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Improvements on Cross-Validation: 
The .632+Bootstrap Method 

Bradley EFRONand Robert TIBSHIRANI 

A training set of data has been used to construct a rule for predicting future responses. What is the error rate of this rule? This is an 
important question both for comparing models and for assessing a final selected model. The traditional answer to this question is 
given by cross-validation. The cross-validation estimate of prediction error is nearly unbiased but can be highly variable. Here we 
discuss bootstrap estimates of prediction error, which can be thought of as smoothed versions of cross-validation. We show that a 
particular bootstrap method, the .632+ rule, substantially outperforms cross-validation in a catalog of 24 simulation experiments. 
Besides providing point estimates, we also consider estimating the variability of an error rate estimate. All of the results here are 
nonparametric and apply to any possible prediction rule; however, we study only classification problems with 0-1 loss in detail. Our 
simulations include "smooth" prediction rules like Fisher's linear discriminant function and unsmooth ones like nearest neighbors. 

KEY WORDS: Classification; Cross-validation bootstrap; Prediction rule. 

1. INTRODUCTION 

This article concerns estimating the error rate of a pre- 
diction rule constructed from a training set of data. The 
training set x = ( x l ,2 2 , .  . . ,x,) consists of n observations 
xi  = (ti,yi) ,  with ti the predictor or feature vector and yi 
the response. On the basis of x, the statistician constructs 
a prediction rule r , ( t )  and wishes to estimate the error rate 
of this rule when it is used to predict future responses from 
their predictor vectors. 

Cross-validation, the traditional method of choice for this 
problem, provides a nearly unbiased estimate of the future 
error rate. However, the low bias of cross-validation is of- 
ten paid for by high variability. Here we show that suit- 
ably defined bootstrap procedures can substantially reduce 
the variability of error rate predictions. The gain in effi- 
ciency in our catalog of simulations is roughly equivalent 
to a 60% increase in the size of the training set. The boot- 
strap procedures are nothing more than smoothed versions 
of cross-validation, with some adjustments made to correct 
for bias. 

We are interested mainly in the situation when the re- 
sponse is dichotomous. This is illustrated in Figure 1, where 
the n = 20 observations, x i  = ( t i ,y i ) ,  in the training set x 
each consist of a bivariate feature vector ti and a 0 - 1 
response yi; 12 of the points are labeled 0 and 8 are la- 
belled 1. Two different prediction rules are indicated. Fig- 
ure l a  shows the prediction rule based on Fisher's linear 
discriminant function (LDF), following Efron (1983). The 
rule r , ( t )  will predict y = 0 if t lies to the lower left of the 
LDF boundary and will predict y = 1 if t lies to the upper 
right of the LDF boundary. Figure l b  shows the nearest- 
neighbor (NN) rule, in which future t vectors will have y 
predicted according to the label of the nearest observation 
in the training set. We wish to estimate the error rates of 
the two prediction rules. 
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The data shown in Figure 1 were generated as part of the 
extensive simulation experiments described in Section 4. In 
this case the yi were selected randomly and the ti were 
bivariate normal vectors whose means depended on yi,  

independently for i = 1 , 2 , .  . . ,n = 20. 
Table 1 shows results from the simulations. Cross- 

validation is compared to the bootstrap-based estimator 
632+ described in Section 3. Cross-validation is nearly un- 
biased as an estimator of the true error rate for both rules 
LDF and NN, but the bootstrap-based estimator has a root 
mean squared (RMS) error only 80% as large. These results 
are fairly typical of the 24 simulation experiments reported 
in Section 4. The bootstrap estimator in these experiments 
was run with only 50 bootstrap replications per training set, 
but this turns out to be sufficient for most purposes, as the 
internal variance calculations of Section 2 show. 

The bootstrap has other important advantages besides 
providing more accurate point estimates for prediction er- 
ror. The bootstrap replications also provide a direct assess- 
ment of variability for estimated parameters in the predic- 
tion rule. For example, Efron and Gong (1983) discussed 
the stability of the "significant" predictor variables chosen 
by a complicated stepwise logistic regression program. Sec- 
tion 5 provides another use for the bootstrap replications: 
to estimate the variance of a point estimate of prediction 
error. 

Section 2 begins with a discussion of bootstrap smooth- 
ing, a general approach to reducing the variability of non- 
parametric point estimators. When applied to the predic- 
tion problem, bootstrap smoothing gives a smoothed ver- 
sion of cross-validation with considerably reduced variabil- 
ity but with an upward bias. A bias correction discussed 
in Section 3 results in the .632+ estimates of Table 1. The 
.632+ estimator is shown to substantially outperform ordi- 
nary cross-validation in the catalog of 24 sampling experi- 
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Figure 1. A Training Set Consisting of n = PO Observations, 1 2  
Labelled 0 and 8 Labelled 1. (a) The linear discriminant function predicts 
0 to lower left of the solid line and 1 to upper right; (b) the nearest- 
neighbor rule predicts 1 in the three indicated islands and 0 elsewhere. 

ments described in Section 4. Section 5 shows how the same 
bootstrap replications that provide a point estimate of pre- 
diction error can also provide an assessment of variability 
for that estimate. Section 6 presents the distance argument 
underlying the .632+ rule, along with other bias-correction 
techniques. 

All of the results here are nonparametric and apply to any 
possible prediction rule; however, we study only classifica- 
tion problems with 0-1 loss in detail. Regression problems 
may exhibit qualitatively different behavior, and the statis- 
tical approach may also differ. "In-sample" prediction error 
is often the focus in regression, especially for model selec- 
tion. In contrast, the error that we study here might be called 
"extra-sample" error. Efron (1986) studied estimates of the 
in-sample prediction error problem, including generalized 
cross-validation (Wahba 1980) and the Cp statistic of Mal- 
lows (1973). The note at the end of Section 2 clarifies the 
distinction between extra-sample and in-sample prediction 
errors. 

