
had done ordinary linear least squares, then the operator 
matrix L, would be replaced by G and tr G 'G = tr G,  
the number of parameters used in the fit. In the forth-, 
coming applications, Vf decreases as f increases, so more 
smoothing results in a smaller equivalent number of pa- 
rameters. 

The M plot is a graph of M, against V, for a selection 
of f values between s and 1; this lets us see the trade-off 
between the contributions of variance and bias to the mean 
squared error as f changes. It is also helpful, for judging 
variation on the plot, to show information about the dis- 
tribution of M, when there is no bias. We can proceed 
exactly as in Section 4.2. Let RN be the matrix for the 
residual sum of squares when the smoothing parameter is 
f ,  that is, :;if = yfRNy, and let RA be the matrix when 
the parameter is s.  Then 
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As before, we approximate the distribution of by an F 
with v:/v2 and df, and thereby approximate the dis- 
tribution of M,. 

It is important to emphasize that the M plot is not in- 
tended to produce hard-and-fast rules for the choice of f .  
Rather, by showing the trade-off between variance and 
bias as f changes and some information about sampling 
variability, it assists in our judgment of an appropriate f .  
Sometimes we want to minimize the mean squared error; 
this might be the case when we want to use g(x) for pre- 
diction. In other applications we may decide that low vari- 
ance is important and thus choose an f that inflates the 
bias somewhat; this might be the case when the sample 
size is small or we are searching for a simple description 
of the data structure that captures the salient features. In 
still other applications we might decide that low bias is 
critical; this is often the case when the loess estimate is 
used for graphical exploration, since our eyes can tolerate 
some noise but cannot recover a missed effect. Routinely 
choosing f by minimizing M, is a poor procedure because 
it ignores variance and bias, which are important to con- 
sider in most applications. [Mallows (1973) made the same 
point about the use of C,.] Furthermore, at the minimum, 
M, is often flat compared with its sampling variability, so 
a range of values of f with different variance and bias 
properties gives the same mean squared error. 

The M plot can be used for more general purposes than 
comparing loess smoothings with different values o f f .  For 
example, we can add M from any parametric fit or M from 
other local-fitting procedures such as additive fitting (dis- 
cussed in Sec. 8). We do this by computing a value of M 
in a manner analogous to the computation of M,, and with 
a2still estimated by 8:. 

7. 	 ABRASION-LOSS DATA: AN APPLICATION IN 
WHICH THE M PLOT IS USED TO CHOOSE f 
AND AN ADDITIVE SURFACE FITS THE DATA 

An industrial experiment was run measuring three vari- 
ables for each of 30 rubber specimens (Davies 1957). Each 
specimen was rubbed with an abrasive material, and the 
abrasion loss was measured; the experiment was to relate 
this loss to measurements of the hardness and tensile 
strength of the specimens. Figure 9 is a scatterplot matrix 
of the data, which we analyzed by fitting a linear regression 
model. We intend to evaluate this model. In an initial pass 
over the data an outlier was found and removed; we ana- 
lyze the remaining 29 observations. (Since the outlier did 
not result in extreme values in any of the univariate sample 
distributions, the independent variables were standardized 
based on sample standard deviations computed from all 
30 observations.) 

Figure 10 is an M plot with s = .3. The circles show M, 
versus V, for f ranging from f = 1 (the leftmost circle) 
to f = .3 (the rightmost circle) in steps of .05. The line 
Mf = Vf has been drawn; note that M, must lie on this 
line. The vertical line segments and their tick marks por- 
tray the sampling distribution of M,, under the hypothesis 
of no bias and using the distributional approximation de- 
scribed in the previous section: The top of each line is the 
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Figure 9. Abrasion-Loss Data. The figure is a scatterplot matrix of 
data from an industrial experiment in which abrasion loss was studied 
as a function of hardness and tensile strength. 

