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Summary. A method of estimating a variety of curves by a sequence of piecewise polynomials is 
proposed, motivated by a Bayesian model and an appropriate summary of the resulting posterior 
distribution. A joint distribution is set up over both the number and the position of the knots 
defining the piecewise polynomials. Throughout we use reversible jump Markov chain Monte Carlo 
methods to compute the posteriors. The methodology has been successful in giving good estim- 
ates for 'smooth' functions (i.e, continuous and differentiable) as well as functions which are not 
differentiable, and perhaps not even continuous, at a finite number of points. The methodology is 
extended to deal with generalized additive models. 

Keywords: Additive models; Back-fitting algorithm; Least squares regression; Piecewise 

polynomials; Reversible jump Markov chain Monte Carlo method; Splines 


1. Introduction 

Regression techniques are among some of the most widely used methods in applied statistics. 
Given a response Y and explanatory variable X the problem is to estimate an assumed 
functional relationship between Y and X ,  and to predict further responses for new values of 
the covariate. The basic regression model with bivariate observations (x,, y,), . . ., (x,,, y,,) 
has the form 

where the ei are zero-mean random errors and f is an unknown regression function that we 
wish to estimate. The value f(X) is the conditional expectation of Y given the value X, so it 
can be used to predict the future values of Y for different measured values of X. 

Both parametric and nonparametric techniques are commonly used to find the regression 
function f. Polynomial regression is a familiar parametric approach but it suffers from 
various drawbacks, in particular that individual observations can exert an influence, in 
unexpected ways, on remote parts of the curve. Also, owing to the global nature of 
polynomial fitting there are problems in estimating wiggly curves. Nonparametric techniques 
include smoothing splines and kernel smoothers (see Hastie and Tibshirani (1990) for an 
overview). Adaptive techniques are also available. Parametric examples include spline fitting 
with adaptive knot placement (Smith, 1982; Friedman and Silverman, 1989; Friedman, 199 1) 
and nonparametric examples include variable bandwidth kernel methods (Muller and 
Stadtmuller, 1987; Fan and Gijbels, 1995). 

One general approach to curve fitting is to allow f to be a piecewise polynomial function 
made up of low order pieces that are non-zero only between adjacent knot points. We provide 
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a Bayesian version which models f by a piecewise polynomial with an unknown number of 
knots at unknown locations, all treated as parameters to be inferred. Between each knot we 
fit a fixed low order polynomial. The flexible structure resulting from the Bayesian knot 
selection technique allows us to estimate any type of unknown curve, smooth or wiggly, and 
compares favourably with spline approximations with many more knots. The method 
benefits from not overparameterizing the parameter space by choosing too many intervals. It 
also combats underparameterization leading to a smooth curve that does not accurately 
reflect the data. 

The novelty of the Bayesian methodology here is that without choosing a single collection 
of knots we are mixing over all the possible subsets of a large collection of prespecified 
candidate knot sites. The resulting mixture distribution covers a rich class of models and has 
high predictive power. If we needed to pick a single collection of knots this could be the 
posterior modal subset of the knot locations or the modes in the posterior probability of the 
candidate knot locations, which could then be used for the spline smoothing. 

The problem of routine calculation of posterior distributions for both the number and the 
location of knots is addressed using the Markov chain Monte Carlo (MCMC) simulation 
technique of reversible jumps (Green, 1995). 

One of the attractive features of our method is that it can be easily extended to the 
multivariate case by using additive models. Suppose that the observations are of the form (yi, 
xi),where each xiis now an I-vector (x,,, . . ., x,;). It is assumed, as before, that the variable Y 
depends on X by a relationship of the form Y =f(X) +error =f(X,, . . ., X,) +error. For 
this paper we concentrate on a particular dependence structure where the function f is a sum 
of functions of the individual components of X, 

This approach is known as additive regression or additive modelling (Hastie and Tibshirani, 
1990) and replaces the problem of estimating a function f of an I-dimensional vector X by 
the problem of estimating 1 separate one-dimensional functions f,. Although not completely 
general, additive models are often effective and easily interpretable. 