Considerable work has been done in the literature on 
cross-validation and the bootstrap for error rate estima- 
tion. (A good general discussion can be found in McLach- 
lan 1992; key references for cross-validation are Allen 
1974 and Stone 1974, 1977.) Efron (1983) proposed a 
number of bootstrap estimates of prediction error, includ- 
ing the optimism and .632 estimates. The use of cross-
validation and the bootstrap for model selection was stud- 
ied by Breiman (1992), Breiman and Spector (1992), Shao 
(1993), and Zhang (1993). Breiman and Spector demon- 
strated that leave-one-out cross-validation has high variance 
if the prediction rule is unstable, because the leave-one-out 
training sets are too similar to the full dataset. Fivefold 
or tenfold cross-validation displayed lower variance in this 
case. A study of cross-validation and bootstrap methods for 
tree-structured models was carried out by Crawford (1989). 
Substantial work has also been done on the prediction er- 
ror problem in the machine learning and pattern recognition 
fields; see, for example, the simulation studies of Chernick, 
Murthy, and Nealy (1985, 1986) and Jain, Dubes, and Chen 
(1987). Kohavi (1995) performed a particularly interesting 
study that renewed our interest in this problem. 

2. CROSS-VALIDATION AND THE 
LEAVE-ONE-OUT BOOTSTRAP 

This section discusses a bootstrap smoothing of cross-
validation that reduces the variability of error-rate esti- 
mates. Here the notation Q[y,  r] indicates the discrepancy 
between a predicted value r and the actual response y. 
We are particularly interested in the dichotomous situation 
where both y and r are either 0 or 1, with 

We also use the shorter notation 

to indicate the discrepancy between the predicted value and 
response for a test point xo = ( to,yo) when using the rule 
r, based on training set x. 

Suppose that the observations xi = ( t i ,yi) in the training 
set are a random sample from some distribution F,  

iid 
X l , X 2 , .  . . , x ,  F, (4) 

and that xo = (to,yo) is another independent draw from F, 
called a test point. The true error rate of the rule rx is 

Err = = X )  EOF&[YO,Err(x,F) EOFQ(XO,= rX( to ) ] ,(5) 

with the notation EOFindicating that only xo = ( to,yo) is 
random in ( 3 ,  with x and r, being fixed. Thus Err is the 
conditional error rate, conditional on the training set x.  

We compare error rate estimators in terms of their ability 
to predict Err. Section 4 briefly discusses estimating instead 
the expected true errol; 

The results in this case are somewhat more favorable to 
the bootstrap estimator. Note, however, that although the 
conditional error rate is often what we would like to ob- 
tain, none of the methods correlates very well with it on a 
sample-by-sample basis (see Zhang 1995). 

The apparent error rate (or resubstitution rate) is 

- 1 
err = ~ r r ( x ,  = = C Q [ y i ; r x ( t ) ] ,F) EOPQ(xo,x)  - (7) 

i=1 

with F indicating the 'empirical distribution that puts proba- 
-

bility l / n  on each observation X I ,  xz, . . . x,; err tends to be 

Table 1. Error Rate Estimation for Situation ( 1 )  

LDF NN 

ExP RMS EXP RMS 

True .357 ,418 

NOTE: CV1 is the cross-validation estimate based on omitting one observation at a time from 
the training set; 632+ is the bootstrap-based estimator described in Section 3. The table shows 
the expectation and RMS error of the two estimates for both the LOF and NN prediction rules. 
in both cases, RMS(.632+)IRMS(CVI)is about 80%. 
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biased downward as an estimate of Err because the training 
set x has been used twice, both to construct the rule and to 
test it. 

Cross-validation (Geisser 1975; Stone 1974) avoids this 
problem by removing the data point to be predicted from 
the training set. The ordinary cross-validation estimate of 
prediction error is 

where x ( ~ )is the training set with the ith observation re- 
moved. l%(cvl) is leave-one-out cross-validation; the k-fold 
version Gr('"" partitions the training set into Ic parts, pre- 
dicting in turn the observations in each part from the train- 
ing sample formed from all of the remaining parts. 

The statistic Gr(""l) is a discontinuous function of the 
training set x when Q[y, r ] itself is discontinuous as in (2). 
Bootstrap smoothing is a way to reduce the variance of such 
functions by averaging. Suppose that Z(x)  is an unbiased 
estimate of a parameter of interest, say 

By definition, the nonparametric maximum likelihood esti- 
mate (MLE) of the same parameter ( is 

( = ( (P)  = Ep{Z(x*)). (10) 

Here x* is a random sample from k ,  

x;,x;, . . . , x n  * iid P; (11) 

that is, a bootstrap sample. The bootstrap expectation in 
(10) smooths out discontinuities in Z(x), usually reducing 
its variability. However, t may now be biased as an estimate 
of C.Breiman (1994) introduced a very similar idea under 
the sobriquet "bagging." 

Now consider applying bootstrap smoothing to Zi(x) = 
Q ( x ~ , x ( ~ ) ) ,with xi fixed. The nonparametric MLE of 
EFZi(x) is ti = Efi(t){Q(xi,xii))), where xii) is a boot- 
strap sample from the empirical distribution on x ( ~ ) ,  

It might be argued that the bootstrap samples xTi, should 
be of size n - 1 instead of n, but there is no advantage to 
this. In what follows we take bootstrap samples from F(i) 
to be of size n and indicate them by x* rather than xTi,, SO 

Notice that an x* sample drawn from F ( ~ )  never contains 
the point xi. 

Applying (11) and (12) to each case i in turn leads to the 
leave-one-out bootstrap, 
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a smoothed version of I%&'"'). This estimate predicts the 
error at point i only from bootstrap samples that do not 
contain the point i. 

The actual calculation of G r ( l )  is a straightforward 
bootstrap exercise. Ordinary bootstrap samples x* = 
(xT, x;, . . . ,x;) are generated as in (1 I),  so x* is a random 
draw of size n, with replacement, from {xl, 2 2 ,  . . . ,x,}. 
A total of B such samples are independently drawn, say 
x*l ,x * ~ ,. . . ,x * ~ ,with B = 50 in our simulations, as dis- 
cussed later. Let N! be the number of times that xi is in- 
cluded in the bth bootstrap sample and define 

Also define 

Then 

This definition agrees with (14) because a bootstrap sam- 
ple that has I! = 1 is the same as a bootstrap sample 
from F ( ~ )  (see Efron 1992). A slightly different definition 
was given by Efron (1983) (where l%l) is do) ) ,  namely 
CiCbI:Qg/ XiCbI:, but the two definitions agree as 
B -+ cc and produced nearly the same results in our simu- 
lations. 