95% point, the upper tick mark is the 90% point, the lower 
tick mark is the 10% point, and the bottom of the line is 
the 5% point. The G on the plot is the value of M for 
linear least squares. Note that the equivalent number of 
parameters for the least-squares fit is less than that for any 
local-regression smoothing, because least squares does 
more data smoothing than local regression. In Figure 10 
there is no clearly defined point where the Mf begin a 
precipitous rise, and n;lf is flat compared with its sampling 
variability, from f = .3  to f = .5; we chose f to be .5, 
preferring an estimate that had as low a variance as pos- 
sible, in view of the small sample size, without introducing 
undue bias. Note that the M value for least squares shows 
that the linear-model fit in the original analysis is inap- 
propriate. 

Figure 11plots the fit with f = .5 in the following way: 
Consider the top curve in the bottom panel. The value of 
hardness has been set to 60. The curve is a graph of the 
fitted surface against tensile strength for this fixed value 
of hardness. For the other curves on the panel, hardness 
has been set to other values. The graph in the bottom 
panel is similar, but the conditioning is on tensile strength. 
This graphical tool is a two-variable conditioning plot that 
can be used generally to explore loess fits with two in- 
dependent variables. Of course, it is analogous to the three- 
variable conditioning plots of Figures 6 to 8. Figure 11 
reveals several important properties of the estimated sur- 
face. On each panel the four curves have roughly the same 
shape, varying mostly in level, suggesting that there is little 
interaction between tensile strength and hardness. Fur- 
thermore, the plots suggest that abrasion loss is a linear 
function of hardness and a nonlinear function of tensile 
strength. 

Figure 11 suggests that we incorporate lack of interac- 

Equivalent Number of Parameters 

Figure 10. Abrasion-Loss Data. The M plot is a graphical method for 
choosing the smoothing parameter, f, in locally weighted regression. 
The filled circles show M statistics, estimates of the mean squared 
error, for f ranging from .3 (rightmost circle) to 1.0 (leftmost circle). The 
G shows the M statistic for a linear least-squares fit The M statistics 
are graphed against their expected values under an assumption of no 
bias. The slanted line on the plot is y = x, so the vertical distance of 
an M statistic to the line is the contribution of bias to the estimate of 
the mean squared error. The ends of the vertical lines show 90% in- 
tervals, and the tick marks show 80% intervals of the distributions of 
the M statistics under an assumption of no bias. On the basis of this 
plot, f was chosen to be .5. 

tion and linearity of hardness into the smoothing. We can 
do this by following the additive-estimation approach of 
Hastie and Tibshirani (1986). An additive estimate consists 
of a sum of smooth functions of the independent variables, 
g,(x,) + ... + g,(xip). The gk are the component functions. 
The salient feature of the estimate is that although the 
regression surface is nonlinear, there is no interaction 
among the independent variables. 

Additive estimation can be carried out by using the 
backfitting algorithm from projection selection (Breiman 
and Friedman 1985; Friedman and Stuetzle 1981; Hastie 
and Tibshirani 1986). Backfitting is an iterative procedure. 
In each iteration a component function, say the kth, is 
updated by smoothing y iminus the sum of the other com- 
ponent functions as a function of x,. In our implemen- 
tation the smoothing is carried out by loess. The final fit 
is a linear operator applied to y. For this reason the dis- 
tributional results of Section 4 apply to backfitting as well, 
but with L replaced by the backfitting operator. 

Additive fitting was used for the abrasion-loss data, with 
the component function for hardness estimated by linear 
least squares and the component function for tensile 
strength estimated by loess with varying values off .  Figure 
12 shows M for these fits. The values off  used in the loess 
smoothing range from f = 1 (leftmost circle) to f = .3  
(rightmost circle) in steps of -05, just as for the multivariate 
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Figure 11.  Abrasion-Loss Data. Conditioning plots show a loess fit 
to the abrasion-loss data, with f = .5. The graphs suggest the de- 
pendence on hardness is linear and that there is no interaction between 
tensile strength and hardness. 

loess in Figure 10. Also, the estimate of a2is the same as 
that in Figure 10. The plot shows that an additive smooth- 
ing can provide an acceptable fit to the data; we chose f 
to be .75, preferring a low-variance estimate without un- 
duly inflating the mean squared error, again in view of the 
small sample size. 

