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usual consistency for nested pairwise models, and show that for a

wide class of prior distributions, including intrinsic priors, the corre-

sponding Bayesian procedure for variable selection in normal regres-

sion is consistent in the entire class of normal linear models. We

also find that the asymptotics of the Bayes factors for intrinsic priors

are equivalent to those of the Schwarz (BIC) criterion. On the other

hand, the Jeffreys-Lindley paradox refers to the well-known fact that

a point null hypothesis on the normal mean parameter is always ac-

cepted when the variance of the conjugate prior goes to infinity. This

implies that some limiting forms of proper prior distributions are not

necessarily suitable for testing problems. Intrinsic priors are limits of

proper prior distributions, and for finite sample sizes they have been

proved to behave extremely well for variable selection in regression; a

consequence of our results is that for intrinsic priors Lindley’s paradox

does not arise.

Key Words: Bayes factors, intrinsic priors, linear models, consis-

tency.

1 Introduction

Bayesian estimation of the parameters of a given sampling model is, under

wide conditions, consistent. That is, the posterior probability of the pa-

rameter is concentrated around the true value as the sample size increases,

assuming that the true value belongs to the parameter space being consid-
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ered. The case where the dimension of the parameter space is infinite can be

an exception (see Diaconis and Friedman 1986 for examples of inconsistency

of Bayesian methods).

When several competing models are deemed possible, so that we have un-

certainty among them, consistency of a Bayesian model selection procedure

is much more involved. For instance, it is well known that improper priors for

the model parameters cannot be used for computing posterior model proba-

bilities. Therefore, the priors need be either proper or limits of sequences of

proper priors. Furthermore, not every limit of proper priors is appropriate

for a Bayesian model selection.

The so-called Lindley paradox is an example of this (Lindley 1957, Jeffreys

1967); it shows that when testing a point null hypothesis on the normal

mean parameter we always accept the null if a conjugate prior is considered

on the alternative and the variance of this conjugate prior goes to infinity.

As Robert (1993) has pointed out this is not a mathematical paradox since

the prior sequence is giving less and less mass to any neighborhood of the

null point as the prior variance goes to infinity. However, an important

consequence of the paradox is that some limiting forms of proper priors might

not be suitable for testing problems as they could provide inconsistency of

the corresponding Bayes factors. We remark that intrinsic priors are limits

of sequences of proper priors (Moreno et al. 1998) and for finite sample sizes

an intrinsic Bayesian analysis have been proved to behave extremely well for

variable selection in regression (Casella and Moreno 2006, Girón et al. 2006a,
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Moreno and Girón 2006). Consequently, showing that the Lindley paradox

does not occur when using intrinsic priors is an important point.

For nested models and proper priors for the model parameters, the con-

sistency of the Bayesian pairwise model comparison is a well established

result (see O‘Hagan and Forster 2004, and references therein). Assuming

that we are sampling from one of the models, say M1, which is nested in M2,

consistency is understood in the sense that the posterior probability of the

true model tends to 1 as the sample size tends to infinity. We observe that

the posterior probability is defined on the space of models {M1, M2}. An

equivalent result is that the Bayes factor BF21 = m2(Xn)/m1(Xn) tends in

probability [P1] to zero, where Xn = (X1, ..., Xn).

The extension of this result to the case of a collection of models {Pi : i =

1, 2...} for which the condition limn→∞ mi(Xn)/m1(Xn) = 0, [P1], holds for

any i ≥ 2 has been established by Dawid (1992). We note that this condi-

tion is satisfied when the model P1 is nested into any other. For nonnested

models the condition does not necessarily hold. As far as we know, a general

consistency result for the Bayesian model selection procedure for nonnested

models has not yet been established. This paper is a step forward in this

direction and proves the consistency of Bayesian model selection procedures

for normal linear models and a wide class of prior distributions, including

the intrinsic priors.

For pairwise comparison between nested linear models the consistency

of the intrinsic Bayesian procedure has already been established (Moreno
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and Girón 2005). The present paper is an extension of this result, and we

prove here consistency of the intrinsic model posterior probabilities in the

class of all linear models, where many of the models involved are nonnested.

We also extend this result to a wide class of prior distributions. In proving

consistency we take advantage of the nice asymptotic behavior of the Bayes

factors arising from intrinsic priors.

