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S

We describe a Bayesian method, for fitting curves to data drawn from an exponential
family, that uses splines for which the number and locations of knots are free parameters.
The method uses reversible-jump Markov chain Monte Carlo to change the knot con-
figurations and a locality heuristic to speed up mixing. For nonnormal models, we approxi-
mate the integrated likelihood ratios needed to compute acceptance probabilities by using
the Bayesian information criterion, , under priors that make this approximation accu-
rate. Our technique is based on a marginalised chain on the knot number and locations,
but we provide methods for inference about the regression coefficients, and functions of
them, in both normal and nonnormal models. Simulation results suggest that the method
performs well, and we illustrate the method in two neuroscience applications.

Some key words: BIC; Generalised linear model; Nonparametric regression; Reversible-jump Markov chain
Monte Carlo; Smoothing; Unit-information prior.

1. I

Smoothing splines are often appealing tools for curve estimation because they provide
computationally efficient estimation. They tend to do a good job in smoothing noisy data,
and they have both frequentist and Bayesian interpretations (Hastie & Tibshirani, 1990;
Wahba, 1990). However, in practice, smoothing splines have two shortcomings: they
require specification of a global smoothness parameter; and, conditionally on the choice
of smoothness, they are linear estimators and thus have difficulty adapting to functions
that are heterogeneous over their domains. The first problem has been addressed through
various data-driven methods, such as crossvalidation, for choosing the smoothness param-
eter, but such methods are not convincing in small samples and they offer no measure of
uncertainty in the estimated smoothness. The second problem is more fundamental.
Whereas smoothing splines use many knots located at the data, an alternative that has
been explored is to use fewer knots that are well placed (Denison et al., 1998; Lindstrom,
1999; Zhou & Shen, 2001; Biller, 2000; Hansen & Kooperberg, 2000; Halpern, 1973;
Genovese, 2000; Eilers & Marx, 1996; Smith & Kohn, 1996). This approach is often called
curve-fitting with free-knot splines because the number of knots and their locations are
determined from the data.

In this paper, we describe a fully Bayesian method for curve-fitting with free-knot splines
for data drawn from an exponential family distribution, which we call Bayesian adaptive
regression splines. Our implementation is based on reversible-jump Markov chain Monte
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Carlo (Green, 1995) and incorporates a key observation made by Zhou & Shen (2001).
We compare our method’s performance to both the Bayesian method of Denison et al.
(1998) and the frequentist, iterative spatially adaptive regression spline method of Zhou
& Shen (2001). Our method gives more accurate estimates of our test function than either
of the others.

Our method applies to independent data (X1 , Y1 ), . . . , (Xn , Yn ) that satisfy the following
model:

Y
i
|X1 , . . . , Xn~p{y | f (X

i
), s} (i=1, . . . , n), (1)

where f is a real-valued function on [a, b], and s is an optional and potentially vector-
valued nuisance parameter. We think of the X

i
’s here as observed explanatory variables.

The goal is to estimate the unknown function f from these data under the assumption
that f lies in some fixed, and usually infinite-dimensional, class of functions.

We focus on the special case when p(y |h, s) is an exponential family distribution with
dispersion parameter s. In particular, when p(.) is a N(h, s2 ) distribution, we obtain the
nonparametric regression model

Y
i
= f (x

i
)+e
i

(i=1, . . . , n), (2)

where the e
i
are independent draws from N(0, s2 ) and s>0 is unknown.

Our method implicitly assumes that f is well approximated between a and b by a cubic
spline with some number of knots. In practice, we will assume that f is such a spline.
This class of cubic splines is quite large and approximates any locally smooth function
arbitrarily well.

We will denote knot configurations by pairs (k, j), where the number of knots k is a
nonnegative integer and the knot locations are given by the k-vector j= (j1 , . . . , jk ), for
a<x(1)<j1∏ . . .∏j

k
<x
(n)
<b. Let b

j
(x), for j=1, . . . , k+2, denote the jth function in

a cubic B-spline basis with natural boundary constraints, i.e. linear outside [a, b], and let
B
k,j

be the matrix whose i, j component is b
j
(x
i
). The subscript k,j expresses the dependence

of the matrix B
k,j

on the number and locations of knots. Under our assumptions, we can
write f as a linear combination

f (x)= ∑
k+2

j=1
b
j
b
j
(x) (3)

for some vector b= (b1 , . . . , bk+2 ). We have the linear relation B
k,j
b= f (X)¬

( f (X1 ), . . . , f (X
n
)) at the observed design points.

To complete the Bayesian formulation of the model, we must specify a prior on the
unknown quantities b, s, k and j. In this paper, we use uniform or Poisson priors on k
and a uniform prior on j induced by the uniform prior over the standard k-simplex by
rescaling j to [a, b]. Given k and j, we use a particular conjugate Normal prior on b that
Kass & Wasserman (1995) called the unit-information prior and, independently, the
improper prior p

s
(s)=1/s. With these choices, the posterior under the Normal model (2)

can be computed analytically. For example, b and s can be integrated out of the posterior
in order to obtain a Markov chain for sampling from the marginal posterior on (k, j):

p(y |k, j)= P p(y |b, k, j, s)p(b, s |k, j) db ds. (4)

In the general model (1), we rely on an approximation for ratios of marginal likelihoods
(4) in terms of the Bayesian information criterion, . Kass & Wasserman (1995) and
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Pauler (1998) showed these approximations to be accurate when the unit-information
prior on b is used.

