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1 Introduction

Kernel density estimation has become a popular tool for visualising the distribution of data. See
Simonoff (1996), for example, for an overview. When multivariate kernel density estimation is
considered it is usually in the constrained context with diagonal bandwidth matrices, e.g. in the R
packages sm (Bowman and Azzalini, 2005) and KernSmooth (Wand, 2006). We introduce a new
R package ks for kernel smoothing which implements diagonal and unconstrained data-driven
bandwidth matrices. The main theoretical advances are in the development of new methods for
the latter. It is able to analyse 1- to 6-dimensional data with graphical visualisation for 1- to
3-dimensional data. Currently it is the most comprehensive kernel density estimation package
available in R. This vignette focuses on kernel density estimation for the 2-dimensional case.

The unicef dataset is included in the ks package. It contains the number of deaths of
children under 5 years of age per 1000 live births and the average life expectancy (in years) at
birth for 73 countries with GNI (Gross National Income) less than 1000 US dollars per annum
per capita. The scatterplot is below. A major goal of kernel density estimation is to find a
description which summarises the important characteristics of the data.

> library(ks)

> data(unicef)

> plot(unicef)
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2 Kernel density estimation

For a bivariate sample X1,X2, . . . ,Xn drawn from a density f , the kernel density estimate is

f̂(x;H) = n−1
n∑

i=1

KH(x−Xi) (1)

where x = (x1, x2)T and Xi = (Xi1, Xi2)T , i = 1, 2, . . . , n. Here K(x) is the bivariate kernel

(which we assume to be a probability density function); H =
[
h2

1 h12

h12 h2
2

]
is the bandwidth matrix

which is symmetric and positive-definite; and KH(x) = |H|−1/2K(H−1/2x). The choice of K
is not crucial – we take K(x) = (2π)−1 exp(−1

2xT x) the standard normal throughout. On the
other hand, the choice of H is crucial in determining the performance of f̂ .

We measure the performance of f̂ (in common with the majority of researchers in this field)
using the Mean Integrated Squared Error (MISE) criterion,

MISE (H) = E
∫

R2

[f̂(x;H)− f(x)]2 dx.

Our aim in bandwidth selection is to estimate

HMISE = argmin
H

MISE (H),

over the space of all symmetric, positive definite 2 × 2 matrices. It is well known that the
optimal bandwidth HMISE does not have a closed form. To make progress it is usual to employ
an asymptotic approximation, known as the AMISE (Asymptotic MISE):

AMISE (H) = n−1(4π)−1|H|−1/2 + 1
4(vechT H)Ψ4(vech H) (2)

where R(K) =
∫

R2 K(x)2 dx = (4π)−1 and vech is the vector half operator i.e.

vechH = vech
[
h2

1 h12

h12 h2
2

]
=

 h2
1

h12

h2
2

 .
See Wand and Jones (1995, p. 98) for the general expression of the 1

2d(d+1)× 1
2d(d+1) matrix

Ψ4. For d = 2, we can show that

Ψ4 =

 ψ40 2ψ31 ψ22

2ψ31 4ψ22 2ψ13

ψ22 2ψ13 ψ04

 (3)

where the integrated density derivative functional is

ψr1,r2 =
∫

R2

f (r1,r2)(x)f(x) dx

and the partial derivatives of f are

f (r1,r2)(x) =
∂4

∂r1
x1∂

r2
x2

f(x).
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The subscript 4 on Ψ relates to the order of the derivatives involved. We make use of the
tractability of AMISE by seeking

HAMISE = argmin
H

AMISE (H).

For the next step we estimate the MISE or AMISE. A data-driven bandwidth selector is either

Ĥ = argmin
H

M̂ISE (H) or Ĥ = argmin
H

ÂMISE (H) (4)

Different selectors arise from the different methods used in the estimation step.