In Section 2 we shall introduce the Bayesian model and the algorithm. We give examples of 
curve fitting in one dimension in Section 3 and Section 4 extends our methodology, via 
additive models, to multidimensional settings. A short discussion is provided in Section 5. 

2. Curve fitting in one dimension 

2.1. Piece wise polynomials 
The basic idea of piecewise polynomials is to replace the single function f ,  defined over the 
entire range of X-values, with several generally low order polynomials each defined over a 
different subinterval, the union of which is the range of X. The points that delineate the 
subintervals are the knots. The most popular piecewise polynomial fitting procedures are 
based on splines (de Boor, 1978). These involve setting up basis functions for the estimate 
which are defined by the positions of the knots. Splines of order q are usually defined in such 
a way that they are continuous functions with q - 1 continuous derivatives. For example 
the commonly used cubic polynomial spline function (Hastie and Tibshirani, 1990) can be 
represented simply by the truncated power series basis giving us an estimate of the curve in 
the form 
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where a+ = max(0, a), the ri (i = 1, . . ., k) are the k interior knots, ro and rk+, are the 
boundary knots and the &s and bs are found by least squares regression. This form ensures 
that the estimate is continuous and has continuous first and second derivatives. These 
assumptions are often used to ensure that the estimate looks smooth but may not be an 
adequate basic model if the true curve is far from smooth. 

Many functions do not have properties which make them suitable for estimation with 
splines. Functions with rapidly varying first and second derivatives and maybe even 
discontinuous functions cannot be modelled well with functions that are, by design, 'smooth'. 
Although smoothness is a desirable property when we know that the true functions are 
smooth or we wish to find derivatives of our estimates it restricts the flexibility of a model. 
For this reason we do not use splines in this paper and instead concentrate on piecewise 
polynomials, which can be chosen to be more flexible than splines. In fact we choose to 
rewrite equation (1) as 

where we define a: = I(a 3 0) (where I is the usual indicator function) and the r,,,, indexed in 
ascending order, are the knot points with the boundary knots given by ro = x, and rk+] = x,! 
leaving k ( 2  0) interior knots in the model. The possible location of the knots r,,, are the n 
regular grid points on the range of X. We could have chosen these candidate knot locations 
on a continuous scale but chose not to (see Section 2.2). Also 1 ( 2  0) is the order of the 
piecewise polynomials that we use in the model and lo ( 2  0) gives us the degree of continuity 
at the knot points. For instance if lo = 0 then fk,/ is not constrained to be continuous at the 
knots and for other values of lo ( 2  1) the estimating function is continuous with lo - 1 
continuous derivatives. In fact taking I = lo = 3 in equation (4) gives us the spline in equation 
(3). 

The main difficulty of working with piecewise polynomials (and splines) is selecting the 
number and position of the knots, which control the trade-off between smoothness and 
flexibility of the estimated curve. The simplest approach requires a single parameter, the 
number of interior knots. The positions are then chosen uniformly over the range of the data 
(cardinal splines). A slightly more adaptive version places the knots at appropriate quantiles 
of the predictor variable. It seems clearly preferable to use the data themselves to select 
the number and position of the knots, an idea apparently first proposed by Smith (1982). 
Friedman and Silverman (1989) gave an algorithm for optimizing over the number and 
location of the knots in an adaptive way. The key idea is first to determine the knot positions 
by using a piecewise linear function and then to convert the piecewise linear functions to 
piecewise cubic functions by essentially rounding the corners at each knot. These are then 
used at the chosen knots to compute the piecewise cubic fit. 