Since the parameter space in the model (1) is a disjoint union of spline spaces, sampling
from the posterior benefits from the reversible jump Markov chain Monte Carlo technique
introduced by Green (1995) and shown by him to be effective for estimating step functions
with variable number and locations of the break points. Denison et al. (1998) generalised
this approach to higher-order free-knot splines, producing a potentially powerful nonlinear
regression method. However, Denison et al. (1998) avoided specifying a prior on b, prefer-
ring instead to plug in its least-squares estimator at each stage. This quasi-Bayesian
solution affects how the method penalises dimensionality and often leads to severe
overfitting.

We use a reversible-jump Metropolis–Hastings Markov chain Monte Carlo simulation
on the (k, j) pairs, with b and smarginalised out. Since we use a fully Bayesian formulation,
inferences on b and s can be included with additional post hoc simulations as desired.
We can use the results to estimate f with a mean of the posterior sample from f (x) which
is a function of b. The mode can also be useful in some cases; while the mean is analytically
and computationally tractable, the mode avoids averaging over disparate structures when
there are many qualitatively different functions in regions of high posterior density. By
using a spline basis, introducing the unit-information prior and approximating with the
, we are able to employ essentially the same Markov chain Monte Carlo implemen-
tation with the general model (1) as with the Normal model (2).

In § 2, we provide further details about our choice of priors and our approximation to
the likelihood ratios. In § 3, we discuss further details of our posterior simulation. In § 4,
we show the results of simulations for three elementary test functions. In §§ 5 and 6, we
apply the method to two real datasets. The former uses the Normal model (2) to analyse
functional magnetic resonance imaging data; the latter uses a Poisson model based on (1)
to estimate the time-intensity function of neuronal firing in a monkey’s brain. Finally, in
§ 7, we discuss several possible refinements and extensions of our method.

2. C       

We begin by treating model (2). It is convenient, though not essential as we show below,
to use a prior for which (4) may be obtained analytically. We decompose the prior as
follows:

p(b, k, j, s)=p
b
(b |j, k, s)p

j
(j |k)p

k
(k)p
s
(s),

where p
s
(s)=1/s and

b |k, j, s~N
k+2

{0, s2n(BT
k,j

B
k,j

)−1}. (5)

The remaining priors on j and k could be chosen to express knowledge about these
parameters or, equivalently, to force some desired behaviour in the posterior. In our
simulations and applications below, we have adopted a prior on j given k induced by a
Dir(1, 1, . . . , 1) prior on the k-simplex by scaling [a, b] to [0, 1]. For k we also adopted
a Poisson prior or Uniform prior on {1, . . . , K0}. In many applications, the results are
unlikely to be very sensitive to the precise specification of the prior on k.

For linear regression models Y=Xb+e, with the more general design matrix X replac-
ing B

k,j
, priors of the form (5) have been used by many authors (Pauler, 1998). Kass &

Wasserman (1995) have called these ‘unit-information’ priors because the amount of infor-
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mation in the prior, represented by the covariance matrix, is equal to the amount of
information in one observation, as represented by the Fisher information matrix. A prior
very similar to (5) was used by Smith & Kohn (1996) in a different but related context
of spline knot selection, where instead of n in (5) they used a constant between 10 and
1000 which they judged to work well for the data they examined.

With these choices of priors on b and s, we can compute analytically the marginal
posterior for (j, k) via equation (4). This makes it easy to compute the likelihood ratios
p(y |jc, kc )/p(y |j, k), that are used in the reversible jump algorithm to determine whether
or not to move from state (k, j) to candidate state (kc, jc ). For example, one type of move
in our Markov chain Monte Carlo implementation involves the addition of a knot. If the
current state is (k, j) and the candidate state is (kc=k+1, jc ), then the likelihood ratio
becomes

p(y |kc, jc )
p(y |k, j)

=
1

√(n+1) A yT{I
n
−n(n+1)−1B

k,j
(BT
k,j

B
k,j

)−1BT
k,j

}y

yT{I
n
−n(n+1)−1B

k,jc
(BT
k,jc

B
k,jc

)−1BT
k,jc

}yBn/2. (6)

Similarly, we can obtain analytically the conditional posterior expectation

E{ f (x) |k, j, y}=
n

n+1
B
k,j

(BT
k,j

B
k,j

)−1BT
k,j

yjB
k,j
b@ , (7)

for any x. The posterior expectation E{ f (x) |y} can then be computed by averaging this
conditional expectation over (k, j) samples. This expectation is the Bayes estimator f@ (x)
for f (x) under squared-error loss.

When we are making inferences about functionals of f, the uncertainty in b cannot be
ignored. With our choice of priors in the normal model, p(b |y, j, k) can be computed
analytically, making it easy to assess the uncertainty in b after a simulation on j and k
alone. To do this, we draw a value from this posterior for each (k, j) sample from our chain.