The rest of the paper is organized as follows. In Section 2 we review

methods for variable selection based on intrinsic priors and the expressions

of Bayes factors and posterior model probabilities. In Section 3 we derive the

sampling distributions of the statistic Bn
ij, the statistic on which the Bayes

factor for comparing two nested models depends, and we also describe its

limiting behavior. This will be the tool we use in Section 4 to find out an

asymptotic approximation of the Bayes factor for intrinsic priors, and to

prove consistency of the variable selection procedure. Section 5 contains a

concluding discussion, and there is a short technical appendix.

2 Intrinsic Bayesian Procedures for Variable

Selection

Suppose that Y represents an observable random variable and X1, X2, ..., Xk

a set of k potential explanatory covariates related through the normal linear

model

Y = α1X1 + α2X2 + ... + αkXk + ε, ε v N(·|0, σ2).
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The variable selection problem consists of reducing the complexity of this

model by identifying a subset of the αi coefficients that have a zero value

based on an available dataset (y,X), where y is a vector of observations of

size n and X an n× k design matrix of full rank.

This is by nature a model selection problem where we have to choose a

model among the 2k possible submodels of the above full one. It is common

to set X1 = 1 and α1 6= 0 to include the intercept in any model. In this

case the number of possible submodels is 2k−1. The class of models with i

regressors will be denoted as Mi and hence the class of all possible submodels

can be written as M = ∪iMi.

2.1 Methods of Encompassing

A fully Bayesian objective analysis for model comparison in linear regression

has been given in Casella and Moreno (2006). It consists of considering

the pairwise model comparison between the full model MF and a generic

submodel Mi
1 having i (< k) nonzero regression coefficients. Formally, they

test the hypothesis

H0 : Model Mi vs. HA : Model MF . (1)

1We use Mi to denote any model with i regressors; there are
(
k−1

i

)
such models. How-

ever, the development in the paper will be clear using this somewhat ambiguous, but
simpler, notation.
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Since Mi is nested in the full model MF , it is possible to derive the intrinsic

priors for the parameters of both models. Then, in the space of models

{Mi,MF} the intrinsic posterior probability of Mi is computed using

P (Mi|y,X) =
mi(y,X)

mi(y,X) + mk(y,X)
=

BFik

1 + BFik

,

where BFik is the Bayes factor for comparing model Mi to model MF . By

doing this for every model an ordering of the set of models, in accordance

to their posterior probabilities {P (Mi|y,X) = BFik/(1 + BFik), Mi ∈ M},
is obtained. The interpretation is that the submodel having the highest

posterior probability is the most plausible reduction in complexity from the

full model, the second highest the second most plausible reduction and so on.

This intrinsic Bayesian method for variable selection will be called Variable

Selection from Above (VSA).

If we normalize the Bayes factors for intrinsic priors {BFik, i ≥ 1}, we

obtain a set of probabilities on the class M as

P (Mi;y,X) =
BFik

1 +
∑

i′ 6=k BFi′k
, Mi ∈ M, (2)

but we note that these probabilities are not true posterior probabilities of

the models in the class M, although the ordering of the models they provide

is exactly the same than that given by the above pairwise variable selection

from above.

However, the manner of encompassing the models is not unique, and a
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quite natural alternative to VSA is to consider the pairwise model comparison

between a generic submodel Mj and the model

Y = α1 + ε, ε v N(·|0, σ2),

that contains the intercept only, which is denoted as M1. Formally, this

comparison is made through the hypothesis test

H0 : Model M1 vs. HA : Model Mj. (3)

Notice that M1 is nested in Mj, for any j, so that the corresponding intrinsic

priors can be derived. In the space of models {M1,Mj} the intrinsic posterior

probability

P (Mj|y,X) =
BFj1

1 + BFj1

is computed and it gives a new ordering of the models {Mj, Mj ∈ M}.
Although this alternative procedure is also based on multiple pairwise

comparisons it is easy to see that it is equivalent to ordering the models

according to the intrinsic model posterior probabilities computed in the space

of all models M as

P (Mj|y,X) =
BFj1

1 +
∑

j′ 6=1 BFj′1
, Mj ∈ M. (4)

This intrinsic Bayesian procedure will be called Variable Selection from Below
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(VSB), and has previously been considered by Girón et al.(2006a).

For finite sample sizes, the orderings of the linear models provided by

both VSA and VSB intrinsic Bayesian procedures are quite close to each

other (Moreno and Girón 2006).

2.2 Intrinsic Priors and Bayes Factors

The intrinsic priors utilized in the variable selection methods of Section 2.1

are defined from the comparison of two nested linear models, and we now give

a general expression of the intrinsic priors and the Bayes factor associated

with them.