Additive fits can be graphed by component-residual plots. 
As before, let gr(x,) be the estimated component func- 
tions, and let 2; be the residuals. To study the properties 
of the fit we can make one plot for each component func- 
tion: g,(x,) is graphed against x,, for i = 1 to n by con- 
necting successive points by line segments, and gr(xir) + 
tiis graphed against xi ,  by circles. These plots allow us to 
see the form of the estimated surface and to see whether 
any signal has leaked into the residuals. The plotting 
method follows that used in partial residual plots (Land- 
wehr 1983; Larsen and McCleary 1972), where the com- 
ponent functions have a different form. 

Figure 13 shows component-residual plots for the ad- 
ditive fit to the abrasion-loss data with f = .75. The top 
panel shows clearly the form that the nonlinearity takes; 
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Figure 12. Abrasion-Loss Data. Figure 11 suggests that an additive 
nonparametric smoothing with no interaction will fit the data. This figure 
is an M plot for additive fits with hardness estimated by linear least 
squares and abrasion loss estimated by loess, with f ranging from .3 
to 1 in steps of .05. On the basis of this plot, f was chosen to be .75. 

there is a hockey-stick dependence. A logical next step in 
the analysis of these data would be to fit a parametric 
model in which the dependence of tensile strength is con- 
tinuous and piecewise linear. 

8. NO, DATA: AN APPLICATION IN WHICH THE 
M PLOT IS USED TO CHOOSE f AND AN 

ADDITIVE SURFACE DOES NOT FIT THE DATA 

The data in this application are from an experiment in 
which a single-cylinder engine was run with ethanol or 
indolene (Brinkman 1981). There are 110 measurements 
of compression ratio (C), equivalence ratio (E), and NO, 
in the exhaust. The purpose of the analysis was to see how 
NO, depends on E and C. There were 88 runs with ethanol; 
for these runs, E varied from .535 to 1.232, C took one 
of five values ranging from 7.5 to 18, and the values of E 
and C were nearly uncorrelated. There were 22 runs with 
indolene; for these runs, C took just one value, 7.5, and 
E ranged from .665 to 1.224. 

Rodriguez (1985) analyzed these data using ACE (Brei- 
man and Friedman 1985) and MORALS (Young, De- 
Leeuw, and Takane 1976), with type of fuel as a categorical 
variable and C and E as continuous variables. In ACE 
analysis the resulting surface is an additive fit to a trans- 
formation of the dependent variable. Thus an ACE fit to 
the NO, concentrations results in a surface with no inter- 
action. 

Our goal was to explore the data to see if an additive 
fit was reasonable. To allow for general interactions, we 
treated C and type of fuel as a single categorical variable 
with six levels, since C was equal to 7.5 for all indolene 
runs and to five values ranging from 7.5 to 18 for the 
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Figure 13. Abrasion-Loss Data. Component-residual plots show the 
additive fit to the abrasion-loss data, with f = .75. The curve on each 
plot is the estimated component function for one independent variable, 
and the plotting symbols show the component function value plus the 
residual for each observation. 

ethanol runs. Thus there are two independent variables, 
E and this categorical variable. Furthermore, the NO, 
concentrations were transformed by cube roots. Thus the 
loess analysis consists of six separate smoothings of cube 
root NO, as a function of E, one for each level of the 
categorical variable. The smoother in this case was locally 
quadratic fitting because, as we shall see, the functional 
dependence of cube root NO, on the equivalence ratio 
has a local maximum and substantial curvature. 

Figure 14 is an M plot for the locally quadratic smoother; 
the value of s is .4, and in moving from left to right f goes 
from 1to .4 in steps of .05. On the basis of this plot f was 
chosen to be .85; M~jumps considerably for larger values 
o f f .  