3 Plug-in bandwidth selectors

The most well-known univariate plug-in selector is due to Sheather and Jones (1991). Plug-
in selectors require pilot estimates of the ψr,r2 functionals which comprise Ψ4. This in turn
produces an estimate of the AMISE

PI(H) = n−1(4π)−1|H|−1/2 + 1
4(vechT H)Ψ̂4(vechH) (5)

that can be numerically minimised to give the plug-in bandwidth matrix, ĤPI. To compute Ψ̂4

we need to use a helper or ‘pilot’ bandwidth matrix G. Like H, we need to choose a sensible
value for G. If we note that ψr1,r2 = E f (r1,r2)(X) where X ∼ f , then a natural estimator of
ψr1,r2 is

ψ̂r1,r2(G) = n−1
n∑

i=1

f̂ (r1,r2)(Xi;G) = n−2
n∑

i=1

n∑
j=1

K
(r1,r2)
G (Xi −Xj). (6)

3.1 AMSE pilot bandwidth selectors

We consider pilot bandwidth matrices of the form G = g2I. It may appear that we are con-
tradicting ourselves since we advocate using unconstrained matrices for H. It turns out that a
restricted form on G has less effect on the performance of f̂ than a restricted form on H. We
can reduce the effect of the restricted form of G by using an appropriate pre-transformation (we
return to this topic in Section 6).

The MSE (Mean Squared Error) for ψ̂r(g) is

MSE ψ̂r(g) = E[ψ̂r(g)− ψr]2.

The bandwidths which are optimal for the Asymptotic MSE are (a) if all elements of r are even
then

gr,AMSE =
[
Ar

n

]1/(d+6)

(7)

and (b) if at least one of r is odd then

gr,AMSE =
[
Br

n2

]1/(d+12)

. (8)

See Wand and Jones (1994) for explicit expressions for Ar and Br. They depend on the density
f and the kernel K but not on the sample size n. In fact, they depend on f only via higher-
order ψr functionals. These functionals can be estimated by a normal reference estimate or by
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another kernel estimate with another pilot bandwidth. The former is known as a 1-stage pilot
selector, the latter as 2-stage. See Duong and Hazelton (2003) for a full description of the pilot
selector algorithms. Intuitively we can think of 2 estimation stages as a strategy to reduce the
dependence on the normality assumptions for 1 stage estimation.

The Ψ̂4 estimated in this element-wise way uses a different pilot bandwidth for each unique
element (5 in total). Then Ψ̂4 is not guaranteed to be positive definite. Hence using appropriate
estimators of each element of a matrix will not necessarily lead to an appropriate estimator of
the matrix as a whole. Positive-definiteness can be guaranteed by using a single, common pilot
bandwidth.

3.2 SAMSE pilot bandwidth selectors

Modifying AMSE pilot selectors, we derive a SAMSE (Sum of Asymptotic Mean Squared Error)
pilot selector. This type of selector has been specially devised to maintain the positive defi-
niteness of Ψ̂4 which is crucial to the numerical minimisation of the plug-in criterion PI. This
method is also simpler and more parsimonious than AMSE selectors.

The fourth order SAMSE can be expressed as

SAMSE4(g) = n−2g−2d−8A1 + n−1g−d−2A2 + 1
4g

4A3 (9)

where A1 and A3 are positive constants and A2 is a negative constant. This has a minimum at

g4,SAMSE =
[
A4

n

]1/(d+6)

. (10)

Explicit expressions for A1, A2, A3 and A4 can be found in Duong and Hazelton (2003). Equation
(10) is the single SAMSE optimal pilot bandwidth: only one pilot bandwidth is required to
compute Ψ̂4. Again we have the choice of either 1 or 2 stages for estimating the pilot bandwidth.

3.3 R examples

Use Hpi for full plug-in selectors and Hpi.diag for diagonal plug-in selectors. There are two
arguments which further specify the plug-in selector used: nstage is the number of pilot estima-
tion stages (1 or 2) and pilot is the type of pilot estimation ("amse" or "samse"). The other
argument pre involves the pre-transformations outlined in Section 6.