In the more general model (1), we use the same priors. However, it is often infeasible
in this case to obtain analytical expressions such as those above. With the unit information
prior (5) on b, the likelihood ratio p(y |jc, kc )/p(y |j, k) in the Markov chain Monte Carlo
can be approximated using the  with an error of O(n−D ), and this produces a posterior
distribution on (k, j) that also has an error of O(n−D ); see Appendix 3. Examples in Kass
& Wasserman (1995) show that  often produces a very good approximation to the
unit-information posterior in practice. Implementation requires maximum likelihood esti-
mators b@ under each spline model, which are often easily computed with standard software.
In particular, conditionally on j and k and when the data are drawn from an exponential
family distribution, our model in equation (1) becomes a generalised linear model
(McCullagh & Nelder, 1989).

The use of b@ , that is integrating out the coefficients in the chain, is a key feature of both
our method and the method of Denison et al. (1998). This approach has two advantages.
First, it speeds up the simulation by reducing the dimensionality of the parameter space
with minimal additional cost to compute b@ . Secondly, it facilitates the jumps between
spline models because such moves no longer require a delicate re-balancing of the
coefficients when knots are added or deleted (Genovese, 2000). However, it is essential
that the uncertainty in b be accounted for in the final inferences. In the normal model,
the simulation on (k, j) and (b, s) can be decoupled because we have analytical expressions
for the marginalised expectations. Thus, we can draw samples of (b, s) at each step as
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needed after the original simulation is completed. In the general model, additional work
is needed. We describe one approach in § 3·2 below.

While our method and the spatially adaptive regression spline method of Zhou & Shen
(2001) share many features, the primary contrast between the two is that ours is a fully
Bayesian simulation method while spatially adaptive regression spline is a frequentist,
iterative method. The primary contrast between our method and that of Denison et al.
(1998) is that the two Markov chains have different equilibrium distributions. Denison
et al. (1998) do not use a prior on b but instead replace the likelihood ratio
p(y |jc, kc )/p(y |j, k) with p(y |b@ c, jc, kc )/p(y |b@ , j, k). This plug-in approximation with the
least-squares estimator produces a version of the marginal density pDMS(y |j, k) that is
monotonically increasing in k; we are more specific in Appendix 3. As a consequence,
unlike that based on , the equilibrium distribution produced by the chain with the
plug-in approximation does not have the desired properties: the data cannot be informative
about the number of knots, the procedure will tend to overfit, and the effect of the prior
on k will not vanish as the dataset gets large, since the likelihood will become roughly
constant in k as k increases. Indeed, experimentation using the software kindly provided
by Denison et al. (1998) displays extreme sensitivity of the posterior on k to the choice
of prior on k. Incidentally, we can also see this in the likelihood ratio approximation for
the normal model in equation (6) by

p(y |kc, jc )
p(y |k, j)

j
1

√n A (y−B
k,j
b@ )T(y−B

k,j
b@ )

(y−B
k,jc
b@ c )T(y−B

k,jc
b@ c )Bn/2=exp(−/2), (8)

where b@ are the least-squares estimates. The method of Denison et al. (1998) omits the
consequential factor 1/√n in (8), which  includes to penalise the likelihood ratio for
dimensionality.

3. P 

3·1. Reversible-jump Markov chain Monte Carlo

As we indicated in § 1, the framework we have adopted produces a Markov chain with
the marginal posterior on (k, j) as stationary distribution. The Metropolis–Hastings
acceptance probability combines the likelihood ratio discussed earlier, a prior ratio
p
k,j

(kc, jc )/p
k,j

(k, j), where p
k,j

(k, j)=p
j
(j |k)p

k
(k), and an asymmetry correction

q(k, j |kc, jc )/q(kc, jc |k, j), where q is the proposal density (Tierney, 1994). We use the
general scheme used by Green (1995) and Denison et al. (1998), which involves moves
that add, delete and relocate knots. In contrast to Denison et al. (1998), where new knots
are generated ‘far’ from existing knots, our chain uses the locality heuristic devised in
Zhou & Shen (2001), which is based on the idea that more knots are needed where the
curve changes rapidly. The heuristic holds that a new knot is more likely to be needed in
regions where knots have recently been added.

Let M
k

represent a model parameterised by (k, j1 , . . . , jk ). The addition, deletion and
relocation steps of the reversible-jump sampler are attempted, respectively, with the follow-
ing probabilities:

b
k
=c min{1, p(k+1)/p(k)}, d

k
=c min{1, p(k−1)/p(k)}, g

k
=1−b

k
−d
k
.

These probabilities ensure that b
k
p(k)=d

k+1
p(k+1). Appendix 1 contains a proof of

detailed balance for the following proposal scheme.

Birth step. Suppose that the current model M
k
contains k knots located at j

1
, . . . , j

k
. To



1060 I. DM, C. R. G  R. E. K

generate a new candidate knot we first choose one knot uniformly from the set of existing
knots. Let j

j*
be such a knot. The candidate new knot, jcand , is generated by a distribution

centred at j
j*

with some spread parameter t
B

having density h
B
(jcand |j, tB ). In this case

the jump probability is given by

q(M
k+1
|M
k
)=b
k
1

k
∑
i

h
B
(jcand |ji );

in the expression q(M
k+1
|M
k
) there is a mixture of densities because the new knot jcand

can be generated by any of k different distributions.