The top panel of Figure 15 shows the six local-regression 
estimates, hk(x) for k = 1-6, for the six levels of the 
categorical variable. Each estimate was computed at 50 
equally spaced values of E from .6 to 1.15; let the 50 values 
be denoted by x; for j = 1to 50. Each estimate is graphed 
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Figure 14. NO, Data. The data are from an experiment studying the 
dependence of NO, exhaust emissions on equivalence ratio, compres- 
sion ratio, and type of fuel. The figure is an M plot for locally quadratic 
fitting, with f ranging from .4 to 1 in steps of .05. The type of fuel and 
the level of compression ratio, which took on one of five values, were 
both entered as categorical variables. On the basis of the plot, f was 
chosen to be 35. 

in the top panel by connecting successive values by line 
segments. The bottom panel of Figure 15 is an interaction 
plot. Each curve is a graph of 

against x; . 
Figure 15 shows something important: For the ethanol 

runs, there is a substantial interaction between C and E.  
As C increases generally increases, but the effect is 
reduced as E increases and eventually becomes nearly 0 
when E is at its maximum value. Indolene adds to this 
interaction, because its behavior as a function of E is dif- 
ferent from that of ethanol with C equal to 7.5. Thus an 
additive fit is completely inappropriate for these data. (The 
M plot for the additive fits, as one would expect, shows 
very large biases.) Furthermore, Figure 15 shows that the 
form of the interaction is such that a nontrivial transfor- 
mation of NO, cannot possibly remove the interaction, 
which means that ACE cannot lead to a satisfactory model 
for these data. 

9. LABORATORY AND FIELD SIMULATIONS 

Monte Carlo simulations with normal t i  were run to 
investigate the distributional approximations discussed in 
Section 4. We constructed a wide collection of design con- 
figurations (i.e., sets of values of the independent vari- 
ables) for up to five independent variables. Three items 
were studied in the simulations: (a) distribution of 82/a2, 
(b) confidence intervals for g(x), and (c) ANOVA for N 
= linear least squares and A = locally linear fitting. The 
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Figure 15. NO, Data. The top panel shows the six separate smooth- 
ings of NO, as a function of equivalence ratio. The bottom panel shows 
the curves with a mean curve subtracted. The graphs show a strong 
interaction among the independent variables that cannot be removed 
by a nontrivial transformation of the dependent variable. Thus an ad- 
ditive fit is not possible for these data. 

distributional approximations of Section 4 were exceed- 
ingly close to the true distributions for (a) and (b). For 
(c) they were close, except when the degrees of freedom 
of the fit were a large fraction of n; however, this situation 
is not relevant in practice. We refer to these simulations 
as laboratory simulations, because they employ artificially 
constructed design configurations. In Section 9.1, (c) is 
investigated; in Section 9.2, (a) and (b) are investigated; 
and in Section 9.3, (c) is investigated for a modification 
of the loess procedure. 

For normal ci, the true distributions of the statistics 
involved in (a)-(c) depend on the value off and the design 
configuration. A data analyst can check the distributional 
approximation for any particular application through a 
simulation using the design configuration of the data and 
the value of f used in the smoothing. We call these field 
simulations. If the diagnostic checking of the residuals 
shows that the sample distribution of the residuals is well 
approximated by a normal distribution, then the field sim- 
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ulation can use samples from the normal. If significant 
nonnormality appears in the residuals, then sampling can 
be from the sample distribution of the residuals. Two field 
simulations are discussed in Section 9.4. 

9.1 Laboratory Slmulations: Analysis of Variance 

In this section we discuss laboratory simulations for test- 
ing N = linear least squares against A = locally linear 
fitting. Figure 16 shows some of the results for one col- 
lection of 60 simulations; each simulation employed 16,000 
replications, which gave high accuracy even at the .01 
significance level. The 60 simulations employed 18 design 
configurations and 4 values of f ;  not all values of f were 
used with each configuration, since we limited our inves- 
tigations to practical situations. 

