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A Leisurely Look at the Bootstrap, the Jackknife, and 


BRADLEY EFRON and GAIL GONG* 

This is an invited expository article for The American 
Statistician. It reviews the nonparametric estimation of 
statistical error. mainly the bias and standard error of 
an estimator. or the error rate of a prediction rule. The 
presentation is written at a relaxed mathematical level, 
omitting most proofs, regularity conditions, and tech- 
nical details. 

KEY WORDS: Bias estimation; Variance estimation; 
Nonparametric standard errors; Nonparametric con-
fidence intervals; Error rate prediction. 

1. INTRODUCTION 

This article is intended to cover lots of ground, but at 
a relaxed mathematical level that omits most proofs, 
regularity conditions, and technical details. The ground 
in question is the nonparametric estimation of statistical 
error. "Error" here refers mainly to the bias and stan- 
dard error of an estimator, or to the error rate of a 
data-based prediction rule. 

All of the methods we discuss share some attractive 
properties for the statistical practitioner: they require 
very little in the way of modeling, assumptions, or anal- 
ysis, and can be applied in an automatic way to any 
situation, no matter how complicated. (We will give an 
example of a very complicated prediction rule indeed). 
An important theme of what follows is the substitution 
of raw computing power for theoretical analysis. 

The references upon which this article is based (Efron 
1979a,b, 1981a,b,c, 1982; Efron and Gong 1982) ex- 
plore the connections between the various non-
parametric methods, and also the relationship to famil- 
iar parametric techniques. Needless to say, there is no 
danger of parametric statistics going out of business. A 
good parametric analysis, when appropriate, can be far 
more efficient than its nonparametric counterpart. Of- 
ten, though, parametric assumptions are difficult to jus- 
tify, in which case it is reassuring to have available the 
comparatively crude but trustworthy nonparametric 
answers. 

What are the bootstrap, the jackknife, and cross-
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Cross-Validation 

validation? For a quick answer, before we begin the 
main exposition. we consider a problem where none of 
the three methods are necessary, estimating the stan- 
dard error of a sample average. 

The data set consists of a random sample of size n 
from an unknown probability distribution F on the real 
line, 

Having observed XI  = x,. X, = x,, . . . , X,,= x,, we com- 
pute the sample average T = x;=,x,/n for use as an 
estimate of the expectation of F. 

An interesting fact, and a crucial one for statistical 
applications, is that the data set provides more than the 
estimate Y. It also gives an estimate for the accuracy of 
F,namely 

6 is the estimated standard error of X = F.  the root 
mean squared error of estimation. 

The trouble with formula (2) is that it does not, in any 
obvious way, extend to estimators other than X,for 
example the sample median. The jackknife and the 
bootstrap are two ways of making this extension. Let 

the sample average of the data set deleting the nth 
point. Also, let Y, . ,  = C;=,x,,,/n, the average of the de- 
leted averages. (Actually T, . ,  = Y ,  but we need the dot 
notation below.) The jackknife estimate of standard 
error is 

The reader can verify that this is the same as (2). The 
advantage of (4) is an easy generalizability to any esti- 
mator 8 = 8 ( ~ , ,Xz, . . . , X,). The only change is to 
substitute 4,)0(x , ,  . . ., XI-,, XI+,,  . . . , X,) for Y,,) and= 

8(.,= C:=,0,,,/n for Y, ,. 
The bootstrap generalizes (2) in an apparently differ- 

ent way. Let F be the empirical probability distribution 
of the data, putting probability mass lln on each x,,  and 
let XT,XT, . . . , Xz be a random sample from F ,  

In other words each X: is drawn independently with 
replacement and with equal probability from the set { x , ,  
x,, . . . , x,). Then X*= x;,, Xyln has variance 
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var, X*=--;C (x, - y)2,
n- , = I  

(6) 

var, indicating variance under sampling scheme (5). The 
bootstrap estimate of standard error for an estimator 
8 (x I ,Xz, . . . , X,) is 

6 ,  = [var, ~(xT,XT, . . . , X:)]"'. (7) 

Comparing (7) with (2) we see that [n/(n - 1)Iu2 
6 ,  = 6 for 8 = 2.We could make 6 ,  exactly equal 6 ,  
for 0 = X,by adjusting definition (7) with the factor 
[n/(n - I)]'', but there is no general advantage in doing 
so. A simple algorithm described in Section 2 allows the 
statistician to compute 6 ,  no matter how complicated 8 
may be. Section 3 shows the close connection between 
uBand 6,. 

Cross-validation relates to another, more difficult, 
problem in estimating statistical error. Going back to 
( I ) ,  suppose we try to predict a new observation from 
F, call it X,,, using the estimator X as a predictor. The 
expected squared error of prediction EIXo-XIzequals 
((n + l ) / n ) ~ ?where F? is the variance of the distribu-
tion F. An unbiased estimate of ((n + l ) / n ) ~ ~is 

Cross-validation is a way of obtaining nearly unbiased 
estimators of prediction error in much more compli-
cated situations. The method consists of (a) deleting the 
points x, from the data set one at a time; (b) recalcu-
lating the prediction rule on the basis of the remaining 
n -'1 points; (c) seeing how well the recalculated rule 
predicts the deleted point; and (d) averaging these pre-
dictions over all n deletions of an x,. In the simple case 
above, the cross-validated estimate of prediction error 
is 

A little algebra shows that (9) equals (8) times 
n2/(n - I),  this last factor being nearly equal to one. 

The advantage of the cross-validation algorithm is 
that it can be applied to arbitrarily complicated predic-
tion rules. The connection with the bootstrap and jack-
knife is shown in Section 9. 

2. THE BOOTSTRAP 

This section describes the simple idea of the boot-
strap (Efron 1979a). We begin with an example. The 15 
points in Figure 1 represent various entering classes at 
American law schools in 1973. The two coordinates for 
law school i are x, = (y,,z,), 

y, = average LSAT score of entering students 
at school i ,  

z, = average undergraduate GPA score of entering stu-
dents at school i. 

(The LSAT is a national test similar to the Graduate 
Record Exam, while GPA refers to undergraduate 
grade point average.) 

The observed Pearson correlation coefficient for 
these n = 15 pairs is p(xl, xz, . . . , x,:) = ,776. We want 
to attach a nonparametric estimate of standard error to 
p. The bootstrap idea is the following: 

1. Suppose that the data points x,, XI, . . . , x,, are 
independent observations from some bivariate distribu-
tion F on the plane. Then the true standard error of p 
is a function of F, indicated a ( F ) ,  

u(F)  = [var, p(XI, Xz, . . . , X,)]1i2. 

(It is also a function of sample size n, and the functional 
form of the statistic p ,  but both of these are known to 
the statistician.) 

2. We don't know F ,  but we can estimate it by the 
empirical probability distribution F .  

1
F :  mass - on each observed data point x,,n 

3. The bootstrap estimate of u (F)  is 

For the correlation coefficient and for most statistics. 
even very simple ones, the function u (F )  is impossible 
to express in closed form. That is why the bootstrap is 
not in common use. However in these days of fast and 
cheap computation 6 ,  can easily be approximated by 
Monte Carlo methods: 

(i) Construct F. the empirical distribution function, 
as just described. 

(ii) Draw a bootstrap sample xT, X ; ,  . . . , xz by 
independent random sampling from F. In other words, 
make n random draws with replacement from {x,, xz, 
. . . , x,}. In the law school example a typical bootstrap 
sample might consist of 2 copies of point 1, 0 copies of 
point 2, 1 copy of point 3, and so on, the total number 
of copies adding up to n = 15. Compute the bootstrap 
replication, p* = p(XT, XT, . . . , X:). that is, the value 
of the statistic, in this case the correlation coefficient, 
evaluated for the bootstrap sample. 

