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Estimating the Error Rate of a Prediction Rule: 
Improvement on Cross-Va Iidation 

BRADLEY EFRON* 


We construct a prediction rule on the basis of some data, 
and then wish to estimate the error rate of this rule in 
classifying future observations. Cross-validation pro-
vides a nearly unbiased estimate, using only the original 
data. Cross-validation turns out to be related closely to 
the bootstrap estimate of the error rate. This article has 
two purposes: to understand better the theoretical basis 
of the prediction problem, and to investigate some related 
estimators, which seem to offer considerably improved 
estimation in small samples. 

KEY WORDS: Bootstrap; Prediction problem; ANOVA 
decomposition; Logistic regression. 

1. INTRODUCTION 

In the prediction problem the statistician has available 
a set of cases x,, X I ,  . . . , x,, collectively called the train- 
ing set x. Each case consists of two parts xi = ( t , ,  yi), 
where ti is a vector of predictors and y; is a response 
variable. For example, ti might describe a medical pa- 
tient's age, weight, sex, race, previous disease history, 
and so on, and yi might indicate whether the patient sur- 
vived a certain operation. On the basis of the training set, 
a prediction rule q ( t ,  x) is constructed. The intention is 
to use q( to,  X) to predict a future unobserved response yo 
on the basis of its predictor vector to .  

We are mainly concerned with the situation where yi 
is a dichotomy, such as "survived" or "didn't survive," 
and the prediction q, = ?(ti ,  x) is likewise dichotomous. 
Let Q[y,, qi] indicate the correctness of the ith prediction, 

The true error rute (Err) of the prediction rule q( t ,  x) is 
its probability of incorrectly classifying a randomly se-
lected future case XO = (To, Y O ) ,in other words the ex- 
pectation E QIYo, q(TO, x)]. 

Our goal is to estimate Err on the basis of the training 
set x. The most obvious estimate is the uppurent error 
rate err = XI'=I Q[yi, q(t; ,  x)]ln, which is the proportion 
of observed errors made by q ( t ,  x) on its own training set 
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x. Usually Crr tends to be smaller than Err, because the 
same data have been used both to construct and to eval- 
uate q( t ,  x). This is a familiar fact in ordinary linear 
regression, where err = (residual sum of squares from 
fitted mode1)ln underestimates the true residual variance, 
and so the denominator n is usually reduced. 

Cross-validation circumvents this difficulty by remov- 
ing each xi from the data set used in its own prediction. 
Let x(,, be the training set with x, removed, and q( t ,  x ( ~ ) )  
be the corresponding prediction rule. The cross-validated 
error rate is 

&+cv) -1 C" Q[yi, ti, x(i))l. (1.2) 
n .; = I  . 

The well-known paper by Lachenbruch and Mickey 
(1968) is a good reference. Cross-validation is discussed 
in a wider context by Stone (1974) and Geisser (1975). 

In the next section we introduce another estimate of 
Err, based on the bootstrap, Efron (1979): ~rr'"('O~' is 
essentially the nonparametric maximum likelihood esti- 
mate of Err, assuming only that the training cases x, are 
a random sample from some unknown distribution F on 
the space of possible vectors x = ( t ,  y). We will see that 
in some ways ~ r r ' " " " ~ '  outperforms ~ r r ' ~ ~ )  as an esti- 
mator of Err, though the comparison is not totally one- 
sided. Other estimators introduced in later sections out- 
perform both ~ r r " ~ '  in an admittedlyand ~ r r ' " " ~ ~ ' ,  
small catalog of five sampling experiments. 

This article has two main purposes: to understand the 
theoretical basis of the prediction problem, especially as 
it relates to cross-validation and the bootstrap; and to 
investigate some related estimators, which seem to offer 
considerably improved estimation of err when the train- 
ing set is small. The discussion is actually in the opposite 
order. The related estimators, all of which are simple var- 
iants of the bootstrap, are introduced in Sections 3 
through 6. Sections 7 and 8 concern a decomposition of 
the prediction problem, based on the ANOVA description 
of Efron and Stein (1981), clarifying the theoretical con- 
nections between the various methods. The article ends 
with some remarks and a summary of recommendations. 

2. THE BOOTSTRAP AND CROSS-VALIDATION 

This describes the estimate the 
true error rate, and relates it to the cross-vali- 
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dation estimate. It is taken from a longer discussion in 
Chapter 7 of Efron (1982). We begin with a more careful 
description of the prediction problem. 

Each case xi = ( t i ,  yi) in the training set is the reali- 
zation of a random quantity Xi = (Ti, Yi), where Ti is a 
p-dimensional row vector of predictors and Yi is a real- 
valued response variable. We assume that there is some 
unknown distribution F on the p + 1-dimensional sample 
space Zt' = 9Ip+' such that the training set x = ( x l ,  x2, 
. . . , x,) is a random sample from F, 

iid 
XI,^^,. . . , X n  - F, (2.1) 

iid abbreviating "independent and identically distrib-
uted." For convenience let Xo = (To, Yo) denote a future 
observation from F, independent of the training set. 

We have at hand a specific recipe for constructing a 
prediction rule q( t ,  x) on the basis of the training set. A 
familiar example is the ordinary least squares rule ~ ( t ,  x) 
= t ( t l t ) - ' t ' y ,  where y = ( y l ,  y2, . . . , y,)' and t '  is the 

p x n matrix ( t ' ] ,  t J 2 ,  . . . , t',). Notice that this rule 
remains the same under any reordering of the cases X I ,  

x2, . . . ,x, constituting x. This is the usual case and will 
be assumed to hold in what follows. We use q(to, x) to 
predict yo from to, and measure the prediction error ac- 
cording to some function Q[yo, q(t0, x)]. In the dicho- 
tomous case both y and q are either 0 or 1, and Q is 
described by (1.1). The true error rate Err(x, F )  is the 
expected value 

the expectation being taken over Xo = (To, Yo) -F, with 
x fixed at its observed value. We will sometimes write 
Q(xo, x) for Q[Yo, q(to, x)l. 