There were nine design configurations for p = 1. For 
each of three values of n, 100,50, and 25, there were three 
sets of values of the independent variable. Each set was 
of the form F-'[(i  - .5)ln] for i = 1, . . . ,  n, where F 
was either the uniform, normal, or Cauchy distribution. 
Simulations with f = .3, .5, and .7 were run for each 
configuration, resulting in 27 simulations. 

There were six design configurations for p = 2. For 
each of two values of n, 50 and 100, there were three sets 
of values of the independent variables. Each set was de- 
rived in the following manner: One independent variable 
was initially set equal to one of the sets of values used for 
p = 1; the second variable was initially set equal to a 
random permutation of these values; and then the two 
variables were rotated and scaled to have correlation 0 
and variance 1. Simulations with f = .3, .5, .7, and .9 

Numerator Degrees of Freedom 

Figure 16. Simulations. The figure shows the results of laboratory 
simulations investigating the ANOVA test for global linearity. On each 
panel the vertical scale is 5% (the nominal significance level) minus 
the true significance level, and the horizontal scale is the degrees of 
freedom of the numerator. The panels are arranged by p, the number 
of independent variables, and n, the number of observations. The figure 
shows that the distributional approximations work exceedingly well. 
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were run for each configuration, resulting in 24 simula- 
tions. 

There were three design configurations for p = 3. Only 
the value of n = 100 was used, and the configurations 
were generated in a manner analogous to that for the case 
with p = 2 and n = 100. Simulations with f = .5, .7, and 
.9 were run for each configuration, resulting in nine sim- 
ulations. 

Figure 16 shows information about the test at the 5% 
level of significance. The values plotted on the vertical 
scales are 5% minus the actual significance, and the hor- 
izontal scales are the degrees of freedom of the numerator, 
that is, v: /v2 .  The panels are arranged by p and n. Most 
important, Figure 16 shows that the approximating 5% 
significance level is close to the true levels in each of the 
60 simulations. The largest absolute deviation is 1.59%. 
In fact, the situation is even better than that, because the 
largest departures occur for the largest degrees of free- 
dom, and these values are somewhat larger than those 
typically used in practice. For the cases with less than 10 
df, the largest absolute deviation is -94%. Similar results 
hold for the deviations at the 10% and 2.5% levels of 
significance. For the former, the largest absolute deviation 
is 2.18%; for the latter, the largest is 1.05%. Figure 16 
also shows that the deviation of the true level from the 
nominal level increases as p increases, as n decreases, or 
as the degrees of freedom increase. 

The good performance of the approximations for 
ANOVA occurs even though the numerator of the test 
statistic is not independent of the denominator. The ap- 
proximation works partly because the dependence is not 
strong and partly because unless n or f is very small the 
numerator is contributing the most to the variability of the 
statistic. 

9.2 	 Laboratory Simulations: Confidence Intervals 
for a2and g(x) 

The 60 simulations described in Section 9.1 were also 
used to investigate confidence intervals for a2. For the 
90% confidence level, the maximum absolute deviation of 
the actual level from the nominal level was SO%; for the 
95% level the maximum was .48%. Clearly, the approx- 
imating distributions performed excellently in these cases. 

The 27 simulations for p = 1 that were described in 
Section 9.1 were also used to investigate confidence in- 
tervals for g(x)  at two values of x: the mean of the xi and 
the largest of the x i .  For the 90% confidence interval, the 
largest absolute deviation was .44% for the mean and 
.65% for the extreme. For the 95% interval, the largest 
absolute deviation was .45% for the mean and .65% for 
the extreme. Again, the approximations performed ex-
cellently. 

9.3 	 Other Laboratory Simulations 
In distributional approximations for ANOVA, the div- 

isors for the sums of squares, vl for the numerator and d 2  
for the denominator, are not generally the same as the 
degrees of freedom for the approximating F distribution, 
v:/v2 for the numerator and d: /d2  for the denominator. 