2.2. The Bayesian model 
Using the notation of equation (4), in our model we take the number of interior knots, k, 
random and fix the order of estimating piecewise polynomials, 1 and lo. The errors are 
assumed to come from an N(0, a') distribution, where a is an unknown constant. The 
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inference is then carried out assuming that the 'true' model is unknown but comes from the 
class of models Mo, M I , .  . . where Mk denotes the model with exactly k interior knots. The 
overall parameter space O can then be written as a countable union of subspaces O = Ur O, 
where Ok is a subspace of the Euclidean space Rt'(,), and R"(~)denotes the n(k) = (k + 1)-
dimensional parameter space corresponding to model M,. Here dk)= (r,, . . ., r,, 02).The 
joint distribution of (k, Q',), y), where o',) denotes a generic element of Ok and y the data 
vector, is then modelled as 

i.e. as the product of model probability, parameter prior and likelihood. Inference about k 
and dk)will be based on the joint posteriorp(k, dk)) which is known as the target distribution. 

The full Bayesian model of the joint posterior density for the models and parameters given 
the data can be written as 

where Z is a normalizing constant and is given by 

We shall generate samples from the joint posterior of (k, Q'~))  (as in these non-trivial cases 
of changing dimension the standard MCMC theory does not apply) by using a wider class of 
reversible jump Metropolis-Hastings algorithms (Green, 1995). Full details of these methods 
can be found in Green (1995). Here, we focus on the essence of the methodology and the 
particular forms of the algorithms in our current context. 

For normal errors the log-likelihood I,(Qly) is 

where is defined by equation (4). 
The coefficients P,,,,,, defined in equation (4) are determined by the data and the parameter 

vector 19(~) and are taken to be the least squares estimates which can easily be calculated with 
standarTleast squares regression theory. A complete Bayesian approach would assign proper 
prior distributions to these polynomial coefficients and work with an extended posterior 
distribution which also included these parameters. However, this leads to a serious additional 
computational burden, especially when many knots are required to fit the curve adequately, 
and comparative studies have shown that the least squares estimation approach leads to no 
significant deterioration in performance for overall curve estimation. 

We use a vague, but proper, prior for the error variance a2,  i.e. n(aT') = gamma(10-3, 
A Poisson distribution (with parameter A) is used to specify the prior probabilities for 

each of the models, giving 

In practice, a Poisson distribution truncated to k < n or to k < k,,,, for a suitable choice of 
k,,,, is adopted. The choice of X will be discussed later. The r; are taken to be the order 
statistics from a uniform random variable with state space the candidate knot sites {x,, 
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x2, . . ., x,,}. We could have chosen the candidate knot locations as any point in the range of 
X but this leads to problems in defining the 'modal' collection of the knots which is why we 
feel that the candidate knot locations that we use are more desirable. 

2.3. Methodology 
Our aim is to simulate samples from the joint posterior distribution of p(~(k) ,  kly), since 
analytic or numerical analyses are totally intractable in this situation. 

Owing to the varying dimensionality of our problem we must design move types between 
the subspaces Ok which will combine to form what Tierney (1994) called a hybrid sampler. 
These will allow the sampler to explore the combined parameter space freely. 

For this problem some possible transitions are 

(a) the addition of a knot (a birth step), 
(b) the deletion of a knot (a death step) and 
(c) the movement of a knot. 

In steps (a) and (b) we are changing the dimension of the model. 
The location of the proposed knot to add in step (a) is found by uniformly choosing one of 

the xi which does not contain a knot within 1+ 1 design points to its left or right. The 
proposed knot to delete in step (b) is simply chosen uniformly from the knots that are 
currently in the model. The movement step (c) is required because of the limited way in which 
we chose to add knots. If step (c) were not incorporated in the model then, in practice, the 
space of possible proposal models can become small when many knots are present. Hence, 
this step chooses a knot uniformly, say x,, and then chooses another point uniformly from 
the set 

C = { x i : J i- cJ d 1 + 1 and no other knots are within 1+ 1 candidate locations of xi} 

and proposes that the knot x, be moved to this new point. Once the knot locations of the 
proposed model have been established in each of the three move types standard least squares 
theory is used to obtain the P,,,,,, which are defined in equation (4). This gives us the complete 
proposed model which is in the same form as fk,, in equation (4). 

At the end of each iteration, after the transition step has been performed, we generate a 
new error variance a' by using a Gibbs step (Gelfand and Smith, 1990). Thus, posterior 
samples of (k, r(,), a') provide the basis for any required posterior inference or model 
comparison purpose, in particular, estimating the unknown function f by the Monte Carlo 
posterior mean, i.e. the pointwise average of the functions arising from each of the samples 
generated. 