(iii) Do step (ii) some large number "B" of times, 

13 0 1 2  

2 . 7 0  1 1 1 1 1 1 1 1 1 1 1 1 1 1 

540 560 580 600 620 640 660 680 
LSAT 

Figure 1. The law school data (Efron 19798). The data points, 
beginning with School # 1 ,  are (576,3.39),(635,3.30),(558,2.81), 
(578,3.03),(666,3.44),(580,3.07),(555,3.00),(661,3.43),(651, 
3.36),(605,3.13),(653,3.12),(575,2.74),(545,2.76),(572,2.88), 
(594,2.96). 
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Normal theory density H~stogram 

H~stogram 
percentiles 

p^"p^ 

Figure 2. Histogram of B = 1000 bootstrap replications b' for the 
law school data. The normal theory density curve has a similar 
shape, but falls off more quickly at the upper tail. 

obtaining independent bootstrap replications b*', 
b*', . . . ,p 

A *, 
, and approximate 6, by 

As B +x ,  (11) approaches the original definition (10). 
The choice of B is further discussed below, but mean- 
while we won't distinguish between (10) and ( l l ) ,  call- 
ing both estimates u,. 

Figure 2 shows B = 1000 bootstrap replications p*' .  
. . . , fi*"""' for the law school data. The abscissa is plot- 
ted in terms of fi* - @ = fi* - ,776. Formula (11) gives 
6, = .127. This can be compared with the normal the- 
ory estimate of standard error for p, (Johnson and Kotz 
1970, p. 229), 

One thing is obvious about the bootstrap procedure: 
it can be applied just as well to any statistic, simple or 
complicated, as to the correlation coefficient. In 
Table 1the statistic is the 25 percent trimmed mean for 
a sample of size n = 15. The true distribution F (now 
defined on the line rather than on the plane) is the 
standard normal A"(0, 1) for the left side of the table, or 
one-sided negative exponential for the right side. The 
true standard errors u (F)  are ,286 and .232. respec- 
tively. In both cases, I?,, calculated with B = 200 boot- 
strap replications, is nearly unbiased for u ( F ) .  

The jackknife estimate of standard error 6,. de-
scribed in Section 3, is also nearly unbiased in both 

Table 1. A Sampling Experiment Comparing the 

Bootstrap and Jackknife Estimates of Standard 


Error for the 25% Trimmed Mean, 

Sample Size n = 15 


F Standard Normal 
Coeff 

Ave Sd Var 

F Negative Exponential 
Coeff 

Ave Sd Var 

Bootstrap 6,: 
(8 = 200) 

,287 ,071 .25 ,242 ,078 .32 

Jackknife I?,: ,280 ,084 .30 ,224 ,085 .38 

True : 
[Minimum C.V.] 

,286 [.I91 ,232 [.271 

cases, but has higher variability than u,, as shown by its 
higher coefficient of variation. The minimum possible 
coefficient of variation (C.V.) ,  for a scale-invariant esti- 
mate of u (F) .  assuming full knowledge of the para- 
metric model, is shown in brackets. In the normal case, 
for example, .19 is the C.V. of [C(x, -~)'114]". The 
bootstrap estimate performs well by this standard con- 
sidering its totally nonparametric character and the 
small sample size. 

Table 2 returns to the case of p ,  the correlation coef- 
ficient. Instead of real data we have a sampling experi- 
ment in which F is bivariate normal, true correlation 
p = .5, and the sample size is n = 14. The left side of 
Table 2 refers to 6,  while the right side refers to the 
statistic 6= tanh- '  6 = .5 log(1 + fi)/(l - 6). For each 
estimator 6. the root mean squared error of estimation 
[ E ( 6  - o)']" is given in the column headed m. 

The bootstrap was run with B = 128 and B = 512, 
the latter value yielding only slightly better estimates 
u,. Further increasing B would be pointless. It can 
be shown that B = x would give = ,063 in the p 
case, only ,001 less than using B = 512. As a point 
of comparison, the normal theory estimate for the 
standard error of p. = (1 - p2)/(n- 3)' '- hasuNORM 
v/MSE= ,056. 

Why not generate the bootstrap observations from 
an estimate of F which is smoother than F ?  This is 
done in lines 3, 4, and 5 of Table 2. Let 2 = C:=, 
(x, - x )  (x, - x)' /n be the sample covariance matrix 
of the observed data. The normal smoothed boot- 
strap draws the bootstrap sample X:, X: ,  . . . ,X: 
from F $-V2(0, . 2 5 z ) ,  $indicating convolution. This 
amounts to estimating F by an equal mixture of the n 
distributions .Y2(x,, . 2 5 2 ) ,  that is by a normal window 
estimate. Smoothing makes little difference on the left 
side of the table, but is spectacularly effective in the 61 
case. The latter result is suspect since the true sampling 
distribution is bivariate normal, and the function 
6= tanh-' 6 is specifically chosen to have nearly con- 
stant standard error in the bivariate-normal family. The 
uniform smoothed bootstrap samples XT, . . . , Xz from 
F$%(o, . 2 5 z ) ,  where %(0. . 2 5 z )  is the uniform 
distribution on a rhombus selected so % has mean vec- 
tor 0 and covariance matrix , 2 5 2 .  It yields moderate 
reductions in afor both sides of the table. 

The standard normal-theory estimates of line 8, Table 
2, are themselves bootstrap estimates, carried out in a 
parametric framework. The bootstrap sample XT, . . . , 
X: is drawn from the parametric maximum likelihood 
distribution 

rather than the nonparametric maximum likelihood dis- 
tribution F, and with only this change the bootstrap 
algorithm proceeds as previously described. In practice 
the bootstrap process is not actually carried out. If it 
were, and if B +x, then a high-order Taylor series 
analysis shows that 6 ,  would equal approximately 
(1 - F2)/(n- 3)". the formula actually used to compute 
line 8 for the fi side of Table 2. Notice that the normal 
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Table 2. Estimates of Standard Error for the Correlation Coefficient i, and for 6 = tanh ' 6; Sample Size n = 14, 
Distribution F Bivariate Normal With True Correlation p = .5. From a Larger Table in Efron (1981b) 

Summary Statistics for 200 Trials 
Standard Error Standard Error 
Estimates for Estimates for 6 

Ave Std Dev CV Ave Std D ~ v  CV V ~ E 

1. Bootstrap B = 128 	 ,206 ,066 .32 ,067 ,301 ,065 .22 ,065 
2. Bootstrap B = 512 	 ,206 ,063 .31 ,064 ,301 ,062 .21 ,062 
3. Normal Smoothed Bootstrap B = 128 ,200 ,060 .30 ,063 ,296 ,041 .14 ,041 
4. Uniform Smoothed Bootstrap B = 128 ,205 ,061 .30 .062 ,298 ,058 .19 ,058 
5, Uniform Smoothed Bootstrap B = 51 2 ,205 ,059 .29 ,060 ,296 ,052 .18 ,052 

6. Jackknife 
7. 	Delta Method 

(Infinitesimal Jackknife) 

8. Normal Theory 	 ,217 ,056 .26 ,056 ,302 0 0 ,003 

True Standard Error ,218 	 ,299 

smoothed bootstrap can be thought of as a compromise 

between using F and i,,,,to begin the bootstrap 

6 ,  = [var, H(P") ]~~.  (13) 


process. where var indicates variance under distribution (12). 