Suppose we want to choose between the following two linear models

Mi : y = Xiαi + εi, εi ∼ N(0, σ2
i In),

and

Mj : y = Xjβj + εj, εj ∼ Nn(0, σ2
j In).

We again can do this formally through the hypothesis test

H0 : Model Mi vs. HA : Model Mj, (5)

where Mi is nested in Mj. Since the models are nested, this implies that the

n× i design matrix Xi is a submatrix of the n× j design matrix Xj, so that
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Xj = (Xi|Zij). Then, model Mj can be written as

Mj : y = Xiβi + Zijβ0 + εj, εj ∼ Nn(0, σ2
j In).

Comparing model Mi versus Mj is equivalent to testing the hypothesis H0 :

β0 = 0 against H1 : β0 6= 0. A Bayesian setup for this problem is that of

choosing between the Bayesian models

Mi : Nn(y|Xiαi, σ
2
i In), πN(αi, σi) = ci

σi
,

and

Mj : Nn(y|Xjβj, σ
2
j In), πN(βj, σj) =

cj

σj
,

(6)

where πN denotes the improper reference prior and ci, cj are arbitrary con-

stants (Berger and Bernardo, 1992).

The direct use of improper priors for computing model posterior prob-

abilities is not possible since they depend on the arbitrary constant ci/cj;

however, they can be converted into suitable intrinsic priors (Berger and

Pericchi 1996). Intrinsic priors for the parameters of the above nested linear

models provide a Bayes factor (Moreno et al. 1998), and, more importantly,

posterior probabilities for the models Mi and Mj, assuming that prior prob-

abilities are assigned to them. Here we will use an objective assessment for

this model prior probability, P (Mi) = P (Mj) = 1/2.

Application of the standard intrinsic prior methodology yields the intrin-

sic prior distribution for the parameters βj, σj of model Mj, conditional on a
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fixed parameter point αi, σi of the reduced model Mi,

πI(βj, σj|αi, σi) =
2

πσi(1 +
σ2

j

σ2
i
)

Nj(βj|α̃j, (σ
2
j + σ2

i )W
−1
j )

where α̃′j = (0′, α′i) with 0 being the null vector of j − i components and

W−1
j =

n

j + 1
(X′

jXj)
−1.

The unconditional intrinsic prior for (βj, σj) is obtained from πI(βj, σj) =
∫

πI(βj, σj|αi, σi) πN(αi, σi) dαidσi, yielding the intrinsic priors for compar-

ing models Mi and Mj as {πN(αi, σi), πI(βj, σj)}. The computation of the

Bayes factor to compare these models using the intrinsic priors is a straight-

forward calculation (see Appendix A) and turns out to be

BF n
ij=

(
2

π
(j + 1)(j−i)/2

∫ π/2

0

sinj−i ϕ (n + (j + 1) sin2 ϕ)(n−j)/2

(n Bn
ij + (j + 1) sin2 ϕ)(n−i)/2

dϕ

)−1

, (7)

where the statistics Bn
ij is the ratio of the residual sum of squares

Bn
ij =

RSSj

RSSi

=
y′(I−Hj)y

y′(I−Hi)y
.

Note that as Mi is nested in Mj the values of the statistic Bn
ij lie in the

interval [0, 1].
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3 Sampling distribution of Bn
ij

If we denote the true model by MT , so that the distribution of the vector of

observations y follows Nn(y|XT αT , σ2
T In), the sampling distribution of the

statistic Bn
ij is given in the following theorem.

Theorem 1 If Mi is nested in Mj and MT is the true model, then the

sampling distribution of Bn
ij is the doubly noncentral beta distribution

Bn
ij|MT v Be′′

(
n− j

2
,
j − i

2
; λ1, λ2

)

where the noncentrality parameters are

λ1 =
1

2σ2
T

α′TX′
T (I−Hj)XT αT ,

and

λ2 =
1

2σ2
T

α′TX′
T (Hj −Hi)XT αT .

Proof. The quadratic form of the denominator of the Bn
ij can be decomposed

as

y′(I−Hi)y = y′(I−Hj)y + y′(Hj −Hi)y.

As the matrices (I−Hi) and (Hj −Hi) are idempotent of ranks n− j and

j − i, respectively, it follows from the generalized Cochran theorem that the

quadratic form y′(I−Hj)y and y′(Hj−Hi)y are independent and distributed
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as χ′2(n− j; λ1) and χ′2(j− i; λ2), respectively. From this the distribution of

the statistic Bn
ij follows, and Theorem 1 is proved. ¤

Note that the models Mi and Mj need not be nested in the true model

MT , and the true model is not necessarily nested in Mi or Mj. However, the

distribution of Bn
ij simplifies whenever Mi or Mj is the true model. Thus we

have the following corollary.