2.4. Algorithm 
Considering the three move types (a)-(c) we can rewrite this set of moves as m = {M, 0, 1, 
2, .  . .). Here M means the movement of a knot and m = 0, 1, 2, . . . refers to increasing the 
number of interior knots from m to m + 1 or decreasing from m + 1 to m. Independent move 
types are randomly chosen with probabilities 7, for m = M, bk for m =k and d, for 
m =k - 1 which satisfy qk +bk +dk = 1 for all k. In this problem we took 

and 
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for k = 1, 2, . . ., which then forces Q = 1 - bk - dk. For k = 0 we put bo = 1 and do = 
mo = 0. The constant c controls the rate at which move types which change dimension are 
proposed. We take c = 0.4 in the forthcoming examples but other values are equally valid, 
provided that c E [O, i]as, if c > +,then the sum of the probabilities b, and dk could be greater 
than 1 for some values of k. 

Using the notation of Green (1995), the acceptance probability for each of the move types 
in our problem is 

a = min(1, likelihood ratio x prior ratio x proposal ratio). 

For the move step (c) the prior ratio and proposal ratio are both 1 since all collections of 
the same number of knots have the same prior probability and the proposals are made from 
the same distribution. 

For the birth step (a) the prior ratio is given by 

prior for k + 1 knots prior for location of k + 1 knots 
prior ratio = 

prior for k knots prior for location of k knots 

since we know that if r = (r,, . . ., rk) where the ri are drawn from a uniform distribution with 
n points and r, < r2 < . . . < rk then p(r) = n-kk!. The corresponding proposal ratio is given 
by 

dk+l +proposal ratio = 
b k l b  - Z(k)} 

where 

and is the number of candidate knot locations where a new knot cannot be placed so it is not 
too close to an existing knot (i.e. I + 1 data points away). We chose the proposal probabilities 
for the birth and death steps in such a way as to ensure 

so it follows from equations (10) and (1 1) that the acceptance probability for a birth step is 

n - Z(k)
1, likelihood ratio 

n 

and for the death step it is the same except that the fraction is inverted. 
The algorithm that we use is very simple and works quickly. To monitor our results we 

look at the mean-squared error (MSE) of the models generated by the MCMC algorithm, 
given by 

wheref,,, is defined by equation (4). We then think of the chain as having 'converged' when 
this quantity settles down. This ensures that the points in the sample from the posterior 
distribution all have a similar 'goodness of fit' for the data. Monitoring the log-posterior for 
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(k, o(~)) ,  for example, would be inappropriate because of scaling problems introduced by 
moves across dimensions. 

2.4.1. Algorithm 

Step I :  initialize a configuration by choosing X knot locations uniformly along the range 
[r,, r k + ~ ]at least 1 + 1 points away from each other. 

Step 2: set k equal to the number of interior knots in the present model. 

Step 3: generate u uniformly on [0,1]. 

Step 4: go to the move type determined by u- 

(i) if u < bk then go to the birth step; 
(ii) otherwise if bk < u < bk +dk then go to the death step; 
(iii) otherwise go to the move step. 

Step 5:  draw o2 by using a Gibbs step. 
Step 6: repeat step 2 until there is little change in the mean-squared error of the models. 

3. Examples 

3.1. Smooth functions 
We begin with a relatively simple challenge and consider two smooth functions: 

(a) f(x) = x +2 exp(- 1 6x2), x E [-2, 21, 

and 

(b) f(x) = sin(2x) +2 exp(- 1 6x2), x E [-2, 21. 

Simulated data are created as follows. The function is rescaled so that its support is the unit 
interval and then is evaluated at 200 points in [0, I] generated from a U(0, 1) distribution. 
Zero-mean normal noise is added with a chosen so that the signal-to-noise ratio is 3 as in Fan 
and Gijbels (1 9959, i.e. o = 0.4 in example (a) and 0.3 in example (b). 