The apparent error rate Prr(x) is the statistic 

usually an underestimate of Err. Let op(x, F ) ,  "op" being 
short for optimism, indicate the random variable 

op = Err - Prr (2.4) 

with expectation w ,  

If o were known, we could estimate Err with 

= 	err + o ,  (2.6) 

IC standing for "ideal constant." In most cases o is not 
known, and must itself be estimated from the training set 
x. Cross-validation as described in Section 1 amounts to 
using the estimate 
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&(BOOT), where if the nonparametric maximum 
likelihood estimate w(&'), &' being the empirical proba- 
bility distribution putting mass lln on each observed case, 

We can describe o ( k )  More explicitly, in a way that 
suggests how to actually evaluate it. Let X* indicate a 
random sample of size n from &', 

x i* ,  x2* ,  . . . , x,* b ,  (2.9) 

and E, indicate expectation with respect to the random 
mechanism (2.9), &' fixed at its observed value. Then 

with Pi* indicating the proportion of the bootstrap sample 
on xi, 

The last expression in (2.10) is obtained by following 
through definition (2.5) (see Efron 1982). 

Usually must be evaluated by Monte Carlo: 
independent bootstrap training sets x*', x * ~ ,  . . . , x * ~are 
generated according to (2.9), and for each x * ~  the pre- 
diction rule q( t ,  x * ~ )  is calculated. This gives a bootstrap 
replication of op according to (2.10), ~ p * ~  x7=I (lln= 
- Pi") Q[yi, q( t i ,  x * ~ ) ] ,  and we approximate 
by the average x f =  ~ p * ~ l B .  this approaches As B + 
definition (2.10). For practical purposes B in the range 
25-200 seems quite adequate. A better Monte Carlo 
method is given in Section 8. 

As an example, suppose p = 2, n = 14, and that each 
Ti is bivariate normal with mean vector either + (1,O), 

0 I 
1 


Yi = prob and Ti 1 Yi = yi 

1 1 


i - 1 0 ) (2.12) 

The prediction rule is Fisher's estimated linear discrim- 
inant, 

The coefficients & and fi are given in terms of n, = #{yj 
= y), f, = xy,=y = [ x j  t \ t j  -An l t ' l t l  -tilny, and S 
n2i'2t2]ln: & = - & ~ - l t ' ~ ] / 2  = [f2 -[ t l ~ - ' t ' l  and P 
t l l s - ' .  

In the sampling experiment subsequently called (2, 14), 
so that Errccv) = Prr + equals C, Q[yi, y(ti ,  x(~))]/  100 independent trials of situation (2.12), (2.13) were gen- 
n. 	 erated. Results for the first 10 of these, and summary 

The bootstrap estimate ~ r r ( ~ ~ ~ ~ )Prr + statistics for all 100, appear in Table 1. We see that op equals 
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Table 1. The First 10 Trials of Experiment (2,14), Described at (2.12), (2.13), and Summary Statistics for all 
100 Trials; cj(CV)is Less Biased Than #"OT), But Much More Variable. The Bootstrap Was Run With B = 

200 Replications per Trial 

Trial Err err OP ;CCV! ;(JACK) ;(BOOT) 

averaged .096, which is w except for sampling error, and 
so Crr tends to seriously underestimate Err in this case, 
E ErrlE Prr = 1.36. For each trial, hcCV' was calculated 
according to (2.7), and w'BooT) calculated according to 
the Monte Carlo algorithm, using B = 200 bootstrap rep- 
lications per trial. Err was calculated theoretically from 
(2.12), (2.13). The bootstrap estimate of w was biased 
slightly downwards, averaging .080, but was far less var- 
iable than &'cV). 

The jackknife, or more precisely the jackknife estimate 
of bias, relates cross-validation to the bootstrap. It uses 
a quadratic expansion for op(X*, F) and properties of the 
multinomial distribution to show that E, op(X*, F) can 
be approximated by 

Comparing (2.14) with (2.7), it is not surprising that 
&(JACK' is usually close in value to 9'CV',as seen in Table 
1. Gong (1982) shows that they have asymptotic corre- 
lation 1.00, under smoothness conditions on Q. The cor-
relation over the 100 trials of experiment (2, 14) was .93. 
Derivation of (2.14) appears in Section 7.3 of Efron 
(1982). For an interesting application of almost the same 
idea to density estimation see Wong (1983), discussed 
here in Remark B of Section 9. 

To summarize, is the obvious nonparametric 
MLE for w; is a quadratic approximation to 
&(BOOT)., and &(CV) is similar in form and value to 

All of this indicates that there is only one basic 
idea operating here: the substitution of F for F in what- 
ever we are trying to estimate, that being o(F)  in the 
problem at hand. 

3. FIVE SAMPLING EXPERIMENTS 

Table 2 reports on five sampling experiments compar- 
ing cross-validation, the bootstrap, and several other 

methods of estimating Err, the true error rate. The first 
four experiments are (2, 14), described in Section 2, and 
three simple variations, (2, 20), (5, 14), and (5, 20). Ex- 
periment (2, 20) is exactly the same as (2, 14) except that 
the sample size n is increased from 14 to 20. Each trial 
of experiment (5, 14) involves n = 14 cases in p = 5 
dimensions. The distribution of (Ti, Y;) is as given at 
(2.12), except that Ti ) Y, = yi - Ns((2yi - 1, 0, 0, 0, O), 
I) a five-dimensional normal distribution. The prediction 
rule ?(to, x) is Fisher's estimated linear discriminant func- 
tion, as described in Section 2. Experiment (5, 20) is the 
same as (5, 14) except that n is increased from 14 to 20. 
Each of these four experiments comprised 100 trials. 

Experiment GG is taken from the Ph.D thesis of Gong 
(1982). The sample size is n = 20, the prediction dimen- 
sion p = 4. Predictor vectors Ti have a four-dimensional 
normal distribution with mean vector 0, all standard de- 
viations equal 1 .O, and all correlations equal zero except 
for corr(Ti2, Ti3) = .8. Given Ti = ti, the dichotomous 
response variable yi equals 1 with probability 1/[1 + exp 
- (a  + tip')], a = 0, p = (1, 2.25, 0, 0). The prediction 
rule q( t ,x) is based on a forward stepwise logistic regres- 
sion, using a sequence of hypothesis tests to determine 
which of the components of ti to include in making the 
prediction, and will not be further described here. Ex- 
periment GG comprised 171 trials. 