(This is true because we can take P: = # { X ;  =x,}!rz in 

3. 	THE JACKKNIFE step 2 of the bootstrap algorithm.) 
Figure 3 illustrates the situation for the case n = 3. 

The jackknife estimate of standard error was in- There are 10 possible bootstrap points. For example. 
traduced by Tukey in 1958 (see Miller 1974). Let the point P* = (i.4. u)' is the second dot from the left on 
pi,, = p(xl, x?, . . . , x,-,, x,,,, . . . , x,,) be the value of the the lower side of the triangle. and occurs with bootstrap 
statistic when x, is deleted from the data set. and let probability t. under (12). It indicates a bootstrap sample 
p( ,= (l!n) C;_,p(,,. The jackknife formula is X;,  X; ,  XS consisting of two xi's and one x?. The center 

point Po = (4. f, 4)' has bootstrap probabil~ty %. 
The jackknife resamples the statistic at the n points 

P,,,= (l!(rz - 1)) (1. 1, . . . . 1,  0, 1. . . . . 1)'  

Like the bootstrap. the jackknife can be applied to any (0 in i th place), 


statistic that is a function of n independent and identi- i = 1, 2, . . . , rz. These are indicated by the open circles 

cally distributed variables. It performs less well than the in Figure 3. In general there are n jackknife points, 

bootstrap in Tables 1 and 2, and in most cases investi- compared with ('",;I) bootstrap points. 

gated by the author (see Efron 1982), but requires less The trouble with bootstrap formula (13) is that O(P) 

computation. In fact the two methods are closely re- is usually a complicated function of P (think of the 

lated, which we shall now show. examples in Sec. 2), and so var, 0 ( ~ * )  cannot be evalu- 


Suppose the statistic of interest. which we will now 
call O(xl, x2, . . . , x,,), is of funct~onal form : 0 = o ( F ) .  
where 0 ( F )  is a functional assigning a real number to 
any distribution F on the sample space. Both examples 
in Section 2 are of this form. Let P = (PI ,  P2,. . . , PI,) 
be a probability vector having nonnegative weights sum- 
ming to one, and define the reweighted empirical distri- 
bution F(P) : mass P,on x,, i = 1, 2, . . . , rz. Correspond-
ing to P is a resampled value of the statistic of interest. 
say O(P) = o(F(P)). The shorthand notation 0 ( ~ )  as-
sumes that the data points x,, x2, . . . , x,, are fixed at 
their observed values. 

Another way to describe the bootstrap estimate uBis 
as follows. Let P" indicate a vector drawn from the 
rescaled multinomial distribution 

P* -Mult,,(n, P ) l n  , ( P  -- (lln ) (1, 1 ,  . . . , I) '),  (12) 1 x 
1 

1 / 2 7  1 / 9  -P ( 3 )  1 / 9  1 / 2 7  x 2  
meaning the observed proportions from rz random 
draws on n categories. with equal probability l!rz for Figure 3. The bootstrap and jackknife sampling points in the case 
each category. Then n = 3. The bootstrap points (.) are shown with their probabilities. 
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ated except by Monte Carlo methods. The jackknife 
trick approximates 0 ( ~ )  by a linear function of P ,  say 
0, (P). and then uses the known covariance structure of 
(12) to evaluate bar, 8L(P").The approximator (jL (P) is 
chosen to  match O(P) at the n points P = P,,,.  It is not 
hard to see that 

~ , ( P ) = o ,, +  (P-P') 'u (14) 

where 0, , = ( l i n )  2 o,,,= (lhl) 2 0 ( ~ , , , ) .and U is a 
column vector with coordinates U, = (n - 1) (0, - 0,,,). 

Theorem. The jackknife estimate of standard error 
equals 

which is [ni(n - I)] ' '  times the bootstrap estimate of 
standard error for eL (Efron 1982). 

In other words the jackknife is, almost,' a bootstrap 
itself. The advantage of working with O L  rather than 0 
is that there is no  need for Monte Carlo: var. 
0 , ( ~ " )= var. (P* - P ) ' U  = ~ U ' i n ' ,  using the covar-
iance matrix for (12) and the fact that ZU, = 0. The 
disadvantage is (usually) increased error of estimation, 
as seen in Tables 1 and 2. 

The fact that eJ is almost 15, for a linear approxi- 
mation of 0 does not mean that 6, is a reasonable ap- 
proximation for the actual 15,. That depends on  how 
well 0, approximates 0. In the case where 0 is the sam- 
ple median. for instance, the approximation is very 
poor. 

4. THE DELTA METHOD, INFLUENCE 
FUNCTIONS, AND THE 

INFINITESIMAL JACKKNIFE 

There is a more obvious linear approximation to 0 ( ~ )  
than O L ( ~ ) .  (13). Why not use the first-order Taylor 
series expansion for 0 ( ~ )  about the point P = Po? This is 
the idea of Jaeckel's infinitesimal jackknife (1972). The 
Taylor series approximation turns out to be 

where 

6, being the i th  coordinate vector. This suggests the 
infinitesimal jackknife estimate of standard error 

&,,=[var, O T ( ~ * ) ] '  = [2U;'lt1']I'. (15) 

with var. still indicating variance under (12). The ordi- 
nary jackknife can be thought of as taking 
F = - li(t1 - 1) in the definition of U:'. while the in- 

'The factor [ , I  ( n  - l ) ] "  makes 6; unb~ased for a' if  F) 1s a linear 
statistic. e.!.. i) = X.We could multiply 6 ,  by this same factor. and 
achieve the same unbiasedness. but there doesn't seem to be any 
general advantage to doing so.  

finitesimal jackknife lets &-+(I,thereby earning the 
name. 

The U:' are values of what Mallows (1974) calls the 
empirical influence function. Their definition is a non- 
parametric estimate of the true influence function 

0(( l  - e ) F  + €8,)  - O(F)
I F ( x )  = lim 

i - ~ l  e 

8, being the degenerate distribution putting mass 1 on 
x .  The right side of (15) is then the obvious estimate of 
the influence function approximation to the standard 
error of 0. (Hampel 1974). u ( F )  [JIF'(x)dF(x)/n]". 
The e m ~ i r i c a l  influence function method and the in- 
finitesimal jackknife give identical estimates of stan- 
dard error. 

How have statisticians gotten along for so many years 
without methods like the jackknife or  the bootstrap? 
The answer is the delta method, which is still the most 
commonly used device for approximating standard er- 
rors. The method applies to statistics of the form [ ( D l ,  
D2, . . . , (TA). where t (  a ,  . . . , .) is a known function a .  

and each D,,is an observed average. D,,=C:', Q,(X,) /n .  
For example, the correlation p is a function of A = 5 
such averages: the average of the first coordinate val- 
ues, the second coordinates, the first coordinates 
squared, the second coordinates squared. and the cross- 
products. 

In its nonparametric formulation. the delta method 
works by (a) expanding t in a linear Taylor series about 
the expectations of the H , ;  (b) evaluating the standard 
error of the Taylor series using the usual expressions for 
variances and covariances of averages: and (c) substi- 
tuting - y ( ~ )for any unknown quantity y ( F ) occurring in 
(b). For example, the nonparametric delta method esti- 
mates the standard error of p by 

where. in terms of x-, = ( y , ,  2 , ) .  ( i R h  - X ( y ,  -7)' 
( z ,- T)"in (Cramer 1946. p.  359). 

Theorem. For statistics of the form 0 = t (&,  . . . , 
D,l) .  the nonparametric delta method and the infini- 
tesimal jackknife give the same estimate of standard 
error (Efron 1981b). 

The infinitesimal jackknife, the delta method, and 
the empirical influence function approach are three 
names for the same method. Notice thut the res~tlts re- 
ported it1 line 7 of Table 2 show a severe dowtlward bias. 
Efron and Stein (1981) show that the ordinary jackknife 
is always biased upwards. in a sense made precise in that 
paper. In the authors' opinion the ordinary jackknife is 
the method of choice if one  does not want to do the 
bootstrap computations. 