We choose I ,  = 1 and I = 2, soh , ,  is a continuous quadratic piecewise polynomial, and put 
a Poisson prior over k with X = 1, to reflect assumed knowledge that the curves are very 
smooth and hence that a large number of knots is unlikely to be required. We initially place X 
knots as described in the algorithm. 

In Figs 1 and 2 we display the true functions in examples (a) and (b) together with 
estimates to these functions by using our method and the adaptive knot selection method of 
Friedman and Silverman (1989). We used exactly the same model for the function, given in 
equation (4) with I = 2 and I, = 1, in the adaptive knot selection algorithm. Our estimates are 
smoother because we display the posterior mean estimate to the true function, obtained by 
pointwise averaging, whereas the knot selection technique produces a single estimate which is 
of the form shown in equation (4). 

In both examples our model had a posterior modal number of knots similar to the number 
of knots found by the adaptive knot selection algorithm. In fact we found the same number 
(3) in example (a) and we found one more (4) in example (b). The MSEs, given by 

' l

MSE =-
1 C {?(xi) -f(xi)12, 
n i=1 

wheref is the true function andfis our estimate to the true function, are displayed in Table 1 
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Fig. 1. Example (a), using the continuous piecewise quadratic model: -, true curve; .........., Bayes 
estimate; -- -, adaptive knot selection estimate 

Fig. 2. Example (b), using the continuous piecewise quadratic model: -, true curve, .........., Bayes 
estimate; - - -, adaptive knot selection estimate 

and show that our estimates are marginally better. We took the values xi on a uniform grid 
with n points, i.e. xi = ( i  - l)/(n - 1) (i = 1, . . ., n). 

It can be seen from Figs 1 and 2 that the estimates may be displaying unnecessary variance 
because they are following the data too closely. We believe that this variance is caused more 
by the high signal-to-noise ratio than because of the extra degree of freedom that we allow at 
each knot compared with traditional splines for which I = lo. We illustrate this point by 
running the Bayesian curve fitting and adaptive knot selection algorithms again but this time 
using linear splines (i.e. I = lo = 1). The results are shown in Figs 3 and 4. For the trivial 
example (a) we find a slightly lower MSE for the estimate when using linear instead of 
quadratic pieces but even for the only marginally more difficult example (b) the situation is 



Bayesian Curve Fitting 341 

Table I. MSE of estimates shown in Figs 1-4 

E.xample Bayes estimate Friedman estimate 


Linear Quadratic Linear Quadratic 


(a) 0.0079 0.0097 0.0308 0.0129 
(b) 0.0096 0.0087 0.01 81 0.01 10 

Fig. 3. Example (a), using the continuous piecewise linear model: -, true curve; ..........,Bayes estimate; 

- - -, adaptive knot selection estimate 

Fig. 4. Example (b), using the continuous piecewise linear model: -, true curve; ..........,Bayes estimate; 
- - -, adaptive knot selection estimate 
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reversed. This suggests that using linear splines is worthwhile only when it is believed that the 
underlying true curve is very simple and for other cases the piecewise continuous quadratic 
model works well. In fact, we would advocate using this model all the time so the procedure is 
'automatic'. However, as the improvement of the fits in Fig. 3 compared with Fig. 1 seems to 
be mainly at the edges of the range of the data we could choose to use a different spline basis 
to offset this such as the natural splines (see, for example, de Boor (1978)) which are linear 
beyond the last interior knot. 

3.2. Unsmooth functions 
We now illustrate the performance of the methodology with the four simulated examples 
('Heavisine', 'Blocks', 'Bumps' and 'Doppler') used as test curves in Donoho and Johnstone 
(1994) to show the efficacy of our methodology to estimate wiggly curves. 

A fixed uniform design xi = iln is used. The number of grid points, n, is taken to be 2048 
and we set the noise standard deviation to be a = 1.0 so that the signal-to-noise ratio is 7. 
Again we choose I,, = 1 and 1 = 2 and assign a Poisson prior over k but this time we choose 
X = 5. 