There is another way to view cross-validation and Gr ( l ) :  
as estimates of the average error p (F ) .  Direct applica- 
tion of the bootstrap gives the plug-in estimate p ( k )  = 
E+EopQ(xo,x) .  This estimate, discussed in Section 6, 
tends to be biased downward. The reason is that F is being 
used twice: as the population, say Fo, from which bootstrap 
training sets x* are drawn, and as the population Fl from 
which test points Xo are drawn. Let us write p ( F )  explicitly 
as a function of both Fl and Fo: 

where, for convenience, we have switched the order of ex- 
pectation in the second expression. We assume that in the 
unknown true state of affairs, Fl = Fo= F. Plugging in F 
for the test distribution Fogives 

The remaining task is to estimate the training sample distri- 
bution Fl. Ideally, we would take Fl = F. Notice that for 
continuous populations F ,  the probability of the test point 
Xo = xi appearing in a training sample drawn from FIA=F 
is 0. The plug-in estimate p ( ~ )  = P )  F forp ( ~ ,  uses 
Fl.With this choice, the probability that Xo = xi appears 
in the training sample is 1- (1- l l n ) "  FG ,632. Hence p($) 



551 Efron and Tibshirani: The .632+Bootstrap Method 

Figure 2. Ratio of Standard Deviations and Expectations? the 

Leave-One-Out Bootstrap % ( I )  Compared to Cross-Validation ~ r r ( ~ ' ' )  
for the 24 sampling experiments described in Section 4, plotted versus 
expected true error k, (6). The median SD ratio for the 24 experiments 
was .79; the median expectation ratio was 1.07. 

uses training samples that are too close to the test points, 
leading to potential underestimation of the error rate. Cross- 
validation uses the leave-one-out training samples to ensure 
that the training samples do not contain the test point; that 
is, cross-validation estimates EFlQ [K,r, (Ti)] by 

On the other hand, using the estimate F' = @(,) in each term 
Ep1Q[Y,, rx (T,)] gives the leave-one-out bootstrap esti-
mate S r ( ' ) .  

The efficacy of bootstrap smoothing is shown in Figure 
2, where the solid line plots the standard deviation ratio 
for the 24 sampling experiments of Section 4. The horizon- 
tal axis is the expected true error p for each experiment, 
(6). We see that I%-(') always has smaller standard devia- 
tion than I%r('"'), with the median ratio over the 24 exper- 
iments being .79. Going from Er('"') to I%(') is roughly 
equivalent to multiplying the size n of the training set by 
1/.7g2 = 1.60. The improvement of the bootstrap estimators 
over cross-validation is due mainly to the effect of smooth- 
ing. Cross-validation and the bootstrap are closely related, 
as Efron (1983, Sec. 2) has shown. In smoother prediction 
problems-for example, when y and r are continuous and 
Q[y, r] = (y - r)2-we would expect to see little difference 
between I%r(""') and I%('). 

The dotted curve in Figure 2 is the expectation ratio 
~{ I%r (~ ) ) /~{ l%r (~" ' ) ) .We see that I%$') is biased upward 
relative to the nearly unbiased estimate I%('"'). This is not 
surprising. Let p, indicate the expected true error (6) when 
x has sample size n. Ordinary cross-validation produces an 
unbiased estimate of pnP1, whereas k-fold cross-validation 
estimates p,-k. Because smaller training sets produce big- 

ger prediction errors, larger k gives bigger upward bias 
pnPk - p,. The amount of bias depends on the slope of 
the error curve p, at sample size n. Bootstrap samples are 
typically supported on about .632n of the original sample 

A 

points, so we might expect ~ r r ( ' )  to be estimating p.632n. 
The more precise calculations of Efron (1983, Sec. 8) show 
that I%r(') closely agrees with half-sample cross-validation 
(where x is repeatedly split into equal-sized training and test 
sets), and that the expectation of I%-(') is p,,p to second 
o~der.The next section concerns a bias-corrected version of 
~ r r ( ' )  called the .632+ rule, that reduces the upward bias. 

The choice of B = 50 bootstrap replications in our sim- 
ulation experiments was based on an assessment of inter-
nal error, the Monte Carlo error due to using B instead 
of infinity replications (Efron 1992). The same bootstrap 
replications that give I%(') also give a jackknife estimate 

B
of its internal error. Let = I:Q:, = Cb= '  qg ,  and 
I: = c:=,I:. Then the estimate of I%(') with the bth 
bootstrap~replication removed is 

A 1 " 4i
+ 
- 4i

b 

~rr;:; = ,xSicb),where E ~ ( ~ )= T-- (21)Ii - ~b ' i=l 

The jackknife estimate of internal standard deviation for 
I%(') is then 

. . 
A 

In our simulations SDint was typically about .02 for 
B = 50. The external standard deviation of I%r(') (i.e., the 
standard deviation due to randomness of x)  was typically 
. lo. (Sec. 5 discusses the estimation of external error, also 
using the same set of bootstrap replications.) This gives cor- 
rected external standard deviation [.lo2 - . 0 2 ~ ] ' / ~= .098, 
indicating that B = 50 is sufficient here. 

Note that definition (5) of prediction error, Err = 

EOFQ[yo,r, (xO)], might be called extra-sample error, be-
cause the test point (to,yo) is chosen randomly from F 
without reference to the training sample x. Efron (1986) 
investigated a more restrictive definition of prediction er- 
ror. For dichotomous problems, let ~ ( t )  = PrF{y = lit) 
and T, = r(ti) .The in-sample error of a rule r, is defined 
to be 

where the notation Eon% -- binomialindicates that only yoi 
(1, .iri) is random, with x and rx(ti)  being fixed. This situa- 
tion is similar to a standard regression problem in that the 
predictors ti are treated as fixed at their observed values, 
rather than as random. In-sample error prediction is math- 
ematically simpler than the extra-sample case and leads to 
quite different solutions for the error rate prediction prob- 
lem (see Efron 1986). 
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3. THE .632+ ESTIMATOR 

Efron (1983) proposed the .632 estimatol; 
A 

= .368 . err + .632 . I%r(l), (24) 

designed to correct the upward bias in &(I) by averaging it 
A 

with the downwardly biased estimate The coeffi- 
cients .368 = e-' and 6 3 2  were suggested by an argument 
based on the fact that bootstrap samples are supported on 
approximately .632n of the original data points. In Efron's 
article c r ( . 632 )  performed better than all competitors, but 
the simulation studies did not include highly bverfit rules 
like nearest-neighbors, where err = 0. Such statistics make 
gr( .632) itself downwardly biased. For example, if y equals 
0 or 1 with probability 1/2, independently of the (useless) 
predictor vector t , then Err = .50 for any prediction rule, but 
the expected value of Zr(.632) for the nearest-neighbor rule 
is .632. .5 = .316. Both I%-(') and Gr('"l) have the correct 
expectation .50 in this case. Breiman, Friedman, Olshen, 
and Stone (1984) suggested this example. 