Nevertheless, one might hope that v ,  is close to v2 and that 
d l  is close to d 2 ,  and then take the degrees of freedom to 
be v1 and d l .  The 60 simulations described in Section 9.1 
were also used to investigate this one-moment approxi- 
mation. For the lo%, 5%, and 2.5% levels of significance, 
the maximum absolute deviations are 3.84%, 2.68%, and 
1.62%, respectively. The corresponding values for the two- 
moment approximation (given in Sec. 9.1) are 2.18%, 
1.59%, and 1.05%. The degradation in the approximation 
for the me-moment case is just large enough that we have 
continued with the somewhat more complicated two-mo- 
ment approximation. 

9.4 	 Field Simulations 

As we stated earlier, a data analyst can check the per- 
formance of the approximating distribution in any appli- 
cation by a field simulation. If the approximating distri- 
bution performed poorly, the simulation distribution could 
be used to make inferences. But we have not yet encoun- 
tered an application in which the residuals have a sample 
distribution that is well approximated by the normal and 
the approximating distribution performed poorly. We will 
illustrate the use of two field simulations for two of the 
applications in this article. 

For the estimation of the ozone surface in Section 5, it 
is sensible to ask whether the observed curvature in the 
fitted surface is significant, because the estimate of the 
standard error of the residuals is 15 = .43, which is not 
small compared with the sample standard deviation of the 
cube root ozone concentrations, which is .89. To address 
whether data with this much noise can support other than 
a global fit, we carried out ANOVA (described in Sec. 
4.2), testing the locally weighted regression fit against a 
quadratic least-squares fit. The fi statistic is 2.10 and the 
approximating distribution is F, with 19.2 and 89.0 df. The 
significance level is .011, so the curvature is highly signif- 
icant. We also ran a field simulation with 1,200 replica- 
tions: The simulated significance level was ,010, which is 
quite close to the approximating level. 

The result of the abrasion-loss application in Section 7 
was a nonlinear additive fit. Since the number of obser- 
vations (29) is small, we might reasonably ask whether the 
data really support a nonlinear regression surface. Thus 
we tested the additive model against a linear least-squares 
fit: The significance level was ,00256, making the nonlin- 
earity highly significant. (Of course, the test needs to be 
viewed with some caution, because the model arose after 
several passes of the fitting process and because f was 
selected from the M plot.) A field simulation was also run: 
The simulated significance level was .00211, which is quite 
close to the approximating level. 

10. DISCUSSION 

10.1 	 Locally Weighted Regression 
for Applications 

The methodology introduced here can be an integral 
part of the analysis in many regression studies. In fact, it 
represents a new approach, compared with what is most 
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often practiced today. This methodology can potentially 
penetrate a regression study most deeply when the de- 
pendent variable is a nonlinear function of the indepen- 
dent variables. Today, the two most common approaches 
to fitting nonlinear surfaces in applications are searching 
for transformations of the variables that linearize the sur- 
face and fitting polynomials of the independent variables. 
These methods, however, do not lead to a nearly rich 
enough class of surfaces to model adequately the wide 
variety of surfaces encountered in practice. But even when 
the final result of a regression study is a parametric surface, 
the methodology can help substantiate the validity of the 
fit. 

10.2 	 Current Restrictions to the Methodology 

One current restriction of the applicability of our meth- 
odology is the assumption of normality and constant vari- 
ance of the errors. Nevertheless, future work might relax 
this restriction. A method for estimating g(x) when the ti 
are assumed only to be symmetric already exists: robust 
locally weighted regression (Cleveland 1979). What is 
needed for this robust procedure, however, is distribu- 
tional results similar to those in Sections 4 and 6. Smooth- 
ing techniques without distributional results often leave 
the analyst with too little methodology to make informed 
inferences. 