We are estimating Err = Prr + op with statistics' of 
the form ~ r r  = err  + 9. The mean squared error (MSE) 
is ~ ( ~ r r  Err)' = E(& - op)', or-

MSE = (E& - w)2 + var(&) 

- 2 cov(&, op) + var(op). (3.1) 

Notice that MSE measures how well, on the average, Err 
estimates Err(x, F )  for  the given truining set x. In this 
sense it is a measure of average conditional risk. An un- 

' The notation CI could be changed to b p ,  but isn't for reasons given 
in the last paragraph of Section 2. 
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conditional measure such as E[Err - E(Err)12 seems less ldeal 
Cans ton t

appropriate. 
Table 2 gives the MSE for each method, and also the RAND 

information needed to compute the individual compo- 
nents on the right side of (3.1). For example, in experi- 
ment (2, 14), w = E(op) = .096 (100 trials), while the 
bootstrap estimate has expectation ,080. We see 
that the bias term in (3.1) contributes (.080 - .096)2 = 

.000256, a negligible amount compared with the total 
MSE of .0179. 

The large negative correlation of &'BOOT) with op, - .64 Figure 1. Relative inefficiencies (3.2) for four of the estimators in 
for experiment (2, 14), substantially increases MSE for Table 1; 0% indicates performance equal to the ideal constant es- 

the ordinary bootstrap. Cross-validation has correlations timator, > 100% indicates performance worse than the apparent 

near zero, but suffers from high values of var(&). The error rate err. 


estimators performing well in Table 2 do so by reducing 

the negative correlation nearly to zero, without increasing is the mean square error for the zero estimator Err = 


var(&) much above ~ a r ( & ' ~ ~ ~ ~ ' ) .  Crr, that is, the apparent error rate. Large numbers are It doesn't seem pos- 
sible to make the correlation positive; see Remark G of bad here: REL > 100% as for cross-validation in Exper- 

Section 9. iments (2, 20) and GG, indicate estimators worse than 

Figure 1 graphically compares the performances of four err.  

of the estimators in Table 1. The MSE's are plotted on The small sample sizes, n = 14 or  20, are an important 

a relative inefficiency scale, factor in the large behavioral differences evident in Table 
1 and Figure 1 .  The equivalent of Figure 1 for n = 100 

MSE - MSEUC' would show all the estimators, doing much better (REL 
REL = MSE'ZERO) - MSE(ICI ' (3.2) in the range 0-40%), but with the ordinary bootstrap and 

cross-validation still performing noticeably worst. Efron 
where MSE'"' is the mean squared error for the ideal gives numerical results for all five experiments scaled up 
constant estimator (2.6), Err = Cn- + w, and MSE'ZERO' to have n = 100, Stanford Technical Report #78. 

Table 2. Five Sampling Experiments, Comparing Several Different Methods for Estimating Err 

(214) (2,20) (514) (5,20) GG 

Exp(Sd Corr) MSE Exp(Sd Corr) MSE Exp(Sd Corr) MSE Exp(Sd Corr) MSE Exp(Sd Corr) MSE 

100 Trials 
(171 for GG) 

True op 096(113 ) 059(099 ) 184(099 ) 130(090 ) 098(094 ) 

Ideal 096(0 0) 0129 059(0 0) 0099 184(0 0) 0099 130(0 0) 0080 098(0 0) 0088 
Constant 

Zero O(0 0) 0221 O(0 0) 0134 O(0 0) 0432 O(0 0) 0249 O(0 0) 0184 
Correction 

Cross- 091 (073 - 15) 0206 067(070 +00) 01 48 170(094 - 15) 021 6 139(070 +03) 01 26 11 3(120 -21) 0280 
Validation 

Bootstrap 080(028 -64) 01 79 061 (020 -47) 01 22 103(031 -58) 021 0 086(025 -69) 01 36 083(022 -57) 01 18 
( B  = 200) 

Randomized 087(026 -55) 0169 062(020 -38) 01 18 147(020 -31) 0129 109(017 -46) 01 01 082(023 -28) 0108 
Boots t ra~  

Simple an do mi zed 097(023 -62) 0166 072(019 -
Bootstrap 

Double 097(038 -59) 01 95 070(029 -40) 01 32 184(054 -57) 01 90 11 4(034 -61) 01 32 106(033 -48) 01 29 
Bootstrap 

Randomized Double 097(036 -54) 0186 068(029 -43) 01 33 186(038 -52) 0152 120(032 -62) 0128 NA NA 
Bootstrap 

632(i(O)- err) 076(035 -09) 01 38 059(032 +22) 0095 152(038 -04) 01 26 11 2(035 +02) 0094 080(042 + 14) 0097 
d o '  = i '0) - F. 101 (034 -56) 01 84 071 (024 -44) 01 28 176(044 -54) 01 67 124(030 -53) 01 19 107(029 -43) 01 20 

1000 Trials: op Err 
err + ,093 ,356 ,262 ,060 ,340 ,280 ,178 ,250 ,072 ,120 ,219 ,099 

NOTE. Entry MSE is the mean squared error ~ ( ~ r r  ~ r r ) ' ;  Exp = E(S), Sd = Standard Dev (S), Corr = correlatton (S,op). All bootstrap methods used B = 200 bootstrap repl~cations -
per trtal except In expertment GG, where B = 100 
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The next three sections discuss the new estimators ap- 
pearing in Table 2, some of which clearly outperform 
cross-validation and the bootstrap. 

4. RANDOMIZED BOOTSTRAP 

The randomized bootstrap is a particularly simple var- 
iant of the ordinary bootstrap appropriate when y is di- 
chotomous. The two versions of the randomized boot- 
strap appearing in Table 2 performed well. 