Corollary 1

(i) If the smallest model Mi is the true one, then

Bn
ij|Mi v Be

(
n− j

2
,
j − i

2

)
.

(ii) If the largest model Mj is the true one, then

Bn
ij|Mj v Be′

(
n− j

2
,
j − i

2
; 0, λ

)
.

where

λ =
1

2σ2
j

α′jX
′
j(Hj −Hi)Xjαj.

Proof. Part i) follows from the fact that X′
iHj = X′

iHi and part ii) from

X′
j(Hj −Hi) = X′

j(I−Hi). ¤

The limiting value of Bn
ij is important because it bears directly on the

evaluation of the consistency of the Bayes factors. That value is given in the
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following theorem.

Theorem 2 Let {Xn, n ≥ 1} be a sequence of random variables with dis-

tribution Be′′((n−α0)/2, β0/2; nδ1, nδ2), where α0, β0, δ1, δ2 are positive con-

stants. Then

(i) the sequence Xn converges in probability to the constant

1 + δ1

1 + δ1 + δ2

.

(ii) If δ1 = δ2 = 0 then Xn degenerates in probability to 1. However, the

random variable −n/2 log Xn does not degenerate and has an asymp-

totic Gamma distribution, Ga(β0, 1).

Proof. Part i). By definition Xn is

Xn =

(
1 +

χ′2β0
(nδ2)

χ′2n−α0
(nδ1)

)−1

where χ′2β0
(nδ2) and χ′2n−α0

(nδ1) are independent random variables with non-

central chi-square distributions. If we divide the numerator and denominator

by n we get

Xn =

(
1 +

Vn

Wn

)−1

.

where Vn = χ′2β0
(nδ2)/n and Wn = χ′2n−α0

(nδ1)/n. Their means and variances

are

E(Vn) = δ2 +
β0

n
, E(Wn) = 1 + δ1 − α0

n
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and

V ar(Vn) =
4δ2

n
+

2β0

n2
, V ar(Wn) =

2(1 + δ1)

n
− 2α0

n2
.

Since the variances go to zero as n goes to infinity, Xn degenerates in prob-

ability to (1 + δ1)/(1 + δ1 + δ2) as asserted.

The remainder of the proof is straightforward and hence is omitted. ¤

4 Consistency of the VSA and VSB Intrinsic

Bayesian Procedures

The steps in proving consistency of the intrinsic Bayesian procedures are

1. Derive an asymptotic approximation for the Bayes factor for nested

models given in expression (7).

2. From this approximation derive another which is valid for any arbitrary

pair of models.

3. Use Theorems 1 and 2 to prove consistency of the VSB procedure.

It will also be seen that the asymptotic behavior of the Bayes factor for

VSA is exactly the same as VSB, and hence the consistency of the former

procedure also holds.

This is a useful property of the intrinsic methodology for variable selec-

tion since any way of encompassing the models to derive the intrinsic priors
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produces essentially the same answer for finite sample sizes and for large

sample sizes.

4.1 Asymptotic approximation of BF n
ij

For large n, we can get an approximation of BF n
ij of (7) that is valid whenever

model Mi is nested in Mj. The approximation turns out to be equivalent to

the Schwarz (1978) Bayes factor approximation.

Theorem 3 When Mi is nested in Mj, for large values of n the Bayes factor

given in (7) can be approximated by

BF n
ij ≈

π

2
(j + 1)(i−j)/2I(Bn

ij)
−1 exp

(
j − i

2
log n +

n− i

2
logBn

ij

)
(8)

where

I(Bn
ij) =

∫ π/2

0

sinj−i(ϕ) exp

[
j + 1

2
sin2(ϕ)

(
1− 1

Bn
ij

)]
dϕ

=
1

2
Be

(
1

2
,
j − i + 1

2

)
1F1

(
j − i + 1

2
;
j − i + 2

2
;
j + 1

2

(
1− 1

Bn
ij

))
,

and 1F1(a; b; z) denotes the Kummer confluent hypergeometric function.

Proof: We can write the integrand of (7) as

sinj−i ϕ exp

{
n− j

2

[
log n + log

(
1 +

j + 1

n
sin2 ϕ

)]}

× exp

{
i− n

2

[
log n + logBn

ij + log

(
1 +

j + 1

nBn
ij

sin2 ϕ

)]}
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= sinj−i ϕ exp

(
i− j

2
log n +

i− n

2
logBn

ij

)

×
(
1 + j+1

n
sin2 ϕ

)(n−j)/2

(
1 + j+1

nBn
ij

sin2 ϕ
)(n−i)/2

.