Another current restriction is to studies in which the 
relevance of each independent variable in explaining the 
dependent variable has already been ascertained. To re- 
move this restriction, work is needed to determine how 
to incorporate into loess methodology procedures for se- 
lecting a subset of the independent variables. 

10.3 	 The Curse of Dimensionality 

As the number of independent variables, p ,  increases, 
a fixed number of points, n, rapidly becomes sparse. This 
is referred to as the curse of dimensionality. Some have 
mistakenly supposed that the curse makes multivariate 
smoothing-that is, smoothing with p > 1-a method to 
avoid. What must be avoided is allowing f to remain fixed 
as p increases, because for fixed f the equivalent number 
of parameters of the fit increases asp increases. Of course, 
we must maintain control of the equivalent number of 
parameters; this is done by increasing f .  As long as we 
maintain control and do not allow the equivalent number 
of parameters to become a large fraction of n, we can 
expect multivariate smoothing to behave reliably. In this 
article we have successfully carried out multivariate 
smoothing for data sets with two and three independent 
variables. Fowlkes (1986) demonstrated that smoothing 
with more than three independent variables is reasonable 
in certain circumstances, even for moderately sized data 
sets. Of course, a s p  and f increase for fixed n there will 
be a decrease in the amount of curvature that can be 
estimated without serious bias. This is not a defect in the 
method but a statement that the more complicated a 
regression surface becomes, the larger n must be to get 
good estimates of it. Exactly the same considerations ob- 
tain whatever the method of estimation. 
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10.4 	 Weight Functions and the Poor Performance 
of the Uniform 

The general form of the tricube weight function, par- 
ticularly the smooth contact with 0 at 1, enhances the 
performance of locally weighted regression. Any reason- 
able function with smooth contact can also be expected to 
perform well. Nevertheless, the uniform weight function, 
with the discontinuity at 1, performs poorly. 

A problem with the uniform is that its discontinuity 
results in local roughness in g(x) that is almost always noise 
and not signal. This is a well-known phenomenon in digital 
filtering and spectrum analysis, that boxcar windows have 
Fourier transforms with side lobes that fall off slowly as a 
function of frequency and thus pass unacceptably large 
amounts of high-frequency noise (Bloomfield 1976). A 
second problem with the uniform weight function is that 
it leads to less satisfactory distributional approximations, 
because for the uniform, the eigenvalues of L-which, 
again, are related to the Fourier transform of the weight 
function-do not lend themselves as well to the approx- 
imations as to a continuous weight function such as tricube 
(Devlin 1986). 

We mention the weight-function issue, in part, because 
asymptotic results for nonparametric regression show that 
the overall form of the weight function does not have an 
appreciable effect with respect to mean squared error (e.g., 
Priestley and Chao 1972). This, however, should not be 
interpreted to mean that the form of the weight function 
does not matter in all respects. 

10.5 	 Other Methods 

Another approach to smoothing a dependent variable 
as a function of two or more independent variables is 
projection pursuit, an iterative procedure (Friedman and 
Stuetzle 1981). At each stage of the iterations, yi is smoothed 
as a function of a linear combination of the independent 
variables. The linear combination is chosen to give a max- 
imum reduction in the residual sum of squares. The smoother 
is similar to univariate locally weighted regression, but 
with modifications to decrease the computation time and 
with a method for choosing the amount of smoothing. The 
multivariate smoothing introduced here is attractive be- 
cause of its simplicity: For a particular f ,  g ( ~ )  has a 
straightforward definition and is simply a linear combi- 
nation of the y,, so the statistical properties are easy to 
fathom. This simplicity leads to much of the additional 
methodology in this article. The full projection-pursuit 
algorithm results in a considerably more complicated func- 
tion of the y,, because the linear combinations of the in- 
dependent variables are chosen to minimize the residual 
sum of squares. Consequently, almost nothing is known 
about its distributional properties (Huber 1985). In ad- 
dition, full projection pursuit also has its restricted domain 
of applicability; not all regression surfaces can be well 
approximated by a moderate number of smooth functions 
of linear combinations of the independent variables (Huber 
1985). 