The empirical probability distribution F, (2.8), concen- 
trates all of its mass on the n points (ti, yi), i = 1, 2, . . . , 
n.  The idea of the randomized bootstrap is to assign some 
probability mass to the n complementary points ( t i ,  y,), 
ji - 1 - yi.  Given the training set x, we have in mind 
some way of assigning probabilities to all 2n points ( t i ,  
yi), (ti, Yi), say 

1 
Assigned probability on (ti, y) = - ~ i ( y ,x ) ,  (4.1)n 

where ni(y, X) + ni(y,  x) = 1. This last condition means 
that (ti, yi) and ( t i ,  yi) are assigned total probability lln, 
as with the ordinary bootstrap. For the simple rundom- 
ized bootstrap, line 6 of Table 2, 

(To put it another way, this rule shrinks the maximum 
likelihood estimates 7(y i ,  x) = X) 0 toward1, T T ( ~ ~ ,  = 

the central value .5.) 
Let F ' ~ be the distribution on 2n points given by ~ ~ ~ ) 

(4.1). Then the randomized bootstrap estimate of o is 
(;)(KAND) = O p ( ~ * ,  (4.3)E , ~ K A N D )  

1 3  

where now X * is a random sample from F ' ~ ~ ~ ' " ,  
~ ( K A N D )XI*, X2*, . . . , X,, * 12 , (4.4) 

and E, indicates expectation with respect to this proba- 
bility mechanism. 

Defining N,,),* = #{Xj*  = ( r , ,  y)} and Ni* = Nio* + 
NII* ,  it is possible to express op(X*, F ' ~ ~ ~ ~ ) )as a sum 
of n terms, 

op* = 2 Ifl {[(2ni(y,, x) - 1) - (2Ni,?,*- Ni*)] 

Notice that this reduces to the expression for op* in (2.9) 
if TTi(yi, x) = 1 ,  ~ i ( y i ,  X) = 0. Since E,[.rri(y,, x) -
Ni,,,*l = 0, (4.5) gives the quite simple expression 

Both (4.5) and (4.6) remain valid if yi is replaced by 1 and 
j,is replaced by 0 everywhere. 

Most often in dichotomous prediction problems, the 
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prediction rule provides a probability assessment .rri(y, x) 
as well as a specific prediction ?(ti, x). For example Fish- 
er's estimated linear discriminant is naturally associated 
with the probability assessment 

.rri(l, x) = l /[l  + exp - (& + t ifi t)] ,  (4.7) 

(see Efron 1975, Sec. 1). Line 5 of Table 1 ,  the random- 
ized bootstrap, refers to the use of (4.7) in (4.1) through 
(4.4), except that the values ~ ~ ( 1 ,  X) are restricted to lie 
in the range [.1, .9]. 

There is an obvious ad hoc component to the choice 
of the numbers . l ,  .9 for the two randomized bootstraps. 
In theory the statistician could make a subjective as- 
sessment of the uncertainty in each prediction ?(ti, x), in 
order to assign .rri(yi, x) and 7 ; ( Y i ,  x). In the sampling 
experiments the exact assignments seemed less important 
than keeping them away from 0 and 1. In particular the 
simple method (4.2) caused little bias (and as a matter of 
fact helped correct the bias in the ordinary bootstrap), 
and gave almost as much improvement as the more com- 
plicated method based on (4.7). 

It is obvious that F can be a poor estimate of F, par-
ticularly if we know that F is smooth. Using in 
place of F is a form of smoothing. The smoothing is car- 
ried out entirely in the y direction. This is handy since in 
real applications t may be very complicated, having high 
dimensionality, censored components, missing values, 
qualitative and quantitative components, and so on. 

5. THE DOUBLE BOOTSTRAP 

The bootstrap estimate ~ r r ' ~ ~ ~ ~ )  was obtained in Sec- 
tion 2 by (a) writing Err as err + (Err - Err) where err 
= S(X) is an observable statistic and (Err - Pn-) -- R(X, 
F) is a random variable, and (b) estimating Err by S + 
E, R*,  where E, R* is the bootstrap expectation E, 
R(X*, F). There is no obvious theoretical reason for the 
choice S = en-. For any statistic S we could write Err 
= S + (Err - S )  and estimate Err by S + E,(Err -
S)* .  For example, choosing S = 0 gives the estimate 
E,Err*. It will turn out, in Section 8, that this is a poor 
estimate of Err. 

This section concerns bootstrapping the bootstrap. We 
take S = err. + &'BooT) what we have called = ~ r r ( ' O ~ ) ,  
the ordinary bootstrap estimate of Err, write 

Err = E ~ ~ ( " O O T )+ (Err - f?rr(BOO" 1 

and estimate Err by the "double bootstrap" estimate 

One motivation for doing so is the downward bias of the 
ordinary bootstrap evident in Table 2, in particular for 
experiment (5, 14). If ~ r r ' ~ O ~ ~ "  is an underestimator of 
Err, then we can correct it by bootstrapping, as in (5.1), 
in the same spirit as we originally corrected ? r r .  (Sec. 7 
discusses the downward bias of the bootstrap.) 
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We can rewrite (5. I ) ,  (5.2) as uated. Then 

= (Err + + E*(Err - Err)* 

the last line following from E,(Err - Err)* = E,(op)* = 

Another way to say (5.3) is that = 

2Cj(B00T)- E*(&('OoT))*. Assuming that has al- 
ready been computed, we need to calculate E,(b'"OoT' l* 
in order to find and ~ r r ( ~ O " " .  This looks as if 
it involves two layers of bootstrapping, perhaps B2 re- 
computations of the rule T, which would be 2002 = 40,000 
recomputations in our case. It turns out that a total of 2B 
recomputations, 400 in our case, suffice, thanks to a 
Monte Carlo "swindle," so that the double bootstrap is 
computationally feasible, as well as properly named. 

It is shown in the Appendix that 

where X** is a second-level bootstrap sample, 

F* indicating the empirical distribution function of a first- 
level bootstrap sample XI*,  . . . ,X,,*. The quantities PI** 
are the proportions of X** on the various original cases 
x1, 

and the function e(Pi**) is given to a good approximation 
as follows: 

The expectation E, in (5.4) is with respect to the mar- 
ginal distribution of X**, first taking a bootstrap sample 
as at (2.9), then constructing its empirical distribution 
function F*, and finally drawing X** as at (5.5). The train- 
ing set x is considered fixed during this entire process. 