Death step. The candidate knot for deletion is chosen uniformly from the set of existing
knots. Let M

k
be the current model. Then the jump probability of going from M

k
to M

k−1
is

q(M
k−1
|M
k
)=d
k
1

k
.

Relocation step. We first choose a candidate knot j
j*

uniformly from the set of existing
knots {j1 , . . . , jk}. The candidate new location, jcand , for the knot j

j*
is generated by a

distribution centred at j
j*

with spread parameter t
R

and having density h
R
(jc |j

j*
, t
R
).

Let j= (j1 , . . . , jj*−1 , jj* , jj*+1 , . . . , jk )T be the current sequence of knots, and let
jc= (j

1
, . . . , j

j*−1
, jcand , jj*+1 , . . . , jk )T be the candidate new sequence of knots, which

differs from j only in the replacement of knot j
j*

by knot jcand . Note that the candidate
new location does not have to be the j*th element. The jump probability is computed as
follows:

q(Mcand |Mcurr )=gk
1

k
h
R
(jcand |jj* ).

Candidate distributions. One convenient choice for the birth and relocation proposal
distributions, with densities h

B
and h

R
, would be Beta distributions. The precise form,

however, is not likely to make much difference. Once these are selected, it remains to
choose values of parameters c, t

B
and t

R
. In principle, these may be regarded as tuning

parameters, adjusted to produce a chain having good acceptance probabilities.
Here, we choose the constant c to be 0·4 as in Denison et al. (1998); a limited study of

our own suggests that this is a good value. We take both the birth and relocation proposals
to be Beta distributions with parameters j

j*
n and (1−j

j*
)n, and we choose n=50 in our

examples. We obtained essentially the same results using for the birth and relocation
densities h

B
and h

R
a Normal distribution with mean j

j*
and variance t2, truncated to

[j
j*−2

, j
j*+2

].

3·2. Importance reweighting

The reversible-jump scheme described in § 3·1 produces a chain on (k, j). As we indicated
in § 2, under model (2) we can obtain draws from the marginal posterior on b, to make
inferences about characteristics of f, by also drawing a value of b from the conditional
posterior of b given (k, j) for each sampled value of (k, j). Under model (1), however, it
is usually infeasible to calculate this distribution directly, so additional simulation is
required. To avoid a lengthy Markov chain Monte Carlo simulation at each knot con-
figuration from the original chain, we use importance reweighting. This allows more
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efficient sampling from an approximate distribution that can be specified directly. Our
method is as follows.

Denote by g(b, k, j) some feature of the curve, such as the location of its maximum,
that we wish to estimate. Let q(b |y, j, k)3p(y |b, k, j)p

b
(b |k, j). The posterior expectation

of g(b, k, j) given y may be computed from

E{g(b, j, k) |y}=
P . . . P g(b, j, k)

q(b |y, k, j)

q@ (b |y, j, k)
q@ (b |y, k, j)p(k, j |y) db dj dk

P . . . P q(b |y, k, j)

q@ (b |y, j, k)
q@ (b |y, k, j)p(k, j |y) db dj dk

j
W

l
g(b(l), j(l), k(l) )w(b(l), j(l), k(l) )

W

l
w(b(l), j(l), k(l) )

, (9)

where

w(b(l), j(l), k(l) )=
q(b(l) |y, j(l), k(l) )
q@ (b(l) |y, j(l), k(l) )

,

(j(l), k(l) ) is the pair accepted by the reversible-jump sampler, i.e. sampled from p(k, j |y),
and b(l) is sampled from a suitable approximation q@ to the conditional posterior of b given
(k, j). In fact, we may approximate the likelihood function on b given (k, j) rather than
the full conditional posterior, which is typically easier under model (1), yielding weights
of the form

w(b(l), j(l), k(l) )=
p(y |b(l), j(l), k(l) )
p@ (y |b(l), j(l), k(l) )

.

A standard choice for p@ would be a multivariate t density (Evans & Swartz, 1995).
Verification that the importance weights are correct when q/q@ is replaced by p/p@ is straight-
forward; see Appendix 2. From this method of computing posterior expectations we may
also obtain posterior variances and posterior interval probabilities.

4. S 

Our implementation has two key features: first, we use a fully Bayesian approach,
together with a  approximation to the marginal density (4) and, secondly, we use the
locality heuristic of Zhou & Shen (2001) to place new knots. Both of these choices may
be contrasted with the implementation of Denison et al. (1998). In our simulation study
we compute mean squared error for our Bayesian adaptive regression splines and compare
with spatially adaptive regression splines, using the software of Zhou & Shen (2001), and
with the Denison et al. method, using software available at http://www.ma.ic.ac.uk/~dgtd.
We also investigate the relative importance of the two implementation changes by compar-
ing with what we call the modified Denison et al. method, which includes the  approxi-
mation but not the change in candidate knot locations; we computed the modified Denison
et al. method by inserting the required factor 1/√n into their code and recompiling.
The Bayesian adaptive regression spline estimates of E{ f (x) |y}=E[E{ f (x) |y, k, j}] are
found from our Markov chain Monte Carlo with runs of length 10 000 following burn-ins
of 1000.