> Hpi1 <- Hpi(x = unicef, nstage = 1, pilot = "amse", pre = "scale")

[,1] [,2]
[1,] 391.02859 -34.73347
[2,] -34.73347 9.89807

> Hpi2 <- Hpi(x = unicef, nstage = 2, pilot = "samse", pre = "sphere")

[,1] [,2]
[1,] 810.9140 -108.73376
[2,] -108.7338 19.79100

> Hpi3 <- Hpi.diag(x = unicef, nstage = 2, pilot = "amse", pre = "scale")
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[,1] [,2]
[1,] 201.5118 0.000000
[2,] 0.0000 6.242821

> Hpi4 <- Hpi.diag(x = unicef, nstage = 2, pilot = "samse", pre = "scale")

[,1] [,2]
[1,] 227.0192 0.000000
[2,] 0.0000 6.179491

To compute a kernel density estimate (Equation (1)), the command is kde.

> fhat1 <- kde(x = unicef, H = Hpi1)

> fhat2 <- kde(x = unicef, H = Hpi2)

> fhat3 <- kde(x = unicef, H = Hpi3)

> fhat4 <- kde(x = unicef, H = Hpi4)

We can use the plot command to display these kernel density estimates. The default is a contour
plot with the upper 25%, 50% and 75% contours.

> plot(fhat1, main = "Plug-in: 1-stage, AMSE pilot")

> plot(fhat2, main = "Plug-in: 2-stage, SAMSE pilot")

> plot(fhat3, main = "Plug-in diag: 2-stage, AMSE pilot")

> plot(fhat4, main = "Plug-in diag: 2-stage, SAMSE pilot")
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4 Cross validation bandwidth selectors

Cross-validation selectors are the main alternative to plug-in selectors. There are three main
types of cross-validation selectors: least squares, biased and smoothed.

4.1 Least squares cross validation

The bivariate version of the least squares cross validation (LSCV) criterion of Rudemo (1982)
and Bowman (1984) is

LSCV(H) =
∫

R2
f̂(x;H)2 dx− 2n−1

n∑
i=1

f̂−i(Xi;H),

where the leave-one-out estimator is

f̂−i(x;H) = (n− 1)−1
n∑

j=1
j 6=i

KH(x−Xj).

The LSCV selector ĤLSCV is the minimiser of LSCV(H). We can rewrite LSCV as

LSCV(H) = n−1(4π)−1|H|−1/2 + n−1(n− 1)−1
n∑

i=1

n∑
j=1
j 6=i

(K2H − 2KH)(Xi −Xj). (11)

We can show that E[LSCV(H)] = MISE(H)−R(f), indicating that LSCV estimates the MISE
directly.

4.2 Biased cross validation

Plug-in methods use a pilot bandwidth matrix G, which is independent of H, to estimate Ψ4.
For BCV, we set G = H and use slightly different estimators. There are two versions of BCV,
depending on the estimator of ψr1,r2 with r1 + r2 = 4, see Sain et al. (1994). We can use

ψ̌r1,r2(H) = n−2
n∑

i=1

n∑
j=1
j 6=i

K
(r1,r2)
2H (Xi −Xj) (12)

or we could use

ψ̃r1,r2(H) = n−1
n∑

i=1

f̂
(r1,r2)
−i (Xi;H) = n−1(n− 1)−1

n∑
i=1

n∑
j=1
j 6=i

K
(r1,r2)
H (Xi −Xj). (13)

The estimates Ψ̌4 and Ψ̃4 are obtained from Ψ4 by substituting ψ̌r1,r2 and ψ̃r1,r2 for ψr1,r2 . The
BCV1 function is the version of BCV with Ψ̌4

BCV1(H) = n−1(4π)−1|H|−1/2 + 1
4(vechT H)Ψ̌4(vechH) (14)

and the BCV2 function is the version with Ψ̃4

BCV2(H) = n−1(4π)−1|H|−1/2 + 1
4(vechT H)Ψ̃4(vechH). (15)