5. NONPARAMETRIC CONFIDENCE INTERVALS 

In applied work. the usual purpose of estimating a 
standard error is to set confidence intervals for the un- 



known paramater. These are typically of the crude form 
0 ? z,6, with z, being the 100(1- a) percentile point of 
a standard normal distribution. We can, and do, use the 
bootstrap and jackknife estimates eB,6, in this way. 
However in small-sample parametric situations, where 
we can do exact calculations, confidence intervals are 
often highly asymmetric about the best point estimate 0. 
This asymmetry, which is 0(1/fi) in magnitude, is sub- 
stantially more important than the Student's t cor-
rection (replacing 6 k z,6 by 0 5 fa&, with t, the 
100(1 - a) percentile point of the appropriate t distribu-
tion), which is only O(l1n). This section discusses some 
nonparametric methods of assigning, confidence inter- 
vals, which attempt to capture the correct asymmetry. It 
is abbreviated from a longer discussion in Efron 
(1981c), and also Chapter 10 of Efron (1982). All of this 
work is highly speculative, though encouraging. 

We return to the law school example of Section 2. 
Suppose for the moment that we believe the data come 
from a bivariate normal distribution. The standard 68 
percent central confidence interval (i.e., a = .16, 1 -
2a = .68) for p in this case is [.62, .87] = [p - .16, i,+ 
.09], obtained by inverting the approximation 4-
N(+ + pl(2(n - I)), l l ( n  - 3)). Compared to the crude 
interval i,? z ,, &NORM = 6 5 &NORM = [p - .12, i)+ .12], 
this demonstrates the magnitude of the asymmetry ef- 
fect described previously. 

The asymmetry of the confidence interval [p - .16, 
i,+ .09] relates to the asymmetry of the normal-theory 
density curve for 6, as shown in Figure 2. The bootstrap 
histogram shows this same asymmetry. The striking 
similarity between the histogram and the density curve 
suggests that we can use the bootstrap results more 
ambitiously than simply to compute eB. 

Two ways of forming nonparametric confidence inter- 
vals from the bootstrap histogram are discussed in Ef- 
ron (1981~).The first, called the percentile method, uses 
the 100a and 100(1- a) percentiles of the bootstrap 
histogram, say 

8 E [&a), 8(1 - a)], (16) 

as a putative 1- 2a central confidence interval for the 
unknown parameter 8. Letting 

then &a) = t - ' ( a ) ,  0(1 - a )  = t - ' ( l  -a ) .  In the law 
school example, with B = 1000 and a = .16, the 68 per-
cent interval is p C [.65, .91] = [p - .12, p + .13], almost 
exactly the same as the crude normal-theory interval 
6 2 &NORM. 

Notice that the median of the bootstrap histogram is 
substantially higher than i, in Figure 2. In fact, 
t ( p )  = .433, only 433 out of 1000 bootstrap replications 
having (i*<6. The bias-corrected percentile method 
makes an adjustment for this type of bias. Let @(z) 
indicate the CDF of the standard normal distribution, 
so @(z,) = 1- a, and define 

The bias-corrected putative 1- 2a central confidence 
interval is defined to be 

8 E [t-'{@(2zo - z,)}, t-'{@(2zo + z,)}]. (17) 

If t ( 0 )  = S O ,  the median unbiased case, then zo = 0 
and (8) reduce to the uncorrected percentile interval 
(16). Otherwise the results can be quite different. In the 
law school example zo= @(.433) = -.17, and for a = 
,16, (8) gives p E [e-I{@(- 1.34))~ t-l{@(.66)}] = 

[ i ,  -.17, i, + .lo].  This agrees nicely with the normal- 
theory interval [i,- .16, @ + ,091. 

Table 3 shows the results of a small sampling experi- 
ment, only 10 trials, in which the true distribution Fwas 
bivariate normal, p = .5. The bias-corrected percentile 
method shows impressive agreement with the normal- 
theory intervals. Even better are the smoothed inter- 
vals, last column. Here the bootstrap replications were 
obtained by sampling from ~'?$N(o, . 252 ) ,  as in line 
3 of Table 2, and then applying (17) to the resulting 
histogram. 

There are some theoretical arguments supporting 
(16) and (17). If there exists a normalizing transfor- 
mation, in the same sense as 4 = tanh-' p is normalizing 
for the correlation coefficient under bivariate-normal 
sampling, then the bias-corrected percentile method au- 
tomatically produces the appropriate confidence inter- 
vals. This is interesting since we do not have to know the 
form of the normalizing transformation to apply (17). 
Bayesian and frequentist justifications are given also in 
Efron (1981~).None of these arguments is overwhelm- 
ing, and in fact (17) and (16) sometimes perform poor- 
ly. Some other methods are suggested in Efron (1981c), 
but the appropriate theory is still far from clear. 

6. BIAS ESTIMATION 

Quenouille (1949) originally introduced the jackknife 
as a nonparametric device for estimating bias. Let us 
denote the bias of a functional statistic 0 = 8(l'?) by 

Table 3. Central 68% Confidence Intervals for p, 10 

Trials of X,,  X,, . . ., Xi5 Bivariate Normal With True 


p = .5. Each Interval Has 6 Subtracted From 

Both Endpoints 


Smoothed and 
Bias-Corrected Bias-Corrected 

Normal Percentile Percentile Percentile 
Trial 6 Theoty Method Method Method 

1 .16 (-.29,.26)(-.29,.24) (-.28,.25) (-.28,.24) 

2 .75 (-.17,.09) (-.05,.08) (-.13,.04) (-.12,.08) 

3 .55 (-.25, .16) (-.24, .16) (-.34, .12) (-.27, .15) 

4 .53 (-.26, .17) (-.16, .16) (-.19, ,131 (-21, .16) 

5 73 ( - 1  1 0  ( - 1  1 (-16.10 (-2'0, .lo) 

6 .50 (-.26, .18) (-.18, .18) (-.22, .15) (-.26, .14) 

7 ,70 (p.20,, 1 1 1  (p.17, .12) (-.21, .lo) (-.18, .ll) 

8 .30 (-.29, .23) (-.29, .25) (-.33, .24) (-.29, .25) 

9 .33 (-.29, .22) (-.36, .24) (-.30, .27) (-.30, 26) 

10 .22 (-.29, .24) (-.50, .34) (-.48, .36) (-.38, .34) 
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P, P = E { ~ ( F )- 0(F)) . In the notation of Section 3, 
Quenouille's estimate is 

Subtracting f i J  from 0,  to correct the bias leads to the 
jackknife estimate of 0, 0;= n 0 - ( n  - 1)0(.,,see Miller 
(1974), and also Schucany, Gray, and Owen (1971). 

There are many ways to justify (18).Here we follow 
the same line of argument as in the justification of 6 J .  
The bootstrap estimate of P, which has an obvious mo- 
tivation, is introduced, and then (18) is related to the 
bootstrap estimate by a Taylor series argument. 

The bias can be thought of as a function of the un- 
known probability distribution F, P = P(F).The boot- 
strap estimate of bias is simply 

Here E, indicates expectation with respect to bootstrap 
sampling, and i'* is the empirical distribution of the 
bootstrap sample. 

In practice f i B  must be approximated by Monte Carlo 
methods. The only change in the algorithm described in 
Section 2 is at step (iii), when instead of (or in addition 
to) eBwe calculate 

In the sampling experiment of Table 2 the true bias, of 
6 for estimating p, is p = - .014. The bootstrap estimate 
fiB, taking B = 128, has expectation - .014 and stan- 
dard deviation .031 in this case, while f i J  has expectation 
-.017, standard deviation .040 Bias is a negligible 
source of statistical error in this situation compared with 
variability. In applications this is usually made clear by 
comparison of f i B  with h B .  