In this section we consider three functions: a slowly-varying smooth function, a function
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with a sharp peak, that is spatially inhomogeneously smooth, and a function with a
discontinuity. Noise is added to each in generating the data. The functions together with
samples of data are shown in Fig. 1.

x
0·0 0·2

0

10

5

0·4

(a) Example 1

f(x)

0·6 0·8 1·0
x

0·0 0·2 0·4 0·6 0·8 1·0
x

0·0 0·2 0·4 0·6 0·8 1·0

–1

f(x)
0

1

2

–4

f(x)

–2

0

2

4

6
(b) Example 2 (c) Example 3

Fig. 1. The three true functions used in the simulation study together with one sample.

Example 1. The true function is a spline with three internal knots at (0·2, 0·6, 0·7)T and
coefficients b= (20, 4, 6, 11, 6)T. The function is evaluated on a regular grid of 101 points,
and a zero-mean Normal noise is added to the true function with s=0·9, so that the
signal-to-noise ratio,  ( f )/s, is 3.

Example 2. The true function is

f (x)=sin (x)+2 exp (−30x2 ), xµ[−2, 2],

evaluated at 101 regularly spaced points, and the standard deviation of the noise is chosen
to be s=0·3, so that again the signal-to-noise ratio is 3.

Example 3. The true function is a spline with five knots located at (0·4, 0·4, 0·4, 0·4, 0·7)
and coefficients (2,−5, 5, 2,−3,−1, 2). The function is evaluated on a regular grid of
201 points in [0, 1], and zero-mean Normal noise is added to the true function with
s=0·55.

We compare our Bayesian adaptive regression splines estimates with spatially adaptive
regression splines, Denison et al. (1998), and our modified Denison et al. estimates using
mean squared error

=
1

n
∑
n

i=1
{ f@ (t
i
)− f (t

i
)}2.

The average mean squared error, together with standard errors, based on 10 samples
of data is reported in Table 1. The Bayesian estimates in Table 1 are all based on a Poisson
prior with mean 5 for the number of knots, k. However, when we used a Uniform prior
on 1, . . . , 20 or a Poisson with mean ranging in value between 1 and 20, the mean squared
error never changed by more than 25% across these examples, and these changes do not
alter the basic ordering found.

We see from Table 1 that Bayesian adaptive regression splines produces values of mean
squared error that are smaller than those from Denison et al. (1998) and spatially adaptive
regression splines across all three test functions. The modified Denison et al. method
works well for Example 2 and always improves on the original Denison et al. (1998).
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Table 1. Simulation study. Average mean squared errors with esti-
mated standard errors in brackets based on 10 samples obtained

using four diVerent procedures

  Modified- 

Example 1 0·144 (0·030) 0·206 (0·029) 0·103 (0·019) 0·066 (0·007)
Example 2 0·015 (0·001) 0·025 (0·002) 0·012 (0·001) 0·008 (0·001)
Example 3 0·044 (0·006) 0·106 (0·007) 0·091 (0·004) 0·019 (0·003)

Methods: , spatially adaptive regression splines; , Denison et al. (1998);
Modified-, modified Denison et al.; , Bayesian adaptive regression
splines.

However, in Examples 1 and 3, Bayesian adaptive regression splines provides substantial
further improvement, in part as a result of the locality heuristic for generating new knots.
In Fig. 2, we see the true function of Example 3 together with its estimates obtained using
different procedures. Figure 2 suggests that the success of Bayesian adaptive regression
splines results from its avoiding overfitting and its ability to adapt to sharp jumps in
the curves.

(a) SARS
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4
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0

_2

_4

_6
0·0 0·2 0·4 0·6 0·8 1·0

x

(b) DMS

f (x)

6

4

2

0

_2

_4

_6
0·0 0·2 0·4 0·6 0·8 1·0

x

(c) Modified-DMS

f (x)

6

4

2

0

_2

_4

_6

x

(d) BARS

f (x)

6

4

2

0

_2

_4

_6

x

0·0 0·2 0·4 0·6 0·8 1·0 0·0 0·2 0·4 0·6 0·8 1·0

Fig. 2. Simulation study. Comparisons of the estimates of the discontinu-
ous function of Example 3: solid lines, true curves; dashed lines, estimates
of the curve. Methods: , spatially adaptive regression splines; ,
Denison et al. (1998); Modified-, modified Denison et al.; ,

Bayesian adaptive regression splines.

For the functions in both Examples 1 and 3 the posterior mode for the number of knots
is the true number of knots, which is three and five respectively, and the conditional
posterior of the locations of the knots given that the modal number of knots is concentrated
around the true locations of the knots.
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5. F    

In a functional magnetic resonance imaging experiment, a subject is placed in a magnetic
resonance scanner and asked to perform a sequence of behavioural tasks while three-
dimensional images of the subject’s brain are acquired at regular intervals. Concentrated
neural firing in the brain gives rise to a localised physiological response that is detectable
in the images as a small, localised signal change. An analysis of functional magnetic
resonance imaging data attempts to identify and characterise these task-related signal
changes amidst a complicated noise process and other nuisance sources of variation; see
Genovese (2000) for more details.

We consider two simple experiments in which the subject maintains visual fixation on
a cross in the centre of the visual field while alternating S-second periods of rest and an
experimental task. In Experiment 1, S=8 and the task is to tap the thumb and forefinger
together. In Experiment 2, S=42 and the task is to note the location of a flash of light
which appears at a random location in the visual field. Figure 3 shows magnetic resonance
signal time-courses for the two experiments. The signals are taken from small volumes in
the brain that are activated by the respective experimental tasks; the task-related signal
changes in response to performing the experimental task are visible in both cases.