The choice of a Poisson prior is somewhat arbitrary. In related studies, we have used a 
negative binomial prior, but the choice of the distribution does not seem important. The 
choice of the prior mean is a compromise between flexibility and parsimony. A very small 
value of X reflects a very strong insistence on smoothness. A very large value (relative to n) 
causes the fit to follow the data too closely. In this context, the results are relatively 
insensitive to choices in the range 5-20 (see Table 4 of Section 3.3 and associated discussion). 

In Figs 5-8 we display the results with unsmooth functions. The estimates were obtained 
by ergodic averaging over 50000 iterations after a suitable 'burn-in' period. The length of the 
burn-in period was chosen to be sufficiently long that the mean-squared errors of the models 
had settled down. As shown in Fig. 9 this depends on the problem at hand with the MSE 
taking longer to settle down when the data set required more knots to be well estimated. 
Our method is seen to work well for all the examples with exactly the same initial choice of 
parameters. 

Despite the fixed choice of X the posterior mode of the number of knots varies widely 
depending on the data. This again demonstrates the adaptive nature of the model which 
remains largely independent of the choice of A. This is shown in Table 2. 

Discontinuities in the true curve are found well by our method. This is particularly evident 
in Fig. 7 in which, because our method places many knots around the spikes, the data are 
followed closely in these regions. This leads to the estimated heights of the spikes being very 
close to the true values, something which is invariably lost when we use smoothing techniques 
on the same problem. 

Table 2. Modal posterior for the number of 
knotst 

Function Modal posterior 
number of knots 

Heavisine 17 
Blocks 35 
Bumps 62 
Doppler 37 



Bayesian Curve Fitting 343 

(c) 

Fig. 5. Heavisine test curve: (a) true function; (b) true function with noise added; (c) estimate of the function 

Table 3. Average MSE from 10 replications? 

Function Wavelet threshold Wavelet threshold Bayes estimate 
{2~ o ~ ( n ) ) ' ~ ~  

Heavisine 0.060 0.083 0.033 
Blocks 0.427 0.905 0.170 
Bumps 0.499 1.080 0.167 
Doppler 0.151 0.318 0.135 

Table 3 compares our results with those obtained by Donoho and Johnstone (1994). Here 
A: is the optimal wavelet threshold chosen specifically for each data set, whereas {2 log(n)}"' 
is a universal threshold which Donoho and Johnstone proposed for all such problems. The 
Bayes method fares well in comparison with their wavelet thresholding techniques and is 
markedly better than the wavelet threshold results using {2 10~(n)}"~ which is also, in some 
sense, 'automatic'. Note that the wavelet results are obtained with a' known and, for ease of 
computation, require the number of data points to be a power of 2. We only take n = 2048 so 
that we can compare our results with those of Donoho and Johnstone (1994). 
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I I 
0.0 0.2 0.4 0.6 0.8 1.O 

(C) 

Fig. 6. Blocks test curve: (a) true function; (b) true function with noise added; (c) estimate of the function 

3.3. Prior specificstion 
In the examples shown we have mainly used quadratic piecewise polynomials (1 = 2) and 
forced continuity at the knot points (Io = 1). Choosing I too high in our functionf,,,, when we 
only make continuity assumptions, will lead to the data being too closely followed and the 
regression being unnecessarily complicated whereas choosing it too low will give us results 
which have no bearing in reality when the true curve is complicated. When the underlying 
curve is simple, as in example (a), it could be beneficial to use linear splines as shown in Fig. 3 
but as the main focus of this paper is the adaptive way that complex curves can be found we 
do not explore such trivial examples further. We only force continuity at the knot points 
because this allows us the flexibility to model unsmooth curves well (Figs 5-8) while still 
maintaining a model which estimates smooth curves adequately (Figs 1 and 2). We have 
found that this model gives better results than other more widely used models. Splines, where 
I = lo, tend not to have the flexibility required to model all the difficult examples that we 
attempted, which is why we allow 2 degrees of freedom at each knot point. 