The estimates (18) and (19) are closely related to 
each other. The argument is the same as in Section 3, 
except that we approximate 0 ( ~ )with a quadratic 
rather than a linear function of P, say eQ(P)= 

a + ( P  - i (P  - - Let ' Q ( P )  be any+ 

such quadratic satisfying 

0 , ( ~ " )= &PC) = = i = 1, 2, . . . ,n.0 and O Q ( ~ ( l , )  0 ( ~ ( , , ) ,  

Theorem. The jackknife estimate of bias equals 

which is n / ( n- 1) times the bootstrap estimate of bias 
for 0, (Efron 1982). 

Once again, the jackknife is, almost, a bootstrap esti- 
mate itself, except applied to a convenient approxi- 
mation of 0 ( ~ ) .  

More general problems. There is nothing special 
about bias and standard error as far as the bootstrap is 
concerned. The bootstrap procedure can be applied to 
almost any estimation problem. 

Suppose that R ( X I ,  X2, . . . ,X,; F )  is a random vari- 
able, and we are interested in estimating some aspect of 
R's distribution. (So far we have taken R = 0 ( p )- 0(F)  

and have been interested in the expectation p and the 
standard deviation u of R .) The bootstrap algorithm 
proceeds as described in Section 2, with these two 
changes: at step (ii), we calculate the bootstrap repli- 
cation R * = R (XT, XT, . . . ,X: ;P ) , and at step (iii) we 
calculate the distributional property of interest from the 
empirical distribution of the bootstrap replications R* ', 
R*2,. . . , R*B.  

For example, we might be interested in the proba- 
bility that the usual t statistic f i ( X  - k)lS exceeds 2, 
where = E { X )  and S2= Z(Xl-X)21(n- 1). Then 
R* = f i ( X *  -x)lS*, and the bootstrap estimate is 
#{R* >2)lB. This calculation is used in Section 9 of 
Efron (1981~)to get confidence intervals for the mean 
@ in a situation where llormality is suspect. 

The cross-validation problem of Sections 8 and 9 in-
volves a different type of error random variable R. It 
will be useful there to use a jackknife-type approxi- 
mation to the bootstrap expectation of R, 

Here R O = R ( x l ,  x2, . .  . ,  x, ; p )  and R( . ,= ( l ln)ZR(, , ,  
R(,,= R ( x l ,  x2, . . . , x,-,, x , + ~ ,. . . , x,; i').The justifica- 
tion of (20) is the same as for the theorem of this 
section, being based on a quadratic approximation 
formula. 

7. MORE COMPLICATED DATA SETS 

So far we have considered the simplest kind of data 
sets, where all the observations come from the same 
distribution F. The bootstrap idea, and jackknife-type 
approximations (which are not discussed can be 
applied to much more complicated situations. We begin 
with a two-sample problem. 

The data in our first example consist of two indepen- 
dent random samples, 

X I ,  X2, . . . , X, -F and Y 1 ,  Y2 ,  . . . , Y ,-G, 

F and G being two possibly different distributions on 
the real line, The statistic of interest is the Hedges-
Lehmann shift estimate 

0 = median { y ,- x , ;  i = 1, . . . , m, j = 1, . . . , n ) .  

We desire an estimate of the standard error u(F, G ) .  
The bootstrap estimate is simply 

6 B= U(F,e) .  
being the empirical distribution of the y ,  This is 

evaluated by Monte Carlo, as in Section 3, with obvious 
modifications: a bootstrap sample now consists of a ran- 
dom sample Xy, XT, . . . , X: drawn from F and an 
independent random sample YT, . . . , Y :  drawn from 
G. (In other words, m draws with replacement from {x,, 
x2, . . . ,x,), and n draws with replacement from Cy,,y2, 
. . . , y,).) The bootstrap replication 0* is the median of 
the mn differences YT -XT. Then eBis approximated 
from B independent such replications as on the right 
side of (11). 

Table 4 shows the results of a sampling experiment in 
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Table 4. Bootstrap Estimates of Standard Error for the 

Hodges-Lehmann Two-Sample Shift Estimate; 

m = 6, n = 9; True Distributions Both F and G 


Uniform [0, 11 


Expectabon St. Dev. C.V. LWE 
B=lOO .I65 ,030 .18 ,030 

Separate 
B = 200 ,166 ,031 .19 ,031 

B=100 ,145 ,028 .19 ,036 
Combined 

B = 200 ,149 ,025 .17 ,031 

True Standard Error ,167 

which m = 6, n = 9, and both F and G were uniform 
distributions on the interval [0, 11. The table is based on  
100 trials of the situation. The true standard error is 
u(F,  G )  = .167. "Separate" refers to bBcalculated ex- 
actly as described in the previous paragraph. The im- 
provement in going from B = 100 to B = 200 is too 
small to show up  in the table. 

"Combined" refers to the following idea: suppose we 
believe that G is really a translate of F. Then it wastes 
information to estimate F and G separately. Instead we 
can form the combined empirical distribution 

1
H: mass -on 

m + n 

All m + n bootstrap variates X; ,  . . . , X i ,  Y ; , . . . , Y: 
are then sampled independently from H .  (We could add 
0 back to the Y ;  values. but this has no effect on the 
bootstrap standard error estimate, since it just adds the 
constant i) to each bootstrap replication 0".) 

The combined method gives no improvement here,  
but it might be valuable in a many-sample problem 
where there are small numbers of observations in each 
sample. a situation that arises in stratified sampling. 
(See Efron 1982, Ch.  8.) The main point here is that 
"bootstrap" is not a well-defined verb, and that there 
may be more than one way to  proceed in complicated 
situations. Next we consider regression problems. 
where again there is a choice of bootstrapping methods. 

In a typical regression problem we observe n inde-
pendent real-valued quantitives Y, = y,, 

The functions g , ( . )  are of known form, usually g,(P) = 

g(P ;  t,), where t, is an observed p-dimensional vector of 
covariates; p is a vector of unknown parameters we wish 
to estimate. The F, are an independent and identically 
distributed random sample from some distribution Fon 
the real line, 

& , , & 2 ,. . . ,  F n - F ,  

where F is assumed to be centered at zero in some 
sense, perhaps E { E )= 0 o r  Prob{& <0) = 0.5. 

Having observed the data vector Y = y = Cv,,. . . , y,,). 
we estimate p by minimizing some measure of distance 

between y and the vector of predicted values q ( P )  = 

(gl (PI, . . . , gn (PI)? 

The most common choice of D is D ( y ,  q )  = x;:, 
(Y,- rl,)?. 

Having calculated 6, we can modify the one-sample 
bootstrap algorithm of Section 2, and obtain an esti- 
mate of 13's variability: 

(i) Construct F putting mass l l r ~  at each observed 
residual. 

F: mass lirz on 6,  =y, - g, (6) .  

(ii) Construct a bootstrap data set 

where the E T  are drawn independently from F, and 
calculate 

fi*:min D ( Y * ,  q(P) ) .  
B 

(iii) D o  step (ii) some large number B of times, ob- 
taining independent bootstrap replications b*', b*'. 
. . . . @*B, and estimate the covariance matrix of 0 by 

In ordinary linear regression we have g, (P) = t,' P and 
D ( y ,  +I) = Z(y, - q ) ? .  Section 7 of Efron (1979a) shows 
that in this case the algorithm above can be carried out 
theoretically, B = x ,  and yields 

This is the usual answer, except for dividing by n instead 
of n -p in u2.  Of course the advantage of the bootstrap 
approach is that can just as well be calculated if, 
say, g, (PI = exp ( t ,P) and D (Y, q )  = C:=,ly, - ?,I. 