The BCV selectors ĤBCV are the minimisers of the appropriate BCV function.
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4.3 Smoothed cross validation

Smoothed cross validation (SCV), introduced by Hall et al. (1992), can be thought of as a hybrid
of LSCV and BCV. The SCV criterion takes the asymptotic integrated variance from the BCV
but attempts to estimate the integrated squared bias exactly rather than using its asymptotic
form

SCV(H) = n−1(4π)−1|H|−1/2 + n−2
n∑

i=1

n∑
j=1

(K2H+2G − 2KH+2G +K2G)(Xi −Xj). (16)

The SCV selector ĤSCV is the minimiser of SCV(H).
Again, we consider pilot bandwidth matrices of the form G = g2I. We generalise the process

of Jones et al. (1991) to find an optimal pilot bandwidth selector. We can show that the pilot
bandwidth which minimises

Q(g) =
d∑

i=1

d∑
j=i

E[ĥSCV,ij − hAMISE,ij ]2,

where ĥSCV,ij is the (i, j)-th element of ĤSCV and hAMISE,ij is the (i, j)-th element of HAMISE,
is

gAMSE =
[
B

n

]1/(d+6)

(17)

where B is a constant which depends on f , K but not n. The details of the derivation of this
pilot bandwidth is available in Duong and Hazelton (2005), along with a full description of the
SCV selector algorithm.

4.4 R examples

We continue with the unicef data. Hlscv and Hlscv.diag are the full and diagonal LSCV
selectors. (The Hstart argument in the below code specifies the initial value for the numerical
minimisation - it can be specified for any of the bandwidth selector functions). Hbcv implements
both BCV1 and BCV2. The default is BCV1; set whichbcv=2 to use BCV2. Their diagonal
counterpart is Hbcv.diag. Hscv is the full SCV selector (no diagonal version is available). Its
argument pre is the same as for Hpi and Hpi.diag in Section 3.3.

> Hlscv1 <- Hlscv(unicef)

[,1] [,2]
[1,] 388.18250 -83.34084
[2,] -83.34084 25.12909

> Hlscv2 <- Hlscv.diag(unicef, Hstart = Hlscv1)

[,1] [,2]
[1,] 194.4292 0.00000
[2,] 0.0000 11.11751

> Hbcv1 <- Hbcv(unicef)

7



[,1] [,2]
[1,] 1087.0682 135.33067
[2,] 135.3307 23.58613

> Hbcv2 <- Hbcv.diag(unicef, whichbcv = 2)

[,1] [,2]
[1,] 1072.781 0.000000
[2,] 0.000 9.298466

> Hscv1 <- Hscv(unicef, pre = "sphere")

[,1] [,2]
[1,] 1323.3189 -191.9278
[2,] -191.9278 35.0105

> Hscv2 <- Hscv(unicef, pre = "scale")

[,1] [,2]
[1,] 694.14462 -73.09935
[2,] -73.09935 17.49451

> fhat1 <- kde(unicef, Hlscv1)

> fhat2 <- kde(unicef, Hlscv2)

> fhat3 <- kde(unicef, Hbcv1)

> fhat4 <- kde(unicef, Hscv1)

> plot(fhat1, main = "LSCV")

> plot(fhat2, main = "LSCV diag")

> plot(fhat3, main = "BCV")

> plot(fhat4, main = "SCV")
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5 More graphics

Slice or contour plots are the default or can be explicitly called by setting display="slice".
The way the contours are plotted is controlled by cont or ncont: only one of these needs to
be set. The argument cont takes a vector of percentages and produces a set of contours at the
levels corresponding to the percentages of the maximum height of the density estimate. The
argument ncont takes a number and R tries to compute a pretty set of ncont contours. The
colour(s) of the contour lines is lcol and the colour(s) of the plotting symbols is ptcol. The
logical flags drawlabels and drawpoints indicate whether to draw the labels for the contours
levels or the data points.