For large n the numerator of the last factor can be approximated by

(
1 +

j + 1

n
sin2 ϕ

)(n−j)/2

≈ exp

{
j + 1

2
sin2 ϕ

}
,

and the denominator by

(
1 +

j + 1

nBn
ij

sin2 ϕ

)(n−i)/2

≈ exp

{
j + 1

2Bn
ij

sin2 ϕ

}
.

Therefore, for large n the integrand can be approximated by

sinj−i ϕ exp

(
i− j

2
log n +

i− n

2
logBn

ij

)
exp

(
j + 1

2
sin2 ϕ (1− 1

Bn
ij

)

)
,

and thus the Bayes factor (7) by

BF n
ij ≈

π

2
(j + 1)i−jI(Bn

ij)
−1 exp

(
j − i

2
log n +

n− i

2
logBn

ij

)
,

where

I(Bn
ij) =

∫ π/2

0

sinj−i ϕ exp

[
j + 1

2
sin2 ϕ

(
1− 1

Bn
ij

)]
dϕ.

This proves Theorem 3.
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We note that I(Bn
ij)
−1 has a finite value for all values of the statistic Bn

ij

except when it goes to zero. For this unrealistic case the approximation is

not needed.

Therefore, BF n
ij can be approximated, up to a multiplicative constant, by

the exponential function in (8). This exponential function turns out to be the

Schwarz approximation Sn
ij to the Bayes factor for comparing linear models

(Schwarz 1978). Of course, the normal linear models are regular so that the

Laplace approximation can be applied to obtain the Schwarz approximation

although for intrinsic priors the ratio BF n
ij/S

n
ij does not go to 1 (only for

particular priors this holds; see, Kass and Wasserman 1995).

However, for proving consistency we can ignore terms of constant order

and the Bayes factor for intrinsic priors can be approximated by the Schwarz

approximation

BF n
ij ≈ Sn

ij = exp

(
j − i

2
log n +

n

2
logBn

ij

)
. (9)

We note that Sn
ij could provide a crude approximation to BF n

ij for small

or moderate sample sizes. For instance, for i = 1, j = 6, n = 25 and Bn
ij = .6,

the exact value of the Bayes factor for intrinsic priors is BF n
ij = 1.05, while

the value of the Schwarz approximation is Sn
ij = 5.27. That is, the BIC

criterion would reject the model with one regressor to accepting the complex

model with six regressors but the Bayes factor for intrinsic prior does not.
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4.2 Consistency of the VFB Intrinsic Bayesian Proce-

dure

Given an arbitrary model Mj and the true model MT in the class MT , we

will assume that the design matrix of the linear models satisfy the following

condition (D): the matrix

SjT = lim
n→∞

X′
T (I−Hj)XT

n
(10)

is a positive semidefinite matrix. This is not a too demanding condition as

the following example shows.

Example 1 (Berger and Pericchi 2004). Consider the case of testing whether

the slope of a linear regression is zero. Suppose that the true model MT is

the model with regression coefficients (α1, α2), and thus there is only one al-

ternative model M1, the model with only the intercept term α1. Suppose that

there are 2n + 1 observations yielding the design matrix

Xt =




1 ... 1 1 ... 1 1

0 ... 0 δ ... δ 1


 ,

where δ is different from zero. Easy calculations show that

S1T = lim
n→∞

X′
T (I−H1)XT

2n + 1
=




0 0

0 δ2/4


 ,
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which obviously is a positive semidefinite matrix for any positive |δ|, no mat-

ter how close to zero it is.

Thus, condition (D) is satisfied even when the samples are coming from

a model MT which is as close to M1 as we want.

To characterize the asymptotic behavior of the model posterior probabil-

ities, we can work with BF n
ij of (8) ignoring the positive terms that do not

depend on n (as we are only interested in limiting values of 0 or ∞.)