There is another simpler way to bootstrap the re- 
gression problem. We can consider each covariate-
response pair x, = (t,, y , )  t o  be a single data point ob- 
tained by random sampling from a distribution F on 
p + 1 dimension space. Then we apply the one-sample 
bootstrap of Section 2 to  the data set x , ,  x:, . . . , x,. 

The  two bootstrap methods for the regression prob- 
lem are asymptotically equivalent, but can perform 
quite differently in small-sample situations. The simple 
method, described last, takes less advantage of the spe- 
cial structure of the regression problem. It does not give 
answer (22) in the case of ordinary least squares. O n  the 
other hand the simple method gives a trustworthy esti- 
mate of 0's variability ever1 if the regression model (21) 
is not correct. For this reason we use the simple method 
of bootstrapping on the error rate prediction problem of 
Sections 9 and 10. 

As  a final example of bootstrapping complicated data 



we consider a two-sample problem with censored data. 
The data are the leukemia remission times listed in 
Table 1 of Cox (1972). The sample sizes are m = n = 21. 
Treatment-group remission times (weeks) are 6 + ,  6. 6, 
6 , 7 . 9 + .  10 + . 10. 11+, 13. 16. 17+.  19+, 20+.  22,23. 
25+. 32+ .  32+ .  34+. 35+ : control-group remission 
t imes(weeks)are 1. 1 , 2 . 2 . 3 , 4 . 4 . 5 , 5 . 8 , 8 , 8 . 8 ,  11, 
11. 12. 12, 15, 17, 22, 23. Here 6+ indicates a censored 
remission time, known only to  exceed 6 weeks, while 6 
is an uncensored remission time of exactly 6 weeks. 
None of the control-group times were censored. 

We assume Cox's proportional hazards model, the 
hazard rate in the control group equaling e P  times that 
in the Treatment group. The partial likelihood estimate 
of p is B = 1.51, and we want to  estimate the standard 
error of 0. (Cox gets 1.65. not 1.51. Here we are using 
Breslow's convention for ties (1972). which accounts for 
the discrepancy.) 

Figure 4 shows the histogram for 1000 bootstrap rep- 
lications of @".Each replication was obtained by the 
two-sample method described for the Hodges-Lehmann 
estimate: 

(i) Construct Fputting mass $ at each point 6 + ,  6. 6, 
. . . . 35+.  and G putting mass & at each point 1, 1, . . . , 
23. (Notice that the "points" in F include the censoring 
information.) 

(ii) Draw XT, X; ,  . . . , X:, by random sampling from 
F ,  and likewise Yy, Yq, . . . , YT, by random sampling 
from G. Calculate @ "  by applying the partial-likelihood 
method to the bootstrap data. 

The bootstrap estimate of standard error for B,  as 
given by (1 1). is uB= .42. This agrees nicely with Cox's 
asymptotic estimate u= .41. However. the percentile 
method gives quite different confidence intervals from 
those obtained by the usual method. For a =  .05, 
1 - 2a  = .90, the latter interval is 1.51 i 1.65 . .41 = 

[.83. 2.191. The percentile method gives the 90 percent 
central interval [.98. 2.351. Notice that (2.35 - 1.51)l 
(1.51 - .98) = 1.58, so that the percentile interval is 
considerably larger to the right of B than to the left. 
(The bias-corrected percentile method gives almost the 
same answers as the uncorrected method in this case 
since ~ ( 0 )  = .49.) 

Figure 4. Histogram of 1000 bootstrap replications of p* for the 
leukemia data, proportional hazards model. Courtesy of Rob 
Tibshirani, Stanford. 

There are other reasonable ways to  bootstrap cen-
sored data. One of these is described in Efron (1981a). 
which also contains a theoretical justification for the 
method used to  construct Figure 4. 

8. CROSS-VALIDATION 


Cross-validation is an old but useful idea. whose time 
seems to  have come again with the advent of modern 
computers. We discuss it in the context of estimating the 
error rate of a prediction rule. (There are other im- 
portant uses: see Stone 1974; Geisser 1975.) 

The prediction problem is as follows: each data point 
x, = (t,, y,)  consists of a p-dimensional vector of 
explanatory variables t,, and a response variable y,. 
Here we assume y, can take on only two possible values, 
say 0 or 1, indicating two possible responses. live or 
dead, male or female. success or  failure. and so on. We 
observe x , ,  x,, . . . , x,, called collectively the tralnlng set, 
and indicated x = (x,, x,, . . . , x,,). We have in mind a 
formula q ( t ;  x) for constructing a prediction rule from 
the training set. also taking on values either 0 or 1. 
Given a new explanatory vector to, the value q(t,,: x) is 
supposed to predict the corresponding response yo 

We assume that each x, is an independent realization 
of X = (T, Y). a random vector having some distribu- 
tion F on p +1-dimensional space. and likewise for the 
"new case" XI] = (To. YIr)  The true error rate err of the 
prediction rule q ( . ;  x) is the expected probability of 
error over XI, -F with x fixed. 

err  = E{Q [YO, T( TO, x)]>. 

where Q[y,  q ]  is the error indicator 

An obvious estimate of err is the apparent error rate 

-err = E{Q [YO. q(To: x)]} 1 "  Q [y, . q(tI; x)I=;C 
/-I  

The symbol E indicates expectation with respect to the 
empirical distribution F, putting mass lin on each x,. 
The apparent error rate is likely to underestimate the 
true error rate, since we are evaluating q ( .  , x)'s per- 
formance on the same set of data used in its construc- 
tion. A random variable of interest is the o~~eroptimism, 
true minus apparent error rate. 

R(x. F )  = e r r - =  

The expectation of R(X. F )  over the random choice of 
X, ,  X?, . . . . X ,  from F, 

w(F) = ER (X. F )  (24) 
is the expected overoptimism. 

The cross-validated estimate of err is 

~ ( t , :  x,) being the prediction rule based on x,,,= 
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(x,, x?, . . . , x , - ~ ,x,. I ,  . . . , x,,). In other words err- is the 
error rate over the observed data set. nor allowing 
x, = (r,, y , )  to enter into the construction of the rule for its 
own prediction. It is intuitively obvious that err- is a less 
biased estimator of err than is In what follows we 
consider how well err- estimates err. or equivalently 
how well 

W- = err- -Wr 

estimates R (x, F )  = err - err. (These are equivalent 
problems since err- - err = w- -R (x, F ) . )  We have 
used the notation w-, rather than R-,  because it turns 
out later that it is actually w being estimated. 

We consider a sampling experiment involving Fish- 
er's linear discriminant function. The dimension is 
p = 2 and the sample size of the training set is n = 14. 
The distribution F is as follows: Y = 0 or 1 with proba- 
bility i, and given Y = y the predictor vector T is bi- 
variate normal with identity covariance matrix and 
mean vector (y - 4, 0). If F were known to the statisti- 
cian, the ideal prediction rule would be to guess yo = 0 
if the first component of t,, was 5 0 ,  and to guess yo = 1 
otherwise. Since F is assumed unknown. we must esti- 
mate a prediction rule from the training set. 

We use the prediction rule based on Fisher's esti- 
mated linear discriminant function (Efron 1975). 

The quantities 6 and 0 are defined in terms of no and 
n,, the number of y, equal to zero and one, respectively: 
5, and t , ,  the averages of the t, corresponding to those 
y, equaling zero and one, respectively: and S = 

[C;, t,t: - nottJ,;- n,S,t;]/n : 

6 = [t;sl t ,  -7;s-lr,]12, 

13 = (i?-7,)s - I .  