This section proposes a new estimator l%r(.632+), de- 
signed to be a less-biased compromise between err and 
A 

Err('). The .632+ rule puts greater weight on I%(') in sit- 
uations where the amount of overfitting, as measured by 
G r ( l )  - err, is large. To correctly scale the amount of 
overfitting, we first need to define the no-information error 
rate, y,that would apply if t and y were independent, as in 
the example of the previous paragraph. 

Let endbe the probability distribution on points x = 
( t ,  y) having the same t and y marginals as F, but with y 
independent of t. As in (5), define 

the expected prediction error for rule r,  given a test point 
xo = ( to,  yo) from endAn estimate of y is obtained by 

Figure 3. Relative Bias of gr(.632+) for the 24 Experiments (Solid 

Curve), Compared to g r ( ' )  (Top Curve) and gr(.632) (bottom curve). 
Plotted values are (mean - F),p, Dashes indicate the seven no-
information experiments, where Err = .50. 

permuting the responses yi and predictors tj, 

For the dichotomous classification problem (2), let 
be the observed proportion of responses y, equalling 1, 
and let Gl be the observed proportion of predictions r,  ( t j )  
equalling 1, ~h~~ 

9 =131(1 - G I )  + (1 -131)Gl. (27) 

With a rule like nearest-neighbors for which Gl = ljl, the 
value of is 2131 (1-131). The multicategory generalization 
of (27) is = C, f l l ( l  - & ) .  

The relative overfitting rate is defined as 

a quantity that ranges from 0 with no overfitting (I%(') = 
-
err) to 1 with overfitting equal to the no-information value 
- EiT. The "distance" argument of Section 6 suggests a 

less-biased version of (24) where the weights 	on EiT and 
depend on R, 

The weight w ranges from .632 if R = 0 to 1 if R = 1, 
so Gr(.632+) ranges from l%r(.632) to Gr ( l ) .  We can also 
express (29) as 

~ ~ ~ ( . 6 3 2 + )=E';r(632) + ( g r ( l )- err) ,368 . .632 . R , (30)
1 - . 3 6 8 ~  

emphasizing that exceeds l%(.632)by an amount 
depending on R. 

It may happen that 9 5 err or err < 9 5 Grr( l ) ,  
in which case R can fall outside of [0, 11. To-account for 
this possibility, we modify the definitions of Err(') and R: 

A 

Err(')' 	= rnin(Gr(l),T) 

and 

= { (E?r(') - ( 9 - eir) if 9 > (31)0 otherwise. 

The .632+ rule used in the simulation experiments of Sec- 
tion 4 was 

Figure 3 shows that g(.632+) success-was a reasonably 
ful compromise between the upwardly biased G r ( l )  and 

A 

the downwardly biased ~rr(.""").  The plotted values are the 
relative bias in each of the 24 experiments, measured by 
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Table 2. The 24 Sampling Experiments Described in Text 

Experiment n P Class I-L Rule F 

.24 LDF 

.50 LDF 

.34 LDF 

.50 LDF 

Normals * (1, 0, 0, 0, 0) 
Normal5 31 (0, 0, 0, 0, 0) 
Normal? 31 (.5, 0) 
Normal? * (0, 0) 

Normal5 & (1, 0, 0, 0, 0) 
Normals 4~ (0, 0, 0, 0, 0) 
Normal2 & (.5, 0) 
Normal? 4~ (0, 0) 

Normals 4~ (1, 0, 0, 0, 0) 
Normal5 31 (0, 0, 0, 0, 0) 
Normal? * (.5, 0) 
Normal? * (0, 0) 

.15 LDF 

.18 NN 

.17 TREES 

.05 QDF 

.18 LDF 

.50 LDF 

.60 LDF 

N~o(0,I )  versus 

N2 * (1, 0) 
N i ~ ( 0 ,1) 
Normal? * (5 ,  0) 

.26 LDF 

.07 NN 

.07 LDF 

.04 NN 

.47 3NN 

Vehicle 
data 

Breast cancer 
data 

Soybean data 

* ~ x ~ e r ~ m e n t s#3 and #7 appear in Table 1 and Figure 1 

NOTE: Results for experiments #1 -4 in Table 3; # 5-8 In Table 4; # 4 - 2  in Table 5; #13-16 in Table 6; #17-19 in Table 7; #20-24 
in Table 8. 

(mean - p)/p.The dashes in Figure 3 indicate the seven 
"no-information" experiments, where y was independent of 
t and Err = .50.(The p values for these seven experiments 
have been spread out for clarity.) In these cases the defini-
tions in (31) effectively truncate s r ( . 632+)at or near .50. 
This almost always gives a more accurate estimate of Err 
on a case-by-case basis but yields a downward bias over-
all. To put things another way, we could also improve the 
accuracy of I%r('"') by truncating it at 9, but then I%r('"') 
would no longer be nearly unbiased. 

Better bias adjustments of I%r(l) are available, as dis-
cussed in Section 6. However, in reducing the bias of I?&('), 
they lose about half of the reduction in variance enjoyed 

iments each comprised 200 Monte Carlo simulations (i.e., 
200 independent choices of the training set x) and the last 
12 experiments each comprised 50 simulations. The boot-
strap samples were balanced in the sense that the indices 
of the bootstrap data points were obtained by randomly 
permuting a string of B copies of the integers 1 to n (see 
Davison, Hinkley, and Schechtman (1986), but the balanc-
ing had little effect on our results. 

This simulation study might seem excessive, but it must 
be large to investigate the effects of different classifiers, 
training set sizes, signal-to-noise ratio, number of classes, 
and number of observations. Here are some explanatory 
comments concerning the 24 experiments: 

. . 

by gr(r(.632+)and so offer less dramatic improvements over 
Eyr('"'). 

Note that requires no additional applications 
of the prediction rule after computation of I%('). Because 
50 bootstrap samples are often sufficient, both and 
l%r(.632+)can be less costly than I%('"') if n is large. 