Expression (5.4) can be approximated by Monte Carlo 
just as was (2.9) for the ordinary bootstrap: (a) A se- 
quence of independent double bootstrap vectors x * * ~ ,  h 
= 1,  2, . . . , B, is obtained, each one generated by the 
process described in the previous paragraph; (b) For each 
x**' the rule q( t ,  x**") is constructed and; (c)
(&(BOOT))*h = x:'=le(P,**') Q[y, ,  q ( t l ,  x**")l is eval- 

with increasing accuracy as B -+x.For the entries in line 
7 of Table 2, B = 200 in (5.8), taken in addition to the 
200 replications used in calculating 

The double bootstrap nicely corrects the bias in the 
ordinary bootstrap, as can be seen by comparing 
E(&(DouB))from line 7 of Table 2 with the actual values 
of w .  In terms of MSE its performance is about the same 
as the ordinary bootstrap. 

Line 8 of Table 2 refers to a double bootstrap version 
of the simple randomized bootstrap defined at (4.2). This 
computation requires a formula like (5.4) referring to 

) ' ,  from (4.6), rather than to (cj'"Oor')*. No 
more will be said about the randomized double bootstrap 
here, except that it is not particularly difficult to compute 
and performs slightly better than the double bootstrap in 
Table 2. 

6. THE ,632ESTIMATOR 

The estimator of line 9, Table 2, .632(i")) - Crr), called 
"the ,632 estimator" for short, was a clear winner in the 
sampling experiments. This section defines and motivates 
the ,632 estimator. Unfortunately the motivation is weak, 
leaving open the possibility that the estimator'5 success 
here was a fluke. (It has continued to perform best in 
some additional, rather different, sampling experiments 
described in Gong 1982.) 

Why does err tend to underestimate Err? Another an- 
swer, beside that it obviously does, can be given in terms 
of the distance of the point to be predicted from the train- 
ing set: Prr is an error rate for points zero distance from 
the training set x; Err is the expected error rate for a new 
point X,, which may lie some distance away from x. If the 
error rate of the prediction rule increases as the point 
being predicted moves away from x, then Err will under- 
estimate Err.  

To make this argument more concrete suppose that for 
each x and A the set S(.r, A )  is a neighborhood of x having 
probability content A under the true distribution F, 

Prob! {Xo E S(x, A)} = A. (6.1) 

The neighborhoods S(x, A) are assumed to grow smaller 
as A decreases, going to the single point {.r} as A + 0. 
Define 

6 is large or small as .uo is far from or near to the nearest 
point in the training set x. Denote Q(A) by the following: 

where Q(Xo, X) = Q[Yo, q(To, XI], so Q(A) is the ex- 
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pected error rate given that XO is distance A from the 
nearest point in the training set. 

The curve marked Actual in Figure 2 shows Q ( A ) as a 
function of A for experiment ( 2 ,  20). The neighborhoods 
S ( x ,  A ) ,  x = ( t ,  y ) ,  were taken as circles in the t space, 

S ( ( t ,  y ) ,  A )  = {xo = ( to ,  yo):yo 

= y and l l  to - t 1 1  5 r. , . ,~) ,  (6.4) 

with r.,,A chosen to satisfy (6.1). The set UI'= S ( x i ,  A )  is 
a union of circles in the planes y = 0 and y = 1, each 
circle centered at xi and having radius roughly inversely 
proportional to the density of model (2.12) at xi .  

As expected, Q ( A ) is an increasing function of A. No-
tice that 

Q(0)  = E Crr, (6.5) 

= .280 for experiment (2 ,  20). Relation (6.5) is a con- 
sequence of the way we defined Q ( A )and S(x i ,  A ) .  As A 
+ 0 ,  the conditional distribution of a point Xo in U:'= I 

S(x i ,  A )  approaches the empirical distribution F ,  (2 .8 ) ,so 
Q ( A )+E err. 

Let D ( A )  be the cumulative distribution function of 
6(Xo ,  X ) ,  D ( A )  = Prob{6(Xo,  X )  5 A )  for 0 4 A 5 1. 
Then the expected true error rate is E(Err) = JA Q ( A )  
d D ( A ) and, since E err = Q(o),  

is the expected optimism. Looking at Figure 2 ,  and at the 
insert, which shows D ( A ) , one can see that most of w = 

.060 for experiment ( 2 ,  20) comes from values of A in the 
range ( 0 ,  . I  ). 

The curve marked Bootstrap in Figure 2 is 

Q'"'( A )  = E{Q(Xo* ,  X * )  I 6(Xo*, X * )  = A ) ,  (6.7) 

the expectation of Q(Xo*,  X * )  = QIYo:, q (To* ,  X*)1 
given that the independent point Xo* - F is distance A 
away from the bootstrap training set X I * ,  X2*, . . . , Xn* 

01 I I I I I I A 
0 .05 I .I5 . 2  .25  . 3  

Figure 2. The actual and bootstrap expected error rates as a func- 
tion of the distance from Xo to the nearest point in the training set, 
experiment (2, 20). The insert shows the actual and bootstrap cu- 
mulative distribution function for the distance to the nearest point. 
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iid A- F used to construct q ( t ,  X * ) ;  E indicates marginal ex- 
pectation over the choice of X I ,  X 2 ,  . . . , X,, @ F and* "d A

then Xo*, X I * ,  Xz*,  . . . ,XI,  - F.  Notice the agreement 
between Q ( A )  and Q'"' ( A ) .  A point say A = .05 away 
from a bootstrap training set has the same expected prob- 
ability of misclassification as a point .05 away from an 
actual training set. 

There is one big difference between the actual and the 
bootstrap situations: the distribution of the distance 6.  
The bootstrap distance 6(Xo*,  X * )  has a high probability 
of equaling zero, 

Prob{6(XO*, X * )  = 0 )  = 1 - ( 1  - ( l ln) )"  

this being the probability that XoX falls on one of the sup- 
port points of F occurring in the bootstrap sample X* 
(i.e., that XO* = xi with Pi* > 0 ) . Given that 6(Xo* ,  X * )  
> 0 (i.e., Xo* = xi with Pi* = 0 )we show in the Appendix 
that 6(Xo* ,  X X )  is roughly distributed as 6 ( X o ,  XY.632, 

6(Xo*,  X * )  > 0 
.632 

Prob{6(Xo,  X )  > A ) .  (6.9) 

All the probabilities occurring in (6.8),  (6.9) are marginal 
over the choice of X and X * ,  XO*. 