To test the hypothesis (3) with data (y,X), we note that the intrinsic

model posterior probability of model Mj, defined in the class of all models

M given by (4), is an increasing function of BFj1, where BFj1 denotes the

Bayes factor for intrinsic priors for comparing the nested models M1 versus

Mj. Hence, from the asymptotic approximation (9) we can write

P (Mj|y,X) ∝ BFj1 ≈ exp

(
− j − 1

2
log n− n

2
logBn

1j

)
. (11)

Similarly, for the true model MT we can write

P (MT |y,X) ∝ BFT1 ≈ exp

(
− T − 1

2
log n− n

2
logBn

1T

)
,

and consequently the ratio is approximated by

P (Mj|y,X)

P (MT |y,X)
≈ exp

(
T − j

2
log n +

n

2
log

Bn
1T

Bn
1j

)
. (12)
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(As a curiosity note that this formula provides an exact approximation to

the ratio for the case when Mj = MT , when its value is exactly equal to one.)

We now have the following theorem.

Theorem 4 In the class of linear models M with design matrices satisfying

condition (D), the intrinsic Bayesian variable selection procedure VSB is

consistent. That is, when sampling from MT we have that

P (Mj|y,X)

P (MT |y,X)
→ 0, [Pt],

whenever the model Mj 6= MT .

Proof: Assuming MT 6= M1, from Corollary 1, Part (ii), we have that

Bn
1T |MT v Be′

(
n− T

2
,
T − 1

2
; 0, λ

)
,

where

λ =
1

2σ2
T

α′TX′
T (I−H1)XT αT ,

and from Theorem 1 that

Bn
1j|MT v Be′′

(
n− j

2
,
j − 1

2
; λ1, λ2

)
,

where the noncentrality parameters are

λ1 =
1

2σ2
T

α′TX′
T (I−Hj)XT αT , (13)
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λ2 =
1

2σ2
T

α′TX′
T (Hj −H1)XT αT .

From Theorem 2, Part (i), we have

Bn
1T |MT → 1

1+ 1

2σ2
T

α′T S1T αT
,

and

Bn
1j|MT →

1+ 1

2σ2
T

α′T SjT αT

1+ 1

2σ2
T

α′T S1T αT
,

(14)

so that

Bn
1T

Bn
1j

|MT → 1

1 + 1
2σ2

T
α′TSjT αT

< 1.

Therefore, the expression

n

2
log

Bn
1T

Bn
1j

goes to − ∞ with order O(n). This means that expression (12) converges to

zero regardless of whether T − j is positive or negative.

When MT = M1, then for any j > 1 we have

P (Mj|y,X) ∝ BF n
j1 ≈ exp

(
− j − 1

2
log n− n

2
logBn

1j

)
.

From Corollary 1, Part (i), and Theorem 2, Part (ii), it follows that−n/2 logBn
1j

is asymptotically distributed as a Gamma distribution. Therefore, for any

j > 1, P (Mj|y,X) tends, in probability, to zero. The proof is complete. ¤
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4.3 Consistency of the VSA Intrinsic Bayesian Proce-

dure

In the VSA intrinsic Bayesian procedure we use the fact that every model

Mj is nested in the full model Mk. Then, for large values of n the posterior

probability of model Mj in the space of models {Mj,Mk} is proportional to

P (Mj|y,X) ∝ BF n
jk ≈ exp

(
k − j

2
log n +

n

2
logBn

jk

)
.

Similarly, for the true model MT we have

P (MT |y,X) ∝ BF n
Tk ≈ exp

(
k − T

2
log n +

n

2
logBn

Tk

)
.

Thus, the ratio of Bayes factors can be approximated by

P (Mj|y,X)

P (MT |y,X)
∝ BF n

jk

BF n
Tk

≈ exp

(
T − j

2
log n +

n

2
log

Bn
1T

Bn
1j

)

where the last expression is exactly that given in (12) so that it tends to zero

for any j ≥ 1. We thus have the following corollary to Theorem 4.

Corollary 2 In the class of linear models M with design matrices satisfying

condition (D), the intrinsic Bayesian variable selection procedure VSA is

consistent. That is, when sampling from MT we have that

P (Mj|y,X)

P (MT |y,X)
→ 0, [Pt],
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whenever the model Mj 6= MT .

Recall that in Section 2.1 we noted that for VSA, the probabilities

P (Mi|y,X) =
BF n

ik

1 +
∑

i′ 6=k BF n
i′k

, Mi ∈ M,

were not true posterior probabilities of the models in the class M. However,

from Corollary 2, this set of probabilities (utilized as a tool for variable selec-

tion in Casella and Moreno 2006), is a consistent sequence of probabilities.

Further, we recall that the ordering of the models they provide is exactly the

same than that given by the VFA pairwise variable selection. Therefore, the

intrinsic models posterior probabilities from above form a set of consistent

probabilities in the class of all linear model M.