Table 5 shows the results of 10 simulations ("trials") 
of this situation. The expected overoptimism. obtained 
from 100 trials. is w = ,098. so that R = err -EE is typ- 
ically quite large. However. R is also quite variable from 

Table 5. The First 10 Trials of a Sampling Experiment 

Involving Fisher's Linear Discriminant Function. The 


Training Set Has Size n = 14. The Expected 

Overoptimism is w = .096, see Table 6 


Error Rates Estimates of Overoptimism 
. Appar- Over- Cross- Jack- Bootstrap 

True ent optimism validation knife (8= 200)-
Trial no, n, err err R at GJ 6.e 

trial to trial, often being negative. The cross-validation 
estimate w- is positive in all 10 cases. and does not 
correlate with R. This relates to the comment that w- is 
trying to estimate w rather than R. We will see later that 
w- has expectation .091, and so is nearly unbiased for w. 
However, w- is too variable itself to be very useful for 
estimating R, which is to say that err- is not a particu- 
larly good estimate of err. These points are discussed 
further in Section 9, where the two other estimates of w 
appearing in Table 5, w,and GR,are introduced. 

9. 	BOOTSTRAP AND JACKKNIFE ESTIMATES 
FOR THE PREDICTION PROBLEMS 

At the end of Section 6 we described a method for 
applying the boostrap to any random variable R (X, F ) .  
Now we use that method on the overoptimism random 
variable (23), and obtain a bootstrap estimate of the 
expected overoptimism w(F). 

The bootstrap estimate of w = w(F), (24), is simply 

As usual GBmust be approximated by Monte Carlo. We 
generate independent bootstrap replications R* I ,  R"', 
. . . , R" B, and take 

As B goes to infinity this last expression approaches 
E.{RX}.the expectation of R" under bootstrap re-
sampling, which is by definition the same quantity as 
w(p) = 6,.The bootstrap estimates GBseen In the last 
column of Table 5 are considerabl) less variable than 
the cross-validation estimates w-. 

What does a typical bootstrap replication consist of in 
this situation? As in Section 3 let P" = (P;, PT, . . . , P i )  
indicate the bootstrap resampling proportions 
PT = # { X ;  = x,)/n. (Notice that we are considering 
each vector x, = (r,, y , )  as a single sample point for the 
purpose of carrying out the bootstrap algorithm.) Fol- 
lowing through definition (13). it is not hard to see that 

R:' = R (X", F )  = 1(Py - Pr ) Q [ j . , , q(t, : XI)], (25) 
, = I  

where P"= (1. 1. . . . , l) ' /n as before, and q ( .  . X*) is 
the prediction rule based on the bootstrap sample. 

Table 6 shows the results of two simulation experi- 
ments (100 trials each) involving Fisher's linear discrim- 
inant fraction. The left side relates to the bivariate nor- 
mal situation described in Section 8: sample size n = 14. 
dimension d = 2, mean vectors for the two randomly 
selected normal distributions = (*+.0) .  The right side 
still has n = 14, but the dimension has been raised to 5. 
with mean vectors ( 2 1 .  0. 0, 0. 0).  Fuller descriptions 
appear in Chapter 7 of Efron (1982). 

Seven estimates of overoptimism were considered. In 
the d = 2 situation, the cross-validation estimate w-. for 
example. had expectation .091. standard deviation 
,073, and correlation - .07 with R. This gave root mean 
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Table 6. Two Sampling Experiments Involving Fisher's 

Linear Discriminant Function. The Left Side of 

the Table Relates to the Situation of Table 5: 

n = 14, d = 2, True Mean Vectors = (k1/2, 0). 


The Right Side Relates to n = 14, d = 5, 

True Mean Vectors = (k 1, 0, 0, 0, 0) 


D~rnens~on Ofmensfon 5 2 
Overoptfrn~srn Exp Sd Exp Sd 

R I X  FJ w = 096 173 Corr lMSE w = 184 099 Corr \ 

1 Ideal Constant 096 0 0 ,113 ,184 0 0 ,099 
2 Cross- 

Val~dation ,091 ,073 -.07 ,139 ,170 ,094 - . I 5  ,147 
3. Jackkn~fe ,093 ,068 - 23 ,145 ,167 ,089 -.26 ,150 
4. Bootstrap 
(8=ZOO) ,080 ,028 -.64 135 103 ,031 -.58 ,145 

5. BootRand 
( 8  =200) 087 ,026 - 55 ,130 147 ,020 -.31 ,114 

6 	 BootAve 
( 8 = 2 0 0 )  ,100 036 - 1 8  125 ,172 041 -.25 ,118 

7. Zero 0 0 0 ,149 0 0 0 ,209 

squared error.  of w- for estimating R o r  equivalently of 
err- for estimating err. 

[E[w-- R]']+ = [E(err-- err)']i = ,139. 

The bootstrap. line 4. did only slightly better, 
rn= ,135. 

The zero estimate 6-0, line 7, had rn= ,149. 
which is also [E(e r r  -Tr)']i. the of estimating 
err  by the apparent error 5.with zero correction for 
overoptimism. The "ideal constant" is w itself. If we 
knew w, which we don't in genuine applications, we 
would use the bias-corrected estimate EiT + w. Line 1 ,  
left side, says that this ideal correction gives 
== .113. 

We see that neither cross-validation nor the bootstrap 
are much of an  improvement over making no correction 
at all. though the situation is more favorable on  the 
right side of Table 6. Estimators 5 and 6, which will be 
described later, perform noticeably better. 

The "jackknife," line 3, refers to the following idea: 
since cLB = E.{RX) is a bootstrap expectation, we can 
approximate that expectation by (19). In this case (25) 
gives R"  = 0, so the jackknife approximation is simply 
GJ = (n - 1) R, ,. Evaluating this last expression, as in 
Chapter 7 of Efron (1982), gives 

This looks very much like the cross-validation estimate, 
which can be written 

As  a matter of fact. cLJ and w- have asymptotic cor- 
relation one (Gong 1982). Their nearly perfect cor-
relation can be seen in Table 5.  In the sampling experi- 
ments of Table 6, corr(&,, w-) = .93on the left side, and 
.98 on  the right side. The point here is that the cross- 
validation estimate w- is, essentially, a Taylor series ap- 
proximation to the bootstrap estimate As. 

Even though cLn and w are closely related in theory 
and are asymptotically equivalent, they behave very dif- 
ferently in Table 6: w- is nearly unbiased and un-
correlated with R, but has enormous variability: 6, has 
small variability. but is biased downwards. particularly 
in the right-hand case. and highly negatively correlated 
with R. The poor performances of the two estimators 
are due to  different causes, and there are some grounds 
of hope for a favorable hybrid. 

"BootRand," line 5. modified the bootstrap estimate 
in just one way: instead of drawing the bootstrap sample 
XT, XT. . . . , Xz from F ,  it was drawn from 

+,in on (t,, 1) 
~ R l i v o :mass - +,)In on (t,, 0) 

This is a distribution supported on 2n points. the ob- 
served points x,  = (t,, y , )  and also the complementary 
points (t,, 1 -y , ) .  The probabilities +, were those natu- 
rally associated with the linear discriminant function, 

+, = l / [ l  + exp - (6+ tI1p)] 

(see Efron 1975). except that +,was always forced to lie 
in the interval [ . I .  .9]. 