In experiments #1-18, the response yi equals 0 or 1 
with probability .50, and the conditional distribution 
of tilyiis multivariate normal. For example, exper-
iment #3 is as described in (I), tilyi- N2 ((yi-
.5,0),I),but #4 has the no-information form ti1 yi -
N2 ((0,0),I),so that yi is independent of ti and ev-
ery prediction rule has Err = .50.In experiment #19 
the response yi equals 1, 2, 3, or 4 with probability 
.25,and ti/yiN Ni(Ei,I) with 5 1  = (-.5,-.5),E2 = 

(-.5,.5),t3= (.5- .5),or t4 = (.5,.5). 
Experiments #13-16 are taken from Friedman (1994). 
There are two classes in 10 dimensions and 100 train-
ing observations; tors in class 1 are independent stan-
dard normal, and those in class 2 are independent 
normal with mean &/2 and variance llj, for j = 

1,2,. . . ,lo.All predictors are useful here, but the ones 
with higher index j are more so. 

4. SAMPLING EXPERIMENTS 

Table 2 describes the 24 sampling experiments performed 
for this study. Each experiment involved the choice of a 
training set size n, a probability distribution F giving x 
as in (4), a dimension p for the prediction vectors t,and 
a prediction rule r,. Twenty-one of the experiments were 
dichotomous, and three involved four or more classes; 0-1 
error (2) was used in all 24 experiments. The first 12 exper-
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Table 3. Results for the LDF Classifier 

1: (14, 5) 2: (14, 5, ind) 3: (20, 2) 4: (20, 2, ind) 

EXP SD RMS EXP SD RMS EXP SD RMS ExP SD RMS 

Err 
Errhatl 
632 
632+ 

cvl  
cv5f 
cf5fr 

bootop 
bc1 
bc2 
Errhat2 
errbar 

R 

Experiments #20-24 refer to real datasets taken from 
the machine learning archive at UC Irvine. The dimen-
sions of these datasets are (846, 19),(683, lo), and (562, 
18) (after removing incomplete observations) with four, 
two, and 15 classes. We followed Kohavi (1995) and 
chose a random subset of the data to act as the train-
ing set, choosing the training set size n so that p, still 
sloped downward. The idea is that if n is so large that 
the error curve is flat, then the error rate estimation 
problem is too easy, because the potential biases aris-
ing from changing the training set size will be small. 
We chose training set sizes 100, 36, and 80. The soy-
bean data actually have 35 categorical predictors, many 
with more than two possible values. To keep the com-
putations manageable, we used only the 15 binary pre-
dictors. 
The prediction rules are LDF, Fisher's linear discrim-
inant analysis; 1-NN and 3-NN, one-nearest-neighbor 
and three-nearest-neighbor classifiers; TREES, a clas-
sification tree using the tree function in S-PLUS; and 
QDF, quadratic discriminant function (i.e., estimating 
a separate mean and covariance in each class and using 
the Gaussian log-likelihood for classification). 

Tables 3-8 report the performance of several error rate 
estimators in the 24 sampling experiments. In each table the 
Exp and SD columns give means and standard deviations, 
and RMS is the square root of the average squared error 
for estimating Err(x,F), (5). The bootstrap estimators all 
used B = 50 bootstrap replications per simulation. 

The error rate estimators include 1, 
Gr(') ,  and four different cross-validation rules: cvl ,  cv5f, 
and cvlOf are leave-one-out and fivefold and tenfold cross-
validations, whereas cv5fr is fivefold cross-validation aver-
aged over 10 random choices of the partition (making the 
total number of recomputations 50, the same as for the boot-
strap rules). Also shown are other bias-corrected versions 
of called bootop, bcl,  bc2, and see Section 6. 
The tables also give statistical summaries for Err, Sf,and 
k';see (31). 

The results vary considerably from experiment to ex-
periment, but in terms of RMS error the .632+ rule 
is an overall winner. In Figure 4 the solid line graphs 
R M S { ~ ~ ( ~ ~ ~ ' + ) ) / R M S { ~ ( ~ ~ ~ ) )versus the true expected 
error p, (6). The median value of the ratio for the 24 ex-
periments was .78. The dotted line is the rms ratio for es-
timating, p rather than Err, a measure that is slightly more 

Table 4. Results for the 1-NN Classifier 

5: (14, 5) 6: (14, 5, ind) 7: (20, 2) 8: (20, 2, ind) 

ExP SD RMS EXP SD RMS EXP SD RMS EXP SD RMS 

Err ,293 ,056 0 ,500 ,011 0 ,418 ,047 0 ,500 ,011 0 
Err1 ,303 .134 ,122 ,491 ,132 .132 ,424 . I05 ,095 ,507 ,097 ,097 

.I92 ,085 ,129 ,310 ,083 ,207 ,268 ,067 ,162 ,320 ,062 ,190 
~ ~ ~ . 6 3 2 +  ,257 .I27 ,120 ,413 ,094 .I28 ,380 .101 ,099 ,439 ,068 ,092 

cvl  ,287 ,161 ,151 ,496 ,169 ,168 ,419 .133 ,123 ,513 ,136 ,136 
cv5f ,297 . I67 . I55 ,490 ,162 ,163 ,423 .I44 ,134 ,508 ,139 ,139 
cv5fr ,297 .144 .133 ,496 ,138 ,138 ,420 . I22 ,110 ,509 .117 .117 

bootop ,107 ,047 ,194 ,172 ,046 ,331 .I50 ,037 ,271 .180 ,035 ,322 
bc1 ,307 ,139 ,128 ,490 .I43 ,143 ,423 .I09 . I00 ,506 ,102 .I01 
bc2 ,313 ,158 ,149 ,486 .I79 ,179 ,421 ,131 .I24 ,503 ,126 . I26 
Err2- ,197 ,088 ,126 ,319 ,087 ,201 ,274 ,069 . I57 ,327 ,063 .I85 
Err 0 0 ,298 0 0 ,500 0 0 ,420 0 0 ,500 

R ,641 ,252 ,922 .134 ,853 . I69 ,949 ,099 
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Table 5. Results for the 3-NN Classifier 

9: (14, 5) 10: (14, 5, ind) 1 1: (20, 2) 12: (20, 2 ind) 