The only other parameter which we must choose before we carry out the algorithm, the 
Poisson parameter X for the prior number of knots, has remarkably little effect on the results 
which we obtain. We chose a value of 1 for the smooth examples because the data set was 
small (n = 200) whereas we chose X = 5 for the Donoho and Johnstone examples as we had a 
large data set (n = 2048) and wanted our simulation of the target posterior distribution not to 
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Fig. 7. Bumps test curve: (a) true function; (b) true function with noise added; (c) estimate of the function 

Table 4. Average MSE from 10 replications for the Blocks example with varying X 

X 1 3 5 7 10 15 20 

MSE 0.368 0.181 0.170 0.173 0.173 0.174 0.195 


be too constricted so that the number of knots in the models could vary widely. In fact the 
values chosen are almost certainly not the optimum values for the given examples but to 
justify our title including the word automatic we have restrained from varying X to improve 
our results. It seems that the greatest danger would be to set X too small when we have a large 
data set as demonstrated in Table 4 for the Blocks function. So, for reasonable choices of A, 
the method appears to be robust. 

4. Extension to additive models 

4.1. Introduction 
Regression techniques quickly become unmanageable when we try to extend them to more 
than two dimensions owing to the interaction terms which have to be accounted for. Other 
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Fig. 8. Doppler test curve: (a) true function; (b) true function with noise added; (c) estimate of the function 

0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 1OOOO 
Iteration Iteration 
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Fig. 9. MSE of the output from the MCMC algorithm: (a) Heavisine test curve; (b) Blocks test curve; (c) Bumps 
test curve; (d) Doppler test curve (the first 5000 iterations, at least, are discarded as burn-in iterations) 
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methods for estimating surfaces in two or more dimensions have been used to overcome these 
problems such as projection pursuit regression (Friedman and Stuetzle, 1981), multivariate 
adaptive regression splines (Friedman, 1991) and additive models (Hastie and Tibshirani, 
1990) among others. Here we concentrate on the additive models approach and provide an 
extension of our Bayesian curve fitting method. A non-Bayesian analogue can be found in 
Friedman and Silverman (1989). 

The general additive model problem is to find functions fi such that 

where the X, are the predictor variables, E(E) = 0, var (~)  = c2and E is independent of the 4 s .  
The fi are arbitrary univariate functions and can be found nonparametrically by using 
scatterplot smoothers and the back-fitting algorithm as described in Hastie and Tibshirani 
(1990). However, assuming a specific functional form for the fi, which makes the model 
parametric, can help us to work out the degrees of freedom and pointwise standard errors of 
the model, and this is the approach that we shall be using. 

The common approach to this problem is either to decide on the number of knots and their 
locations beforehand or to find suitable knot locations by some preliminary examination of 
the data. Then a least squares approximation is carried out with the spline basis functions 
fixed by the knot locations to find the parameters that we require. Instead of assuming that 
theJ; are splines of some sort with determined knot locations (Hastie and Tibshirani, 1990) 
we set up the& as continuous piecewise quadratic polynomials over random knot locations as 
used in the previous section. The difference with our method is that we do not prospectively 
look for knots but apply the well-known 'back-fitting algorithm', as used in nonparametric 
additive models, to find the knot locations and hence the estimates to the terms in equation 
(12). 

4.2. Methodology 
We proceed in the same way as for the general nonparametric additive model problem by 
using a slightly modified back-fitting algorithm (Hastie and Tibshirani (1990), p. 91). Again 
we monitor the output via the mean-squared errors of the models. 

4.2.1. Algorithm 

Step I: initialize-cr = ave(y,), f j  =fio,j = 1, . . .,p. 
Step2: cycle-j= 1 , .  . . ,p ,  1 , .  . . ,p ,  . . . ;  

Step 3: continue step 2 until there is little change in the mean-squared errors of the models. 

So instead of using the criterion of cross-validation for selecting our knots we are looking 
at the posterior probability of the location of the knots given the data. 