An alternative to contour plots are the image or heat plots, called by display="image".
These are similar to contour plots except that the heights of the density estimate are represented
by different colours rather than with different level curves. The default colours is heat.colors
but we use instead rev(heat.colors) which gives us the high values as red and the low values
(close to zero) as white with yellow/orange as intermediate.

The other alternative is a perspective or wire-frame plot, called by display="persp". This
is an attempt to capture the three-dimensional structure more directly than the image or contour
plots.

> plot(fhat4, lcol = "blue", ptcol = "black", cont = seq(10, 90,

+ by = 20))

> plot(fhat4, ncont = 8, drawlabels = FALSE, drawpoints = FALSE)
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> plot(fhat4, display = "image", col = rev(heat.colors(100)))

> plot(fhat4, display = "persp")
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6 Pre-transformations

The plug-in and SCV selector functions use pilot bandwidths of the form G = g2I which will
be inappropriate if the dispersion of the data differs markedly between the two coordinate
directions. We estimate using the transformed data X∗

1,X
∗
2, . . . ,X

∗
n, where the transformation

is either sphering
X∗ = S−1/2X

where S is the sample covariance matrix of the untransformed data; or scaling

X∗ = S−1/2
D X

where SD = diag(s21, s
2
2) and s21, s

2
2 are the marginal sample variances. The bandwidth matrix Ĥ∗

for the sphered or scaled data can be back transformed to the original scale by Ĥ = S1/2Ĥ∗S1/2

or Ĥ = S1/2
D Ĥ∗S1/2

D , as appropriate.

7 Large sample sizes and binned kernel estimation

For large sample sizes, direct computation of kernel estimates becomes computationally difficult.
One common technique for increasing computational speed for these large samples is binned

10



kernel estimation, see Wand and Jones (1994, Appendix D). Unfortunately binned estimation is
only defined with diagonal bandwidth matrices. So applicable cases include computing the pilot
bandwidth matrices (which are parameterised as g2I) for general plug-in and SCV selectors; and
for kernel density estimators with diagonal bandwidth matrices.

We generate a 10 000 sample from the ‘dumbbell’ density, used in Duong and Hazelton
(2005):

> mus <- rbind(c(-2, 2), c(0, 0), c(2, -2))

> Sigmas <- rbind(diag(2), 0.8 * invvech(c(1, -0.9, 1)), diag(2))

> cwt <- 3/11

> props <- c((1 - cwt)/2, cwt, (1 - cwt)/2)

> x <- rmvnorm.mixt(10000, mus, Sigmas, props)

> H.pidiag <- Hpi.diag(x, binned = TRUE)

[,1] [,2]
[1,] 0.02724536 0.0000000
[2,] 0.00000000 0.0281903

> H.pi <- Hpi(x, binned = TRUE)

[,1] [,2]
[1,] 0.0803607 -0.0692478
[2,] -0.0692478 0.0824435

For large sample sizes, we don’t recommend plotting with slice/contour plots because computing
the relative contour heights is computationally intensive. Instead, image, perspective or filled
contour plots are more efficient.

> fhat.diag <- kde(x, H = H.pidiag, binned = TRUE)

> plot(fhat.diag, display = "filled", col = rev(terrain.colors(30)))
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8 General recommendations

It is generally advisable to try a few different selectors and visually examine the resulting density
estimates. The different bandwidth selectors available in ks may now pose a problem of too much
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choice. The full bandwidth selectors will be better than their diagonal counterparts when the
data have large mass oriented obliquely to the co-ordinate axes (as is the case for the unicef
data). Amongst the full selectors, we advise against using the BCV selector. The LSCV selector
is useful in some cases though its performance is known to be highly variable. The 2-stage
plug-in and the SCV selectors can be viewed as generally recommended bandwidth selectors.
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