Drawing the bootstrap sample X ; ,  . . . , X: from 
FRAhninstead of is a form of smoothing, not unlike the 
smoothed bootstraps of Section 2. In both cases we 
support the estimate of F on points beyond those actu- 
ally observed in the sample. Here the smoothing is en- 
tirely in the response variable y. In complicated prob- 
lems. such as the one described in Section 10, t, can have 
complex structure (censoring. missing values, cardinal 
and ordinal scales, discrete and continuous variates, 
etc.) making it difficult to smooth in the t space. Notice 
that in Table 6 BootRand is an improvement over the 
ordinary bootstrap in every way: it has smaller bias. 
smaller standard deviation, and smaller negative cor-
relation with R. The decrease in b/MSE is especially 
impressive on  the right side of the table. 

"BootAve." line 6, involves a quantity we shall call 
w,,. Generating B bootstrap replications involves mak- 
ing n B  predictions q(t,, X* '). i = 1, 2, . . . , n, b = 1, 2, 
. . . , B. Let 

lf P T h > O  
Then 

cj, ,  =z,, Q [y , ,  q(t,, x4h ) ] ~ ~ , bI ; ~  	 l T b - m .  

In other words, w,, + is the observed bootstrap error 
rate for prediction of those y, where x ,  is not involved in 
the construction of q (  ,X*). Theoretical arguments can 
be mustered to show that GO will usually have expec- 
tation greater than w, while GR usually has expectation 
less than w. "BootAve" is the compromise estimator 

= (GBf G0)/2. It also performs well in Table 6, 
though there is not yet enough theoretical o r  numerical 
evidence to warrant unqualified enthusiasm. 

The bootstrap is a general all-purpose device that can 
be applied to almost any problem. This is very handy, 
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Table 7. The Last 11  Liver Patients. Negative Numbers Indicate Missing Values 

Cons- Ster- Anti- Mal- Anor- Liver Liver Soleen As- Bili- Alk Albu- Pro- Histo-

tant Age Sex -aid viral Fatigue aise exia Big Firm 'palp Spiders cites Varices rubin Phos SGOT min tein logy 


y 1 2 3 4 5 6 7 8 9 1 0 1 1 12 13 14 15 16 17 18 19 20 # 


but it implies that in situations with special structure the 
bootstrap may be outperformed by more specialized 
methods. Here we have done so in two different ways. 
BootRand uses an estimate of F that is better than the 
totally nonparametric estimate F. BootAve makes use 
of the particular form of R for the overoptimism 
problem. 

10. A COMPLICATED PREDICTION PROBLEM 

We end this article with the bootstrap analysis of a 
genuine prediction problem, involving many of the 
complexities and difficulties typical of genuine prob- 
lems. The bootstrap is not necessarily the best method 
here, as discussed in Section 9, but it is impressive to see 
how much information this simple idea, combined with 
'massive computation, can extract from a situation that 
is hopelessly beyond traditional theoretical solutions. A 
fuller discussion appears in Efron and Gong (1981). 

Among n = 155 acute chronic hepatitis -patients, 33 
were observed to die from the disease, while 122 sur- 
vived. Each patient had associated a vector of 20 covar- 
iates. On the basis of this training set it was desired to 
produce a rule for predicting, from the covariates, 
whether a given patient would live or die. If an effective 
prediction rule were available, it would be useful in 
choosing among alternative treatments. For example, 
patients with a very low predicted probability of death 
could be given less rigorous treatment. 

Let xi = (ti, yi) represent the data for patient i, i = 1, 
2, . . . , 155. Here ti is the 20-dimensional vector of co- 
variates, and y, equals 1 or 0 as the patient died or lived. 
Table 7 shows the data for the last 11 patients. Negative 
numbers represent missing values. Variable 1 is the con- 
stant 1, included for convenience. The meaning of the 
19 other predictors, and their coding in Table 7, will not 
be explained here. 

A prediction rule was constructed in 3 steps: 

1. An a = .05 test of the importance of predictor j, 
H ,  : p, = 0 versus H 1: p, f 0, was run separately for 
j = 2, 3, . . . , 20, based on the logistic model 

n(ti) = Probtpatient i dies). 

Among these 19 tests, 13 predictors indicated predic- 
tive power by rejecting Ho:j= 18, 13, 15, 12, 14, 7, 6, 
19, 20, 11, 2, 5, 3. These are listed in order of achieved 
significance level, j = 18 attaining the smallest alpha. 

2. These 13 predictors were tested in a forward 
multiple-logistic-regression program, which added pre- 
dictors one at a time (beginning with the constant) until 
no further single addition achieved significance level 
a = . lo. Five predictors besides the constant survived 
this step, j = 13, 20, 15, 7, 2. 

3. final forward, stepwise multiple-logistic-regres-
sion program on these five predictors, stopping this 
time at level a = .05, retained four predictors besides 
the constant, j = 13, 15, 7, 20. 

At each of the three steps, only those patients having 
no relevant data missing were included in the hypothesis 
tests. At step 2 for example, a patient was included only 
if all 13 variables were available. 

The final prediction rule was based on the estimated 
logistic regression 

where 13, was the maximum likelihood estimate in this 
model. The prediction rule was 

c = log 331122. 
Among the 155 patients, 133 had none of the predic- 

tors 13, 15, 7, 20 missing. When the rule q(t;  x) was 
applied to these 133 patients, it misclassified 21 of them, 
for an apparent error rate EiT = 211133 = ,158. We 
would like to estimate how overoptimistic EE is. 

To answer this question, the simple bootstrap was 
applied as described in Section 9. A typical bootstrap 
sample consisted of x;, XT, . . . , X;,,,randomly drawn 
with replacement from the training set x l ,  x2,  . . . , X 1 5 5  

The bootstrap sample was used to construct the boot- 
strap prediction rule q ( .  , X*), following the same three 
steps used in the construction of q ( .  ,x), (26). This gives 
a bootstrap replication R* for the overoptimism random 
variable R = err -EE,essentially as in (25), but with a 
modification to allow for difficulties caused by missing 
predictor values. 
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Figure 5. Histogram of 500 bootstrap replications of over-
optimism for the hepatitis problem. 

Figure 5 shows the histogram of B = 500 such repli- 
cations. 95 percent of these fall in the range 0 5 R* 5 
.12. This indicates that the unobservable true over-
optimism err - CiT is likely to be positive. The average 
value is 

B 

d B = +  R*b=.045,  
b = l  

suggesting that the expected overoptimism is about f as 
large as the apparent error rate .158. Taken literally, 
this gives the bias-corrected estimated error rate 
.I58 + .045 = .203. There is obviously plenty of room 
for error in this last estimate, given the spread of values 
in Figure 5 ,  but at least we now have some idea of the 
possible bias in err. 

The bootstrap analysis provided more than just an 
estimate of w ( F ) .  For example, the standard deviation 
of the histogram in Figure 5 is ,036. This is a depend- 
able estimate of the true standard deviation of R 

Figure 6. Predictors selected in the last 25 bootstrap replications 
for the hepatitis program. The predictors selected by the actual data 
were 13, 15, 7, 20. 

(see Efron 1982, Ch. VII), which by definition equals 
[E(err -EE - o)2]1'2, the of + w as an esti- 
mate of err. Comparing line 1 with line 4 in Table 6, we 
expect CiT + &, = .203 to have at least this big 
for estimating err. 

Figure 6 illustrates another use of the bootstrap repli- 
cations. The predictions chosen by the three-step selec- 
tion procedure, applied to the bootstrap training set X*, 
are shown for the last 25 of the 500 replications. Among 
all 500 replications, predictor 13 was selected 37 percent 
of the time, predictor 15 selected 48 percent, predictor 
7 selected 35 percent, and predictor 20 selected 59 per-
cent. No other predictor was selected more than 50 
percent of the time. No theory exists for interpreting 
Figure 6, but the results certainly discourage confidence 
in the casual nature of the predictors 13, 15, 7, 20. 

[Received January 1982. Revised May 1982. ] 
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