ExP SD RMS ExP SD RMS ExP SD RMS ExP SD RMS 

Err 
Err 
Err.632 
~,.~.632+ 

cv 1 
cv5f 
cv5fr 

bootop 
bc l  
bc2 
Err2 
-
Err 

R 

favorable to the .632+ rule, the median ratio now being .72. We discuss estimating the usual external standard devia- 
Simulation results must be viewed with caution, es- tion of G r ( l ) ;  that is, the variability in caused by the 

pecially in an area as broadly defined as the prediction random choice of x. We also discuss the internal variability, 
problem. The smoothing argument of Section 2 strongly due to the random choice of the B bootstrap samples (as 
suggests that it should be possible to improve on cross- at the end of Sec. 2), because it affects the assessment of 
validation. With this in mind, Figure 4 demonstrates that external variability. Finally, we discuss estimating the stan- -

has made full use of the decreased standard de- -- ( 2 )  
A 

dard deviation of the drfference j$r(~)(rule1) - E~~ (rule
viation seen in Figure 2. However, the decrease in RMS is 2), where rule 1and rule 2 are two different prediction rules 
less dependable than the decrease in SD, and part of the applied to the same set of data. 

RMS decrease is due to the truncation at in definitions The delta method estimate of standard er- 

(31) and (32). he truncation effect is particularly notice- ror applies to symmetrically defined statistics, those that 
able in the seven no-information experiments. are invariant under permutation of the points xi in x = 

(z1,x2,. In this case we can write the statistic as 5. ESTIMATING THE STANDARD ERROR OF . . ,x,). 

~h~ same set of bootstrap replications that gives a point a function s ( F )  of the empirical distribution. The form 

estimate of prediction error can also be used to assess the of S can depend on n,but S ( F )must be smoothly defined 
variability of that estimate. This can be useful for infer- in the following sense: Let &,i be a version of F that puts 
ence purposes, model selection, or comparing two mod- extra probability on xi,  
els. The method presented here, called "delta-method-after- 
bootstrap" by Efron (1992), works well for estimators like 

i : P 
+ E on xi 

(33)
G r ( l )  that are smooth functions of x. It is more difficult to on xj for j # i. 
obtain standard error estimates for cross-validation or the 
.632+ estimator, and we do not study those estimators in Then we need the derivatives d ~ ( & , ~ ) / d e  =to exist at E 0. 
this section. Defining 

Table 6. Results for the (100, 10) Problem 

13: LDF 14: 1 nearest neighbor 15: trees 16: QDA 

ExP SD RMS Exp SD RMS ExP SD RMS ExP SD RMS 

Err 

~ r r '  

~ r r . ~ ~ "  

~ ~ ~ . 6 3 2 i  


cv5f 

cv l0  


bootop 

bc 1 

bc2 

-

Err 


R. 

cv-1 
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Table 7. LDF for the (20, 2 +), (14, 12, ind), and (20, 2, 4) Problems 

17: (20, 2, +) 18: (1 4, 12, ind) 

ExP SD RMS EXP SD RMS EXP 

Err 
Errhatl 
632 
632+ 

cv-1 
cv5f 
cv5fr 

bootop 
bc l  
bc2 
errbar 

R 

In this notation, 
(34) 

-.-. 1 

19: (20, 2, 4) 

SD RMS 

E r r  = - E , where Ei = 
i=l b=l

the nonparametric delta method standard error estimate for 
S(F) is 

We also define 6'i to be the bootstrap covariance between 
N! and q:, 

s d e l  (8)  = [$D:] 
1/2 

(35) 
$ = 

1 CB 
(N: - 1)qb, (38) 

b=l 

(see Efron 1992, Set. 5 )  The vector f)= ( ~ 1 , ~ 2 ,. . . , ~ n )The following lemma was proven by Efron and Tibshirani 
is l / n  times the empirical injluencefunction of S. 

If the prediction rule r,(t) is a symmetric function of the 
A 

points xi in x, as it usually is, then Err(') is also symmetri- 
cally defined. The expectation in (13) guarantees that I%-(') 
will be smoothly defined in x,  so we can apply formulas 
(34)-(35). 

We first consider the ideal case where I?&') is based 
on all B = nn possible bootstrap samples x* = 
(xil,X i z ,  . . . ,xi,), each ij E {1,2, . . . ,n). Following the 
notation in (14)-(16), let 

1 
q,b= I:.Q! and (36)q b =  -xqt.

i=1 

(1995). 

Lemma. The derivative (34) for S(F)= is 

+ en6'i, (39) 

en = (1 - l /n)-n. 
A naive estimate of standard error for I%&')would be 

[ x i ( E i  - ~ r r ( l ) ) ~ / n ~ ] ' / ~ ,based on the false assumption 
that the Ei are independent. This amounts to taking Di = 

( E ~-Gr( ' )) /n in (35). The actual influences (39) usually 
result in a larger standard error than the naive estimates. 

Table 8. Results for Real Data Examples 

20: veh/LDF 21: veh/l-NN 22: breasVlda 23: breasVl -NN 

EXP SD RMS EXP SD RMS EXP SD RMS EXP SD RMS 

Err 
Errhatl 
632 
632+ 

cv-1 
cv5f 
cv l0  

bootop 
errbar 

R 
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Figure 4. The R M S { % ( . ~ ~ * + J } / R M S { ~ ~ ( ~ ~ ~ ) ) / R M SRatio From Ta- 
bles 3-8, Plotted Versus Expected True Error p (Solid line) and the RMS 
Ratio for Estimating p Instead of Err (Dotted line). Dashes indicate the 
seven no-information experiments. The vertical axis is plotted logarith- 
mically 

In practice, we have only B bootstrap samples, with B 
being much smaller than nn. In that case, we can set 

where E~ and I%(') are as given in (37), and Ni = 

~f!! ,N:/B. (N, = 1for a balanced set of bootstrap sam- 
ples.) The bootstrap expectation of I: equals e;', so (40) 
goes to (39) as we approach the ideal case B = nn. 