4.4 Extensions

The consistency of the intrinsic Bayesian variable selection procedure for the

class of linear models can be extended to any other Bayesian procedure for a

wide class of prior distributions. We observe that all we have used to prove

consistency of the intrinsic Bayesian procedures is the Schwarz approxima-

tion, and the distribution of the ratio of the residuals of two nested linear

models when sampling from a linear model that does not necessarily coincide

with any of the two. Therefore, for any prior for which the Schwarz approxi-

mation for linear models be valid the consistency of the associated Bayesian

procedure can be asserted. Hence, we can prove the following theorem.
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Theorem 5 In the class of linear models M with design matrices satisfying

condition (D), assume that the priors πi, πj for any i, j, are such that

0 < lim
n→∞

πi(α̂i, σ̂i)

πj(α̂j, σ̂j)
< ∞, [PT ]

where α̂i, σ̂i and α̂j, σ̂j are the respective MLEs. Then the Bayesian variable

selection procedure is consistent, that is, when sampling from MT ∈ M, we

have that

P (Mj|y,X)

P (MT |y,X)
→ 0, [Pt],

whenever the model Mj 6= MT .

We note that priors of the form πN
i (αi, σ

q
i ) = ci/σ

q
i , where q is a positive

number, which includes the reference priors for q = 1 and the Jeffreys priors

for q = i, satisfy the condition required in Theorem 5. Indeed, from (14), it

follows that

lim
n→∞

πN
i (α̂i, σ̂i)

πN
j (α̂j, σ̂j)

=
( ci

cj

lim
n→∞

Bn
ij

)q/2

=
( ci

cj

)q/2

exp

{
q

2

2σ2
T + α′TSjT αT

2σ2
T + α′TSiT αT

}
, [PT ],

which clearly is a real positive quantity.

Hence, even though, for finite sample sizes, the above priors only provide

Bayes factors defined up to a multiplicative constant, asymptotically they

behave consistently.
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5 Discussion

It has long been known that when choosing between two models, when one

of which is true, selecting according to Bayes factors provides a consistent

decision function in the sense that the frequentist probability of selecting the

true model approaches 1 as n → ∞. In this paper, for the case of variable

selection, we have extended this result to selection among an entire class of

linear models and a wide class of priors, and shown that selecting according

to Bayes factors yields a decision rule with the property that the frequentist

probability of selecting the true model approaches 1 as n → ∞, and the

frequentist probability of selecting any other model approaches 0 as n →∞.

We have, specifically, worked with intrinsic priors, although our results

hold for a wide class of priors. However, intrinsic priors provide a type of

objective Bayesian prior for the testing problem. They seem to be among the

most diffuse priors that are possible to use in testing, without encountering

problems with indeterminate Bayes factors (which was the original impetus

for the development of Berger and Pericchi 1996). Moreover, they do not

suffer for the “Lindley paradox” behavior. Thus, we believe they are a very

reasonable choice for experimenters looking for an objective Bayesian analysis

with a frequentist guarantee. This is very much in the spirit of the calibrated

Bayesian, as described by Little (2006).

Intrinsic priors have been used successfully in both variable selection and

changepoint problems (Casella and Moreno 2006, Girón et al. 2006ab), where
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excellent small sample properties were exhibited. Some other properties of

the variable selection rules considered here are as follows:

1. All models Mj that contain Model T , and hence have λ1 = 0 (see

(13)), will have the same value of Bn
1T |MT in (14). This means that

the posterior probability of models Mj that contain Model T (11) is

decreasing in j, and models with larger j will have smaller probabilities.

Thus, VSB will tend to select smaller models. The same holds for VSA.

2. To gain further insight in the large sample approximation of the Bayes

factors for comparing arbitrary models, say Mj and Mj′ , we look a

bit closer at the importance of some geometric considerations in the

space of all models, as the one played by a distance that we can define

between a generic model Mj and the true, though unknown, model MT

.

If we define this distance as

δ(Mj,MT ) =
α′TSjT αT

σ2
T

,

we note that it is equal to 0 if either Mj = MT or MT is nested in Mj;

otherwise, it is strictly positive by condition (D). Also, if model Mi is

nested in Mj then δ(Mi,MT ) < δ(Mj,MT ), because Hj−Hi is positive

semidefinite.
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3. From (11) we have that

P (Mj|y,X)

P (Mj′|y,X)
≈ exp

(
j′ − j

2
log n− n

2
log

Bn
1j

Bn
1j′

)
,

and from (14)

log
Bn

1j

Bn
1j′
|MT → log

1 + δ(Mj,MT )/2

1 + δ(Mj′ ,MT )/2
.