Time (sec)
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20

(a) Experiment 1

30 40 50
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0 200
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Fig. 3. Magnetic resonance example. The time-courses show the magnetic resonance signal as a thin
dotted line. (a) shows the signal for Experiment 1 measured in one volume element over time in ‘local
magnetic resonance units’ that depend on the scanner and pre-processing used. Superimposed on the
signal are the Bayesian adaptive regression splines fit, solid line in (a), and the spatially adaptive
regression spline fit, dashed line. (b) shows the signal for Experiment 2. Superimposed are the spatially
adaptive regression spline fit (dashed line), the Bayesian adaptive regression spline fits using a Po(20)

prior (solid line) and a Po(3) prior (dotted line) on the number of knots.

Bayesian adaptive regression splines can be useful in functional magnetic resonance
imaging in many different roles. We discuss two here: (i) a flexible denoiser for magnetic
resonance time-courses, where all smooth sources of variation are combined into the
function being estimated, and (ii) a component in a semiparametric model that explicitly
parameterises the task-related signal changes while treating nuisance variation such as
drifts flexibly. The first approach can serve as a front-end to spatial and regional analyses
and group comparisons, automatically incorporating variations in response shape and
magnitude across the replicated task blocks in the experiment. The second approach can
serve as a component in a hierarchical model for the data and can be used to characterise



1065Bayesian curve-fitting

task-related signal changes. A key advantage of our Bayesian formulation in both cases
is that it easily provides a useful assessment of uncertainty.

To illustrate the method’s role as a flexible denoiser, Fig. 3(a) compares the denoised
time-courses given by Bayesian adaptive regression splines and spatially adaptive
regression splines for Experiment 1. Both methods give similar results and appear to
capture the gross signal changes quite well. Spatially adaptive regression splines better
captures the small, sharp undershoot dips after the main response peak, but Bayesian
adaptive regression splines appears more stable near the boundaries of the interval.
Both methods give sharper activation peaks than the data seem to suggest by eye.
Figure 3(b) presents a similar comparison for Experiment 2, where the signal changes
are smaller relative to the noise and where there is a notable nuisance signal drift.
Spatially adaptive regression splines detects some of the task-related signal changes
but smooths over others near the drift changepoint. Bayesian adaptive regression
splines, on the other hand, captures all of the responses reasonably. Figure 4 displays
pointwise 95% high posterior density and confidence intervals for these estimates; the
spatially adaptive regression splines confidence intervals were generated with 1000
samples from a parametric bootstrap treating the noise at each time point as indepen-
dent and identically distributed normals.
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Fig. 4. Magnetic resonance example for Experiment 2. (a) and (b) show 95% high posterior density Bayesian
adaptive regression splines, and (c) shows 95% confidence spatially adaptive regression splines intervals (all
as thin solid lines), for the curve estimate (solid line) superimposed on the signal (thin dotted line) for the
estimates of the curve using Bayesian adaptive regression splines with Poisson prior in (a) with mean 20,

and (b) with mean 3, and using spatially adaptive regression splines in (c).

To illustrate the method’s role as a semiparametric model component, we use Bayesian
adaptive regression splines as part of an additive model with a flexible component for
signal drift and a parametric component for task-related signal changes. For example, if
we set the prior on the number of knots to a smooth setting, for example Po(3), we obtain
the estimate in Fig. 3(b) and Fig. 4(b). Figure 5 shows the semiparametric fit obtained by
adding a periodic parametric component to our model. Through the back-fitting algorithm
(Hastie & Tibshirani, 1990, Ch. 4) we fit an additive model in which the function is
decomposed into a sinusoid of the same period as the experimental design and a smooth
component as just described. Figure 5 shows the estimate of the function and the extracted
signal drift component, and Fig. 4 shows corresponding 95% high posterior density and
confidence intervals. We could also use Bayesian adaptive regression splines for the task-
related component by fitting each task block with a separate additive term, though at
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Fig. 5. Magnetic resonance example. The time-course
shows the magnetic resonance signal for Experiment 2.
Superimposed on the signal, thin dotted line, is a
semiparametric fit, solid line, together with the nonpara-

metric estimate of the linear trend, dashed line.

more computational expense. Even better would be to cast the additive structure in a
Bayesian hierarchical model.

6. A P     

In a recent experiment, the firing of individual neurons in the inferotemporal cortex of
a macaque monkey were recorded while he watched images appear on a screen in front
of him (Olson & Rollenhagen, 1999). In one experimental condition, Condition 1, a black
patterned object was displayed as the stimulus for 600 milliseconds. In a second condition,
Condition 2, prior to the display of the stimulus a pair of blue rectangles were displayed
and these remained illuminated while the stimulus was displayed. The typical inferotempo-
ral neuronal response to the stimulus was roughly damped-oscillatory firing. In the second
condition, however, the oscillation tended to be more pronounced, with higher drop from
peak to trough. We use the methodology developed in §§ 2 and 3 to fit the data for one
neuron and quantify the comparison of initial peak-to-trough drop in firing rates.