For a given training set x, let <'O' be the bootstrap ex- 
pected error rate at those points xi not occurring in the 
bootstrap sample, 

< ( O ,  = E*{Q(Xo*,  X * )  1 Xo* = xi 

with Pi* = 0 ) .  (6.10) 

In any one trial of experiment ( 2 ,  20), <'O' was computed 
by (a) examining all 4,000 entries (b ,  i ) ,  b = 1 ,  . . . ,200, 
n = 1, . . . , 20; (b) looking at the approximately 36.8 
percent of the entries having Pi*h = 0 ;  and (c) setting 
<I0' equal to the observed error rate for these entries, 

Expression (6.11) approaches definition (6.10)as B + x .  

Section 8 discusses i"' and also the conditional error 
rates for values of Pi* besides 0 .  

The .632 estimator is = .632(i(01- err). This 
gives the Err estimate 

~~~l 6 3 2 )  = err + ( j ( . 6 3 2 1  = .368 err- + ,632 <"'. (6.12) 

The weights ,368 and .632 are suggested by (6.9). The 
points Xo* contributing to <'O' are about 11.632 too far out 
along the 6 axis in Figure 2 ,  whereas the points contrib- 
uting to Crr are at 6 = 0 .  The weighted average (6.12) 
therefore involves points with about the right expected 
value of 6.1f Q ( A )  Q(*' ( A ) ,and both are roughly linear 
in A ,  this makes roughly unbiased for Err. In fact 

displays a moderate downward bias in Table 2. 
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The reason for its remarkably low MSE is its lack of neg- 
ative correlation with op, term three of (3.1). This is dis- 
cussed further in Section 9, Remark G. 

It will turn out in Section 8 that t ' O '  is almost the same 
as ~ r r ' ~ ' ~ ' ,  the estimated error rate based on a cross- 
validation that leaves out half of the sample at a time. 
This means that a good approximation ~ r r ' . ' ~ ~ '  can be 
written as  .368 Crr + ,632 ~ r r ' ~ ' ~ ) .  

7. ANOVA DECOMPOSITIONS 

This section describes the ANOVA decomposition 
(Efron and Stein 1981) as it applies to Q(XO, X) and 
Q(Xo*, X*). It will give us a better theoretical basis for 
understanding the prediction problem, particularly the or- 
ders of magnitude involved, and the relationships be- 
tween various estimates of err. The calculations are car- 
ried through formally and do not constitute valid 
asymptotic theorems, but nevertheless give quite accu- 
rate predictions in our numerical studies. 

The ANOVA decomposition for Q(xo, x) = Q[yo, q(to,  
x)] is 

Q(x0, x) = pxo + -
I C ax , ,  (xi) 
n ; 

The quantities p,,,, (xi), Pxr, (xi, xi,), and so on cor- 
respond to the grand mean, main effects, second-order 
interactions, and so on in the standard ANOVA decom- 
position of an n-way table: 

and so on; xo is fixed in these expectations, with X ran- 
dom, subject to the indicated conditioning statements. 
The sums in (7.1) are over all integers i, i ' ,  i", . . . , in 
the range 1, 2, . . . , n, subject to ordering conditions as 
indicated. The right side of (7.1) terminates with a single 
nth order interaction term. 

The factors of n in (7.2) give a ,  P,  and so on, nonde- 
generate limiting distributions. As n grows large &,,(Xi) 
approaches the influence function for Q(xo, X), Px,,(Xi, 
Xi,) approaches the second-order influence function, and 
so on. See Hampel (1974) for a good discussion of influ- 
ence function ideas. 

Expansion (7.1) is an orthogonal decomposition of 
Q(xo, x). The quantities a,,(Xi), Pxo(Xi, Xi,),  and so on 
have expectation zero and are mutually uncorrelated. In 
fact each of them has conditional expectation zero when 

conditioned upon all but one of its defining Xi, 

and so on, i < i '  < i", only capitalized X's  being random 
in these expectations. 

Many quantities related to the prediction problem have 
simple expressions in terms of the ANOVA decomposi- 
tion. As a first example we have 

w = - E  ax, (Xl)ln. (7.4) 

This follows from 

all other terms such as E px, ( X I ,  X2) equaling zero by 
(7.3), so that w = E(Err - Prr) = - E  ax ,  (Xl)/n. 

As another example consider the following variant of 
cross-validation. Let x(i,j, represent the modified training 
set with xi removed and xj included twice, and let Q,i,,i, 
= Q(xi, x (~ , , , ) .  Then define 

This is a version of w ' ~ ~ ' ,(2.7), for which all the modified 
training sets xci,j, have sample size n. An easy calculation, 
very much like (7.4), shows that 

(Because cj'cV' involves samples of size n - 1, (7.1) can- 
not be applied to it; see Efron and Stein 1981 .) Letting 
~ r r ' ' ~ ' '  = err + cj'cV", (7.7) gives ~ ( ~ r r ' ~ ~ "  err)-

= E Px,,(Xl, Xl)/n2, compared with E(Err - err) = -E 
ax,(Xl)/n from (7.4). Cross-validation reduces bias of the 
error estimate from O(l1n) to O(l ln2) .  

There is an analog of decomposition (7.1) that applies 
to the bootstrap quantity Q(xo*, x*) = Q[yo*, T(to*, x*)]: 

where 

Gxo* = E* Q(xo*, X*), 

(Y,(,*(x;*)= E*{Q(xO*, X*) I Xi* = xi*} - Pxo* (7.9) 

and so on, as in (7.2). The bootstrap analogy of (7.3) is 

E* &,,*(Xi*) = 0, E* P,,*(xI*, X2*) = 0 (7.10) 

and so on. The random variables Xo*, XI  *, . . . ,X,* take 
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their values in the training set { x l ,  x 2 ,  . . . , x,). We will 
use the shortened notation &j,.,(jl)for 

likewise bjO( j l ,  j2) ,  and so on. Then (7.10) becomes 

and so on, the first relationship holding for all jo, the 
second for all jo,  j l ,  1 5 jo, j l  5 n .  

We immediately get 

the proof being the same as for (7.4). 
We can use (7.4), (7.12) to analyze the downward bias 

of GcBooT)as an estimator of o noticed in Table 2 (details 
given in the Appendix): 

E (;)(BOOT) - w = ;;i1 [ E a x ,  ( X I )  - E Pxl ( X I ,  X I )  

Equation (7.13) shows that like esti-
mates the O ( l / n )quantity o with expected error O ( l / n 2 ) .  