Locally weighted regression falls into a class of regres- 
sion procedures that some call nonparametric regression. 
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Stone (1977), Collomb (1981), Wegrnan and Wright (1983), 
and Titterington (1985) reviewed other procedures. Many 
studies of nonparametric regression focused on asymptotic 
properties such as consistency, normality, and rates of 
convergence (e.g., Benedetti 1977; Devlin 1986; Hardle 
and Gasser 1984; Stone 1977, 1982; Wahba 1979). For 
example, Stone (1977), using elegant arguments, showed 
the asymptotic consistency of a wide class of nonpara- 
metric estimates. 

One well-known nonparametric regression procedure is 
smoothing splines (Henderson 1924; Reinsch 1967; Sil- 
verman 1985; Wahba 1978; Whittaker 1923). Splines have 
an attractive property: They are the solution to an intui- 
tively appealing mathematical criterion. Another attrac- 
tive property is that they have a Bayesian interpretation 
(Wahba 1978; Whittaker 1923). [Weerahandi and Zidek 
(1985) provided a Bayesian interpretation for univariate 
locally weighted regression with a particular weight func- 
tion.] But splines also have some unattractive properties. 
First, they optimize a global criterion and are not generally 
local. [Although, as Silverman (1985) pointed out, when 
n is large and the amount of smoothing is neither large 
nor small, spline methods behave, to a good approxima- 
tion, as smoothing by local fitting with a weight function 
with exponential decay; thus splines are nearly local in this 
case.] A second unattractive property is that because 
splines arise as the result of an optimization, it can be 
difficult to determine how they operate on the data. In 
contrast, the operational characteristics of local-fitting 
procedures are easier to fathom because they are defined 
directly. For example, because of its definition, one knows 
that the locally weighted regression estimate, g(x), is de- 
termined by 100f % of the data at each x, for any n and 
for any configuration of the xi (except when ties in the xi 
leave more than lOOf % of the data at a particular point). 
It is considerably more difficult to determine the effective 
bandwidth of a spline estimate at x (Silverman 1984). In 
many cases this is only possible by numerically working 
out the coefficients of the linear combination of yi that 
make up the estimate. 

The most serious problem with splines is computational. 
Although fast O(n) algorithms exist for one independent 
variable (Silverman 1985; Whittaker 1923), fitting "thin 
plate" splines to two or more independent variables is an 
O(n3) computation (Wahba 1984). The expected compu- 
tation time of a loess estimate at a single value of x is 
O(n). For a fixed value off (i.e., a fixed number of degrees 
of freedom of the fit), the number of points at which one 
needs to compute g to characterize it for practical appli- 
cations is fixed: By using blending functions and k - d 
trees, local-fitting computations in practice can be kept to 
O(n) time (Cleveland et al. 1988) and are thus feasible 
even in computing environments that do not have fast, 
powerful processors. Note that this strategy is not available 
in spline smoothing, because one cannot get g at a single 
value of x without carrying out the full optimization. Thus 
another strategy that has been employed for splines is to 
solve an altered optimization that requires less computa- 
tion and that yields a solution close to the original one 
when n is large (Wahba 1984). But the computing is still 

substantial and complex, and many questions remain (Sil- 
verman 1985). 

Two popular methods for choosing the smoothing pa- 
rameter in spline-fitting are cross-validation (Stone 1974) 
and generalized cross-validation (Craven and Wahba 1979). 
Unfortunately, users of these methods generally focus ex- 
clusively on the mean squared error, which in Section 6 
we criticized as too limiting. One exception, however, is 
the work by Clark (1980). Of course, one could use cross- 
validation or generalized cross-validation in place of the 
M statistic to choose the amount of smoothing for locally 
weighted regression, or one could use the M statistic for 
splines. That is, these methods for choosing the amount 
of smoothing are not dependent on the method of smooth- 
ing. 

[Received September 1986. Revised December 1987.1 
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