The data consist of neuronal spike counts from 193 repeated trials binned into
10-millisecond intervals. As discussed in a related context by Kass & Ventura (2001) and
Ventura et al. (2001), such count data may be expected to be very nearly Poisson, and
preliminary examination of the data indicated that this assumption was very reasonable.
The model we use, therefore, for the counts {Y

i
, i=1, . . . , n} at time {x

i
, i=1, . . . , n} is

as follows:

(Y
i
|b, k, j)~Po (l

i
), log (l

i
)=B(x

i
)b, b |k, j~N(0, D), p(k, j), (10)

where D is the matrix from the unit-information prior. We do not have to write down D
explicitly because, as explained in §§ 2 and 3, we use the -based reversible-jump Markov
chain Monte Carlo scheme together with importance reweighting. As our importance
function for the posterior on b, we have used a Normal approximation based on the
maximum likelihood estimates and the observed information matrix. Comparison of the
results before and after importance reweighting indicates that the Normal distribution is
in fact a good approximation. We did all our computations in S-Plus.
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Fig. 6. Neuronal firing example. Counts in 10 millisecond bins together with the fitted curves, representing
posterior means E{ f (t) |y}.
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The resulting Bayesian adaptive regression splines fits for the posterior means E{ f (t) |y}
are given together with the raw counts in Fig. 6. Bayesian adaptive regression splines
nicely adapts to the changing irregularities of the intensity functions producing estimates
that are consistent with intuition: the intensities may change sharply on time scales of
about 50 milliseconds, but are quite smooth on finer time scales. Table 2 gives the posterior
means and posterior standard deviations for the quantities of interest. The maximal firing
rate was, for example, defined as g(b, k, j)=arg max

t
f (t)j arg max

t
i

Bb. The substantive
conclusion is that the drops from the first, highest peak to the following trough for
Conditions 1 and 2 were 131·8±4·4 and 181·8±20·3 spikes per second; Condition 2 had
a more pronounced drop, estimated to be 50·0±20·8 spikes per second greater than that
for Condition 1, with 95% probability interval (8·4, 91·7).

Table 2. Neuronal firing example. Posterior
means of maximal firing rate, local minimal
firing rate just after the maximal firing rate,
and the drop, i.e. the diVerence between these
two firing rates, for each condition. Posterior
standard deviations are shown in parentheses

Firing rate Condition 1 Condition 2

Maximum 166·5 (5·2) 193·0 (20·6)
Local min. 34·8 (1·9) 11·5 (1·5)
Difference 131·8 (4·4) 181·8 (20·4)

7. D

Bayesian adaptive regression splines is a fully Bayesian, flexible spline model suitable
for both normal and nonnormal data. It provides a mechanism for deriving useful uncer-
tainties in function estimates and can easily be inserted as a component in a larger hier-
archical model, as we have demonstrated here in § 5. Balancing against this advantage is
the additional computational cost of the simulation: spatially adaptive regression splines
is notably faster than Bayesian adaptive regression splines. However, this should not be
a serious handicap in applications involving small or moderately large datasets. Key
advantages of the method adopted here that distinguish it from the closely related
approach applied by Biller (2000) are the placement of knots by a continuous proposal
distribution and the introduction of the unit-information prior as a default, so that the
chain simulates the approximate marginal posterior of (k, j) after integrating b; this
increases efficiency (Liu et al., 1994).

Bayesian adaptive regression splines results and performance depend to some extent on
the choice of knot priors. Thus, user input on the expected number of knots is needed as
a kind of smoothing parameter. We used this to our advantage in the functional magnetic
resonance imaging example to adapt Bayesian adaptive regression splines to different
tasks. However, for large signal-to-noise ratios, or large samples, Bayesian adaptive
regression splines will correctly find the appropriate number of knots regardless of the
prior.

This paper has focused on estimates and standard errors, but one big advantage of a
Bayesian formulation is the ability to estimate a wide range of features for the function
of interest. We intend to explore Bayesian adaptive regression splines’ effectiveness as a
component of Bayesian hierarchical models in future work.
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A 1
Detailed balance

In order to prove that detailed balance holds for this chain, we have to show that

p(M
k
) pr (M

k−1
|M
k
)=p(M

k−1
) pr (M

k
|M
k−1

), (A1)

where M
k

denotes the parameters of the model with k knots: M
k
={k, j1 , . . . , jk}, for k=1, 2, . . .

and j
i
µ(0, 1). The p(M

k
) density is the target from which we want to draw observations; in our

case p(M
k
) is the posterior distribution of M

k
, namely

p(M
k
)=

p(y |j1 , . . . , jk )p(j1 , . . . , jk |k)p(k)

p(y)
.

The formula pr (M
k−1
|M
k
) is a Markov transition kernel, the transition probability of going from

M
k

to M
k−1

. Let

M
k
={k, j1 , j2 , . . . , jj*−1 , jj* , jj*+1 , . . . , jk},

M
k−1
={k−1, j1 , j2 , . . . , jj*−1 , jj*+1 , . . . , jk}.