Comparing (7.13) and (7.7) shows that has three 
extra terms in the O ( l / n 2 )expression, two of which turn 
out to be negative in our experiment. 

Now we will evaluate the terms in (7.13).Let X,1,2,= 

( X 2 ,  X 2 ,  X 3 ,  . . . , X n )  We already know that E a x , ( X l ) /  
n2  = -wln. Expressions (7.  I ) ,  (7.3) give 
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Table 3 shows the components of E A'B00T) - o for 
experiments (5 ,  14), ( 5 ,  20), ( 2 ,  14) and, partially, (2 ,  20). 
These were obtained by Monte Carlo evaluation of the E 
Q terms in (7.14).The sums (7.14)compare well with the 
actual biases E - W ,using 1,000 trials. 

The first component E a x l ( X l ) / n 2is negative, as we 
expect it to be since according to (7.4) it equals -win. 
(The modified estimator n/(n - 1 )  has bias 
expression (7.13) except with the first component miss- 
ing.) The third component E P x , ( X I ,  X l ) / n 2  is positive 
but small. This is also expected, from either (7.7)or the 
first line of (7.14). 

The second component, -E px1 ( X I ,  X I ) / n 2 ,  is negative 
and large. Its negativity amounts to a convexity relation- 
ship in the second line of (7.14):E Q ( X 1 ,  X )  is a convex 
decreasing function of the number of times, zero, once, 
or twice, that X '  appears in the training set X.  We might 
say that Q is "deletion sensitive" in this case. All of our 
experiments were deletion sensitive, but artificial ex-
amples can be constructed going the other way. It is not 
a theorem that E cj'nOOT' - o < 0 ,  though that seems to 
be the usual case. In highly overfitted situations, where 
X '  being in the training set even once makes E Q ( X 1 ,  X )  
nearly zero, we expect - E p x ,  ( X I,X I  )In2 to be strongly 
negative because of (7.14). Experiment ( 5 ,  14) is a good 
example of this effect. 

The fourth component, -E yx,,(Xo, X I ,  XI)12n2, is pos- 
itive and large, though not as large as the second. The 
last line of (7.14)suggests that this component will always 
be positive in highly overfitted situations. 

8. REPETITION ERROR RATES 

The .632 estimator of Section 6 involves C'O', the boot- 
strap error rate for cases having bootstrap weight zero. 
This section concerns the bootstrap error rates < ' " I  for 
bootstrap weights P," = hln ,  h = 0 ,  1, 2,  . . . , . The 
main result is a theorem relating C"" to the ANOVA ex- 
pansion of Section 7 .  Among other things, this gives fur- 
ther information on how cross-validation relates to the 
bootstrap, and an improved Monte Carlo method for cal- 
culating the bootstrap. All proofs are deferred until the 
Appendix. 

For a given training set x,  the hth repetition error rate 
C ( h '  is defined to be the bootstrap error rate for values of 

Table 3. Components of Bias for (7.13) (figures in parentheses are standard errors) 

Eax, (Xi ) - EPx, (XI ,XI ) EPxo(Xi , X i )  - EYX~(XO.XI, X I )  Sum E~)(BOOT)-
Exper. n2 n2 n2 2n2 (7.13) (1000 tr ials) 
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the predicted point Xo* equaling an xi with bootstrap 
weight hln, 

C'h' = E*{Q(XO*,X * )  1 Xo* = xi with PI* = hln) .  

Usually C'h' must be calculated by Monte Carlo as de- 
scribed following (6.l o ) ,  

2 Q(xi, x*') 
E~ ( h )-- (b,i):P, 'b=/z/n 

(8.2)#{ (b ,i ):Pi*b= hln) ' 

Figure 3 shows the average values of C'O', C'", C ( 2 )  in our 
five experiments. The decreasing convex nature of these 
plots demonstrates the deletion sensitivity mentioned in 
Section 7 .  

In the bootstrap ANOVA expression (7.8) let 

Also define 

and so on. 

Theorem. The repetition error rates C'" '  are linear com- 
binations of 6 , A ,  B,e, . . . , 

where the constants A t h )  are given by 

A t h )  = E [ - ( n  - 1)IH1, (8.6) 

Figure 3. Repetition error rates for the five simulation experi- 
ments, h = 0, 1, 2, averaged over all trials in the experiments. Also 
shown are averages for Err, err, and b. 

Table 4. Some of the Coefficients A f h )  Appearing in 
(8.5) 


Hj being the number of red balls in j draws without re- 
placement from a population of h red balls and ( n  - h )  
black balls. 

Some of the coefficients A,'") are given in Table 4. The 
coefficients for are based on (7.12),which says 
that &('OoT) = ( (n  - l ) / n )A. The terms 6 ,A ,  B,C, . . . , 
are in declining order of magnitude 0,(1),  Op( l ln ) ,  O,(l/ 
n 2 ) ,  O p ( l / n 3 ) ,  . . . . The right side of (8.5)has n + 1 terms, 
and if all of these are included (8.5)is exactly true. Notice 
that the theorem applies to a single training set x,  and not 
just to expectations over random X. 

A wide class of interesting Err estimates can be ob- 
tained from the C'h'. As a first example consider the boot- 
strap estimate. Define 

h = 0 ,  1, 2, . . . ,n , the last equality following from (2.14). 
It will turn out that 

If i'")is nearly linear in h ,  as in experiment (2, 20), say 
C O I )  k to- h t l, then (8.7) gives A ( (n  - 1)In) 
t l , so is the negative slope of the repetition plot, 
times (n  - 1)In. 

Formula (8.7) gives an improved way to calculate 
A(Bo0T).First calculate the C ' " )  as in (8.2),and then com- 
bine them as in (8.7). If the number of bootstrap repli- 
cations B is small this method can be quite a bit more 
efficient than the obvious Monte Carlo algorithm de- 
scribed in Section 2. The improvement arises from not 
having to estimate by Monte Carlo the theoretical con- 
stants p,'"'. 

The quantity will be shown to equal 

Then the estimator G'O)of line 10, Table 2 can be written 

P I  

&(o) ~ ( 0 )- 6 = x [ I ~ = o- PI ,I I I I I ; I I I )  . (8.9) 
/ 1 = 0  