Finally, we can use the jackknife to assess the internal 
error of the Di estimates, namely the Monte Carlo error 
that comes from using only a limited number of bootstrap 
replications. Let D ~ ( ~ )indicate the value of Di calculated 
from the B-1 bootstrap samples not including the bth sam- 
ple. Simple computational formulas for D ~ ( ~ )are available 
along the lines of (17). The internal standard error of ~i is 
given by the jackknife formula 

D ~ ( . )  = xb with the total internal error D ~ ( ~ ) / B ,  

This leads to an adjusted standard error estimate for Er ( ' ) ,  

These formulas were applied to a single realization of ex- 
periment #3, having n = 20 points as in Table 2. B = 1,000 
bootstrap replications were generated, and the standard er- 
ror formulas (25), (32), and (33) were calculated from the 
first 50, the first 100, and so on. The results appear in Ta- 
ble 9. Using all B = 1,000 replications gave S^Edel = ,100, 

A 

nearly the same as SEadj= ,097. This might be compared to 
the actual standard deviation .I10 for s(')in experiment 
#3, though of course we expect any data-based standard 
error estimate to vary from sample to sample. 

The right side of Table 9 shows and s a d j  for suc- 
cessive groups of 100 bootstrap replications. The values of 
SEdelare remarkably stable but biased upward from the an- 
swer based on all 1,000 replications; the bias-adjusted val- 
ues S^Eadj are less biased but about twice as variable from 

A 	 A 

group to group. In this example both SEdeland SEadjgave 
useful results even for B as small as 100. 

The delta method cannot be directly applied to find the 
standard error of l%r(r(."2f), because the .632+ rule involves 
-
err, an unsmooth fxnction of x. A reasonable estimate of 
standard error for ~ r r ( . ' ~ ~ + )  is obtained by multiplying (35) 
or (43) by gr(." '+)/gr( ') .  This is reasonable, because the 
coefficient of variation for the two estimators was nearly 
the same in our experiments. 

Finally, suppose that we apply two different prediction 
rules, r: and r;, to the same training set and wish to assess 
the significance of the difference B= l%r(')' - l%r(')" 
between the error rate estimates. For example, r: and r;  
could be LDF and NN, as in Figure 1. The previous theory 
goes through if we change the definition of QS in (36) to 

Then the delta-method estimate of standard error for D% 
is ( x i  D ? ) I / ~ ,  where 

Here Diffi = zbq,b/ zbI:, q,b = I:Q:, and everything else 
is as defined in (38) and (39). 

Table 9. B 	 = 1,000 Bootstrap Replications From a Single 
Realization of Experiment #3, Table 2 

A A A A A A 

B S E ~ ~ ISEint SEacij B S E ~ ~ I  SEint SEacij 

1:00 ,131 ,063 ,115 
1:50 ,187 ,095 ,161 101:200 ,122 ,077 ,094 

201:300 ,128 ,068 ,108 
1:lOO ,131 ,063 ,115 301:400 ,118 ,068 ,097 

401:500 ,134 ,076 ,110 
1:200 ,119 ,049 ,109 501:600 ,116 ,085 ,079 

601:700 ,126 ,060 ,111 
1:400 .I10 ,034 ,105 701:800 ,108 ,076 ,077 

801:900 ,109 ,084 ,068 
1:lOOO ,100 ,023 ,097 901:lOOO ,116 ,082 ,082 

Mean ,121 ,074 ,0941 
(Std.dev.) (.009) (.009) (.0168) 

NOTE: Standard error estimates (25),(32), and (33) were based on portions of the 1,000 
replications. 
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Figure 5. Two Gaussian Classes in Two Dimensions, From the (20, 
2) Problem. The circles represent neighborhoods of probability content 
A = .05 around each training point. The dotted line represents the LDF 
decision boundary 

6. DISTANCE AND BIAS CORRECTIONS 

One way to understand the biases of the various error rate 
estimators is in terms of the distance of test points from the 
training set: EE, (7), is the error rate for test points that are 
zero distance away from the training set x ,  whereas the 
true value Err, (5), is the error rate for a new test point 
xo that may lie some distance away from x .  Because we 
expect the error rate of a rule r,(to) to increase with dis- 
tance from x , EFf underestimates Err. Cross-validation has 
the test points nearly the right distance away from the train- 
ing set and so is nearly unbiased. The leave-one-out boot- 
strap Gr ( l ) ,  (14), has zo too far away from the bootstrap 
training sets x*, because these are supported on only about 
.632n of the points in x ,  producing an upward bias. 

A quantitative version of the distance argument leads to 
the .632+ rule (29). This section presents the argument, 
which is really quite rough, and then goes on to discuss 
other more careful bias-correction methods. However, these 
"better" methods did not produce better estimators in our 
experiments, with the reduced bias paid for by too great an 
increase in variance. 

Efron (1983) used distance methods to motivate 
(24). Here is a brief review of the arguments in that article, 
which lead up to the motivation for Given a sys- 
tem of neighborhoods around points z = ( t ,y), let S ( x ,  A )  
indicate the neighborhood of x having probability content 
A ,  

Pr{Xo E S ( z ,  A ) }  = A .  (46) 

(In this section capital letters indicate random quantities 
distributed according to F [e.g.,X o  in (46)], and lower-case 
x values are considered fixed.) As A -+ 0, we assume that 
the neighborhood S ( x ,  A )  shrinks toward the point z .  The 
distance of test point xo from a training set x is defined by 
its distance from the nearest point in x ,  

Journal of the American Statistical Association, June 1997 

Figure 5 shows neighborhoods of probability content 
A = .05 for a realization from the (20, 2) problem. Here 
we have chosen S ( z ,  A )  to be circles in the planes y = 0 
and y = 1.That is, if xo = ( to,yo),then S ( x o ,  A )  = { ( t ,y) 
: y = yo and / /  t - to/ /  < r } , where r is chosen so that (46) 
holds. Notice how the neighborhoods grow smaller near 
the decision boundary; this occurs because the probability 
in (46) refers not to the distribution of t but rather to the 
joint distribution of t and y. 

Let 

the expected prediction error for test points distance A from 
the training set. The true expected error (6) is given by 

where g ( A )  is the density of 6 ( X o ,X). Under reasonable 
conditions, g ( A ) approaches the exponential density 

(see 1983, appendix). Another important fact is that 

which is just another way of saying that Sf is the error rate 
for test points zero distance away from x .  

We can also define a bootstrap analog of p(A) :  

p* (A)= E{Q(X,* ,  X*)JG(x ,* ,  x*)= A } ,  (52) 

with the expectation in (52) being over the choice of 
X I ,  X 2 , .  . . ,Xn F and then X; ,  X ; ,  X; ,  . . . , X; - F .  
Notice that if 6 > 0, then X,* must not equal any of the X ,  
points in X * . This and definition (14) give 

1 
A 

E - ~ { ~ r r ' ' ) }= 1 p* (A)g* ( A )  d A ,  (53) 

where g,(A) is the density of 6* = S(X,*, X * )  given that 
6* > 0. 