Hence,

P (Mj|y,X)

P (Mj′|y,X)
|MT ≈ exp

(
j′ − j

2
log n− n

2
log

1 + δ(Mj,MT )/2

1 + δ(Mj′ ,MT )/2

)
,

and it follows that

P (Mj|y,X)

P (Mj′|y,X)
|MT →





0 if δ(Mj′ ,MT ) < δ(Mj,MT ),

∞ if δ(Mj′ ,MT ) > δ(Mj,MT ).

Thus, the model that is closer to MT is always preferred.

4. If the distance of both models to the true one is the same, i.e. δ(Mj′ ,MT ) =

δ(Mj,MT ), then the limiting behavior of the quotient of posterior model

probabilities only depends on the number of covariates of the models.
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We have that

P (Mj|y,X)

P (Mj′|y,X)
|MT →





0 if δ(Mj′ ,MT ) = δ(Mj,MT ) and j′ < j,

1 if δ(Mj′ ,MT ) = δ(Mj,MT ) and j′ = j,

∞ if δ(Mj′ ,MT ) = δ(Mj,MT ) and j′ > j.

(15)

When the true model is nested in Mj and Mj′ , so δ(Mj′ ,MT ) = δ(Mj,MT ),

(15) says that the smaller model is then preferred. Thus, the intrinsic

Bayes procedure naturally leans toward a more parsimonious solution.

5. We also address the important point of what happens when the true

model is a linear model but it does not belong to M. This happens

when, for example, the true model includes some covariates or interac-

tions among the existing or new ones not previously considered. From

the preceding discussion it follows easily that the preference of the mod-

els in M solely depends on their distances to the true model, regardless

of whether the latter does or does not belong to the set of models we

are considering.

Lastly, we note that implementation of the model selection procedure

is best done with a stochastic search algorithm. As there are 2k−1 possi-

ble models, enumeration quickly becomes infeasible. We have implemented

Metropolis-Hastings driven stochastic searches for both variable selection

(Casella and Moreno 2006) and changepoint problems (Girón et al. 2006b)

with good results.
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A Derivation of the Intrinsic Bayes Factor

Here we outline the calculations to justify the intrinsic Bayes factor of (7).

For comparing model the models in (6) with

πI(βj, σj|αi, σi) =
2

πσi(1 + σ2
j |σ2

i )
Nj(βj|α̃j, (σ

2
j + σ2

i )W
−1
j ),

πI(βj, σj) =

∫
πI(βj, σj|αi, σi)π

N(αi, σi)dαidσi,

and

W−1
j =

n

j + 1
(X′

jXj)
−1,
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the Bayes factor is given by (7).

The derivation of this expression is similar to that in Casella and Moreno

(2006), but there different default priors were used, and a generic Wj was

derived. Here, we are using the reference prior πN(η, σ) = c/σ instead, which

seems to be a better choice as discussed in Girón et al.(2006c), and thus we

here obtain a slightly different Bayes factor given by

BF n
ji =

2

π
|X′

iXi|1/2 (y′(In −Hi)y)
(n−i)/2

I0,

where

I0 =

∫ π/2

0

dϕ

|A(ϕ)|1/2|B(ϕ)|1/2E(ϕ)n−i
,

B(ϕ) = sin2 ϕ In + XjW
−1
j X′

j,

A(ϕ) = X′
iB(ϕ)−1Xi,

and

E(ϕ) = y′(B(ϕ)−1 −B(ϕ))−1XiA(ϕ)−1X′
iB(ϕ)−1y.

Now, taking

W−1
j =

n

j + 1
(X′

jXj)
−1

we have, after some algebra, the following equalities:

i)

B(ϕ)−1 =
1

sin2 ϕ

(
In − n

n + (j + 1) sin2 ϕ
Hj

)
,
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ii)

A(ϕ) =
j + 1

n + (j + 1) sin2 ϕ
X′

iXi,

iii)

XiA(ϕ)−1X′
i =

n + (j + 1) sin2 ϕ

j + 1
Hi,

iv)

E(ϕ) =
j + 1

n + (j + 1) sin2 ϕ

(
n

(j + 1) sin2 ϕ
RSSj + RSSi

)
,

v)

|A(ϕ)| =
(

j + 1

n + (j + 1) sin2 ϕ

)i

|X′
iXi|,

vi)

|B(ϕ)| = (sin2 ϕ)n−j

(
n + (j + 1) sin2 ϕ

j + 1

)j

.

Plugging these values into I0 and making some simplifications we get expres-

sion (7).
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