4.3. Example 
We take a slightly modified example from Hastie and Tibshirani (1990), pages 247-251. We 
try to fit functionsfi and f,for the model 
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Fig. 10. (-,Additive model example true function; .........., estimate): (a) f,(x); (b) f,(z) 


for x < 0.6, 
otherwise, 

with xi and zi generated independently from a U(0, 1) distribution and E~ from an N(0, 0.25) 
distribution. This gives us a signal-to-noise ratio of approximately 2. Fig. 10 shows the 
estimates to the functions f,(x) and f,(z). The estimate for f,(x) is not quite as good as that 
given in Hastie and Tibshirani (1990) but that for f,(z) is considerably better than the 
estimate that they gave. We also found strong evidence for knots at z = 0.21 and z = 0.60 as 
they were both local maxima in the posterior density. No good knot locations were found for 
x. However, using these knots we should also obtain a good improvement in the spline fitting 
approach which is recommended in Hastie and Tibshirani (1990). 

5. Discussion 

We have presented a method which works well for a wide range of challenging functions. It 
has been shown to be competitive with the adaptive knot selection algorithm given in 
Friedman and Silverman (1989) and with wavelet thresholding techniques (Donoho and 
Johnstone, 1994; Donoho et al., 1995). This method has been shown to be particularly good 
at approximating rapidly varying curves, which is its main strength. There are many methods 
to estimate curves which are continuous and smooth and even though this curve fitting 
approach works well in these cases this was not our primary concern. 

We have used a single model throughout; however, we may use prior knowledge in fitting 
the curve. If we know that a curve is continuous with continuous first and second derivatives 
we may model it with a cubic spline by taking I = lo = 3. Also, after a glance at the initial 
estimate of the Blocks function using I = 2 and lo = 1, we could fit a step function (I = lo = 0) 
to the data; this results in Fig. 11. This is an almost perfect reconstruction of the true curve. 
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0.0 0.2 0.4 0.6 0.8 1.0 

Fig. 11. Estimate of the Blocks function using a step function as the piecewise polynomial 

In most curve fitting problems the main aim is prediction, which is why we have focused on 
posterior mean estimates throughout this paper. However, as a referee pointed out, it is 
important to look at individual sample curves generated by the chain to look for features 
which might be hidden by the posterior mean. The posterior mean estimate can smooth out 
features that are present in individual sample curves and if this appears to be the case the 
posterior mode may be a more honest estimate of the true curve. 

The results shown took between 10 and 30 min to run on a Sun SPARC 5 workstation. The 
software (written in C) used to produce these results is available from the World Wide Web 
address h t t p  :/ /www.ma. ic .ac .uk/-- dgtd or by sending an electronic mail message to 
d.denison@ic.ac.uk. 
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Appendix A 

The move types birth, death and move given in the algorithm in Section 2.4 are undertaken as follows. 
The notation follows that in Section 2.4. 

A.1. Birth 
Step I :  generate the proposed new knot to  add uniformly from one of the n - Z(k)  candidate grid 

points. 

Step 2: sort the knots into ascending numerical order. This becomes the model proposed. 

Step 3: work out the coefficients P in the proposed model by using least squares. 

Step 4: generate u uniformly on [0, I]. 

Step 5: work out the acceptance probability a. 
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Step 6: if u < a accept the model proposed; otherwise keep the current model. 

Step 7: return to the main algorithm. 


A.2. Death 

Step I :  generate the proposed changepoint to delete uniformly from the interior knots present. This is 

the model proposed. 

Step 2: work out the coefficients /3 in the proposed model by using least squares. 

Step 3: generate u uniformly on [0, I]. 

Step 4: work out the acceptance probability a. 

Step 5: if u < a accept the model proposed; otherwise keep the current model. 

Step 6: return to the main algorithm. 


A.3. Move 

Step 1: generate the proposed knot to move, say x,, uniformly from the interior knots that are 

present in the model. 

Step 2: generate the proposed new position of the knot x, uniformly from the set of possible points to 

move to (C). 

Step 3: work out the coefficients /3 in the proposed model by using least squares. 

Step 4: generate u uniformly on [0, I]. 

Step 5: work out the acceptance probability a. 

Step 6: if u < a accept the model proposed; otherwise keep the current model. 

Step 7: return to the main algorithm. 
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