Because bootstrap samples are supported on about .632n 
of the points in the training set, the same argument that 
gives g ( A )A nenA also shows that 

g, ( A )  A .632ne-,632nA. (54) 

Efron (1983) further supposed that 

p* ( A )  = p ( A )  and p ( A )  = u+ P A  (55) 

for some value ,6, with the intercept u coming from (51). 
Combining these approximations gives 

Substituting EE for v and I%-(') for E results in 
l%r(r(.632), (24). 
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LDF NN 


Figure 6. p(A) Curves, (38), for Experiments #3 (a) and #7 (b). The 
linearity assumption v(A) = v + P A  is reasonably accurate for the LDF 
rule but not for NN. The histogram for distance S (47) supports the ex- 
ponential approximation (50). 

Figure 6 shows p(A) for experiments #3 and #7, esti- 
mated using all of the data from each set of 200 simulations. 
The linearity assumption p = u+ ,!3A in (55) is reasonably 
accurate for the LDF rule of experiment #3 but not for the 
NN rule of #7. The expected apparent error u = p(0) equals 
0 for NN, producing a sharp bend near 0 in the p(A) curve. 
The .632+ rule of Section 3 replaces linearity with an ex- 
ponential curve, better able to match the form of p(A) seen 
in Figure 5. Now we assume that 

Here cu and p are positive parameters and y is an upper 
asymptote for p(A) as A gets large. Formulas (50) and (54), 
taken literally, produce simple expressions for p, (49), and 
for 5,(53): 

Combined with u = y - e-" from (51), (59) gives 

where 

Er(.632+), (29), is obtained by substituting for u,G r ( l )  
for 5,and 9, (27), for y. 

All of this is a reasonable plausibility argument for the 
.632+ rule, but not much more than that. The assumption 
p(A) - p*(A) in (55) is particularly vulnerable to criti- 
cism, though in the example shown in figure 2 of Efron 
(1983) it is quite accurate. A theoretically more defensible 
approach to the bias correction of can be made us- 
ing Efron's analysis of variance (ANOVA) decomposition 
arguments (Efron 1983); see the Appendix. 

7. CONCLUSIONS 

Our studies show that leave-one-out cross-validation is 
reasonably unbiased but can suffer from high variability 
in some problems. Fivefold or tenfold cross-validation ex- 
hibits lower variance but higher bias when the error rate 
curve is still sloping at the given training set size. Similarly, 
the leave-one-out bootstrap has low variance but sometimes 

has noticeable bias. The new .632+ estimator is the best 
overall performer, combining low variance with only mod- 
erate bias. All in all, we feel that bias was not a major 
problem for Gr(r(.632+) in our simulation studies, and that 
attempts to correct bias were too expensive in terms of 
added variability. At the same time, it seems possible that 
further research might succeed in producing a better com- 
promise between the unbiasedness of cross-validation and 
the reduced variance of the leave-one-out bootstrap. 

APPENDIX: SOME ASYMPTOTIC ANALYSIS OF 

THE ERROR RATE ESTIMATORS 


Define 

a = -nE{Q(Xl, X )  - p )  and b = n2E{Q(x1,  XI) -

where 

X =  ( X 1 , x 2 , X 3, . . . ,Xn)  and X 1 =  (X2 ,X2 ,X3 , . . . )Xn) .  

('4.2) 

(Both a and b will usually be positive.) Then the formal ANOVA 
decompositions of Efron (1983, Sec. 7) give 

and 

Also, letting f i  - EpEopQ(X$, X*)  denote the nonparametric 
MLE of p = E Q  (Xo ,X ), 

We cazcombine (A.3Aand (A.4) to obtain a bias-corrected ver- 
sion of ~ r r ( ' )  that, like has bias of order l / n 2  rather than 
l l n :  

Gr( ' )  can be attractively reexpressed in terms of the bootstrap 
covariances between I: and &,b. Following the notation in (36) 
and (39), it turns out that 

where 

I ,  = C ,I,~/B. Formula (A.6) says that we can bias correct the 
apparent error rate EE by adding en times the average covariance 
between I! (15), the absence or presence of zi in x*,and Q,b (16), 
whether or not r,* ( t i )  incorrectly predicts yi. These covariances 
will usually be positive. 

Despite its attractions, Gr(') was an underachiever in the work 
of Efron (1983), where it appeared in table 2 as do),and also in 
the experiments here. Generally speaking, it gains only about half 
of the RMS advantage over I%(""') enjoyed by I%('). Moreover, 
its bias-correction powers fail for cases like experiment #7, where 
the formal expansions (A.3) and (A.4) are also misleading. 
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The estimator called bootop in Tables 3-8 was defined as 
n 

E y r ( l ) o o t o ~ )  ---err - -1 x cov. (N:, Q:) (A.8)
77, 


i= 1 

in (2.10) of Efron (1983), "bootop" standing for "bootstrap opti- 
mism." Here cov,(N,b, Q!) = C b ( ~ , b- I)Q!/B, Efron's (1983) 

section 7 showed that the bootop rule, like ~ ( c v ' )and I%('), 
has bias of order only l / n 2  instead of l /n. This does not keep 
it from being badly biased downward in several of the sampling 
experiments, particularly for the NN rules. 

We also tried to bias correct &(') using a second level of 
bootstrapping. For each training set x, 50 second-level bootstrap 
samples were drawn by resampling (one time each) from the 50 
original bootstrap samples. The number of distinct original points 
xi appearing in a second-level bootstrap sample is approximately 
,502 .n, compared to ,632 .n for a first-level sample. Let 
be the %('Istatistic (17) computed using the second-level sam- 
ples instead of the first-level samples. The rules called bcl and 
bc2 in Tables 3-7 are linear combinations of I%')and 

and 

Gr(bc22)= 3.83gr(11- 2.83G(sec). (A.9) 

The first of these is suggested by the usual formulas for boot- 
strap bias correction. The second is based on linearly extrapolating 

A 

f i . 5 0 2 n  = and f i . ~ ~ 2 n  Err(') to an estimate for f in. The~ r r ( ~ ~ ' )  = 
bias correction works reasonably in Tables 3-7, but once again at 
a substantial price in variability. 

[Received May 1995. Revised July 1996.1 
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