The sets of knots in the two spaces differ only in the j*th element. We can now write the transition
probabilities as follows:

pr (M
k−1
|M
k
)= pr (k−1 |k)
agbgc
d
k

× pr(delete j
j*
|k)

aggbggc
1/k

× (acceptance probability)
aggggbggggc

a
d

= d
k
1

k
min (1, A),

pr (M
k
|M
k−1

)= pr (k |k−1)
agbgc
b
k−1

× pr(add j
j*
|k−1)

aggbggc
1/(k−1) W

i
h
B
(j
j*
|j
i
)

× (acceptance probability)
aggggbggggc

a
b

= b
k−1

1

k−1
∑
i

h
B
(j
j*
|j
i
) min (1, B),

where

A=
p(M
k−1

)

p(M
k
)

b
k−1

(k−1)−1 W
i
h
B
(j
j*
|j
i
)

d
k
k−1

, B=
p(M
k
)

p(M
k−1

)

d
k
k−1

b
k−1

(k−1)−1 W
i
h
B
(j
j*
|j
i
)
=1/A.

We can now verify (A1). If A<1, then a
d
=A and a

b
=1, and therefore rewriting (A1) we have

that

p(M
k
) pr (M

k−1
|M
k
)=p(M

k
)d
k
1

k
A=p(M

k
)d
k
1

k

p(M
k−1

)

p(M
k
)

b
k−1

(k−1)−1 W
i
h
B
(j
j*
|j
i
)

d
k
k−1

=p(M
k−1

)b
k−1

1

k−1
∑
i

h
B
(j
j*
|j
i
)=p(M

k−1
) pr (M

k
|M
k−1

).

The case when A>1 is now obvious. Also the proof of the detailed balance condition when we
move from M

k
to M∞

k
, a relocation step, is straightforward.
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A 2
Importance sampling

We wish to determine the weight for our problem. If g(b, k, j) is the functional of interest, we
need to compute

E{g(b, j, k) |y}=
P . . . P g(b, j, k)

q(b |y, k, j)

q@ (b |y, j, k)
q@ (b |y, k, j)p(k, j |y) db dj dk

P . . . P q(b |y, k, j)

q@ (b |y, j, k)
q@ (b |y, k, j)p(k, j |y) db dj dk

=
A

B
,

say, where

A= P . . . P g(b, k, j)q(b |y, k, j)p(k,j |y) db dj dk

= P . . . P g(b, k, j)
q(b |y, k, j)

q@ (b |y, k, j)
q@ (b |y, k, j)p(k, j |y) db dj dk

= P . . . P g(b, k, j)
p(y |b, k, j)p

b
(b |k, j)

p@ (y |b, j, k)p
b
(b |j, k)

p@ (y)
p(y)

q@ (b |y, k, j)p(k, j |y) db dj dk

=
p@ (y)
p(y) P . . . P g(b, j, k)

p(y |b, k, j)

p@ (y |b, j, k)
q@ (b |y, k, j)p(k, j |y) db dj dk,

B=
p@ (y)
p(y) P . . . P p(y |b, k, j)

p@ (y |b, j, k)
q@ (b |y, k, j)p(k, j |y) db dj dk.

Therefore

E{g(b, j, k) |y}=
P . . . P g(b, j, k)

p(y |b, k, j)

p@ (y |b, j, k)
q@ (b |y, k, j)p(k, j |y) db dj dk

P . . . P p(y |b, k, j)

p@ (y |b, j, k)
q@ (b |y, k, j)p(k, j |y) db dj dk

j
W

l
g(b(l), j(l), k(l) )w(b(l), j(l), k(l) )

W

l
w(b(l), j(l), k(l) )

,

where

w(b(l), j(l), k(l) )=
p(y |b(l), j(l), k(l) )
p@ (y |b(l), j(l), k(l) )

,

(j(l), k(l) ) is the pair accepted by the reversible-jump sampler, i.e. is sampled from p(k, j |y), and h(l)
is sampled from q@ (b |y, j(l), k(l) ).

A 3
Posterior approximations

First, we elaborate on the essential property of the -based approximation we are using. Let
p@ (y |k, j) be the approximation to p(y |k, j) and assume that k∏K for some fixed K. Then, from
Laplace’s method, p@ (y |k, j)=p(y |k, j){1+O

p
(n−1/2 )} uniformly in (k, j). Here, O

p
refers to the

sampling distribution of the data. Let us use Pr to denote probabilities under this sampling distri-
bution and let V denote the space of (k, j) values. It follows by integration that, for any arbitrarily
small positive g, there exists a bound M such that, for all measurable subsets AkV and for all
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sufficiently large n, we have

Pr{ |PC (A |y)−P(A |y) |<M/√n}>1−g,

where P(A |y) and PC (A |y) denote posterior and approximate posterior probabilities of A. This is
the formal sense in which the posterior using  approximates the correct posterior.

Secondly, we provide details for our statement that the marginal density pDMS(y |k, j) is monoton-
ically increasing in k. Let k∞�k and, given a basis matrix B

k,j
, generate another, B∞

k∞j∞
, by adding

knots. Then

span (B
k,j

)kspan (B∞
k∞,j∞

), max
b

p(y |b, k, j)∏max
b∞

p(y |b∞, k∞, j∞ ).

Therefore, for each (k, j) there exists (k∞, j∞ ) such that pDMS(y |k, j)∏pDMS(y |k∞, j∞ ).
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