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(Notice that &'O) is different than the quantity i"' - Crr 
appearing in the .632 estimator.) It performed reasonably 
well in Table 2 ,  having about the same MSE as the boot- 
strap and about the same bias as cross-validation. Com- 
paring (7.14) with Table 4 shows why &'" has smaller 
bias than does . Th e coefficient 1 rather than ( n  
- 1)ln on A removes the E a x ,  ( X I  )In2 term from (7.14). 
The coefficient I rather than 0 on B gives an added ex- 
pectation of E P x l ( X I ,  X1)12n2 + O ( l l n 3 )thereby re-
moving half the - E  P x , ( X I ,  X l ) l n 2  term in (7.14). We 
could remove all of this term, for example with the es- 
timate ( P ' O )  - b )  - ( < ' I )  - b ) ,  but then the E yx,,(Xo, 
X I ,  X I )  term in (7.14)results in substantial upward biases. 

There is an interesting connection between i"' and 
cross-validation. For n even we can define the hal fsam-
ple cross-validation estimate 

the second sum being taken over all subsamples X*S of 
{ x I ,  x 2 ,  . . . , x,} having n12 elements and not containing 
the predicted case xi.  We will show that ~ r r ' ~ ' ~ )has the 
expansion formula 

Compared with Table 4 ,  (8.11) shows that 
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As shown at (7.8) this has little bias (cf. the remarks fol- 
lowing (8.9))but high variability, the same as &'cV). 

It seems reasonable for an estimator & of w to begin A 
+ O p ( l l n 2 ) ,as do O'", err(HCV)- b ,  and 
Gccv+).This makes & unbiased for o order O(l ln ) , the 
bias being O ( l l n 2 ) .At a more primitive level, A = ( - 11 
( n  - 1 ) )  (2&(i)ln) looks like o = ( - Iln)(E a x ,  ( X I ) ) .  
One estimator that does not begin this way is connected 
with the Err estimate E ,  (Err*) mentioned in the first 
paragraph of Section 5. Its use amounts to estimating w 
by & = E,(Err*) - err. Notice that E, Err* = k ,  by 
the first line of (7.9).The expansion of 4 = f i  - err turns 
out to be 

b - err = 
i#j 

2n 3 

The O p ( l l n )term in (8.14)is X X i f j Pi( j ,  j) /2n3, not A, 
with expectation E P x o ( X I ,  X1) /2n  + O(l ln2) .There is 
no theoretical reason for believing that this will be near 
w, and the numerical results were terrible, for example 
E & = .024 compared with w = .093 for experiment ( 2 ,  
14). 

The .632 estimator of Section 6 also has the "wrong" 
Op( l ln )term. Table 4 and (8.14) give 

( & r ( ~ ~ ~ )- f i )  = (6 '0 )  - f i )  + c,, + o p ( l / n 5 ' 2 ) , (8.12) 

c, = - 1/6n2 E yx , (X l ,  X I ,  X I )  a constant of order O(11 
n 2 ) .This suggests a high correlation between ~ r r ' ~ ' ~ )-
b and P") - (i,and in fact the observed correlations were 
.86 experiment (2 ,  14), .98 experiment (2 ,  20), .94 ex-
periment (5 ,  14), and .95 experiment (5 ,  20). 

Expression (7.8),which gives (8.1 I ) ,  applies only when 
x* has n component cases. A half-sample X*S = 

{x i , ,  xi2, . . . , x;,,,~}can be regarded as a sample of size 
n by doubling each case, { x i , ,  x i , ,  xi2, xi2, . . . , 
xi,,2, xi,,,). With this understanding the quantity Q(xi,  
X*S) = Q [ y i ,  -q(ti, X*S)] is well defined and can be eval- 
uated by (7.8). 

The cross-validation estimate &'cv+) introduced at 
(7.6),which deletes and adds single cases at a time, turns 
out to have expansion 

Table 4 gives these values for the bracketed factor, 

Experiment: (5 ,  14) (5 ,  20) (2 ,  14) (2 ,  20) 
(8.16)

{Factor): .84 .87 .86 1.02 ' 

The rationale for makes it unsurprising that these 
numbers are near one. On the other hand there is no guar- 
antee that this will always happen, and arbitrarily bad 
counterexamples can be constructed. 

9.REMARKS 

Remark A. The sample sizes in our experiments, n = 

14 or 20, are small. In practice small sample sizes can 
arise even when n is large, if we are interested in esti- 
mating the error rate for only a portion of the population. 
For example Efron and Gong (1983) consider a medical 
example with n = 155. Of particular interest are the 33 
patients who died. Cross-validation, the bootstrap, and 
so on, can easily be modified to give the prediction rule's 
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estimated error rate for the population of those who die, 
but the effective sample size is then 33, not 155. 

Remark B. The methods of this article can be applied 
to other problems besides estimating prediction error. 
Suppose we need to estimate a density function f(xo) on 
the basis of a random sample x = (xI ,  x2, . . . ,x,) from 
f ,  and wish to select among a family of possible density 
estimators fA(xo, x). Here A might be the window width 
of a kernel estimator. Let QA(xo, x) = -log fA(xo; x) and 
e r r~(x ,f )  = E QA(XO, X) = -S[log fA(xo; x)lf(xo)dxo. In 
an insightful paper Wong (1983) suggests selecting A to 
minimize E, errA*. Using arguments much like those in 
Section 2, he shows that this is asymptotically equivalent 
to the older method of "modified likelihood." In light of 
the remarks in Section 8, we might prefer to define Brr,(x) 
= - log fA(xi, x), and select A minimizing BrrA lln x?=,
+ E,(err, - BrrA)*. Wong (1982) has shown that this last 
approach does in fact lead to a superior asymptotic the- 
ory. 

Remark C. The statistician may want more than just 
an estimate of Err. Bootstrap methods are helpful in un- 
derstanding the variability of all aspects of the prediction 
problem. As an example, in simulation 1 of experiment 
GG the forward stepwise logistic regressions selected 
variables 1 and 2 for inclusion in the fitted prediction rule 
q(., x). In B = 100 bootstrap replications of simulation 
1 the following sets of variables were selected: 

set selected: {12) (123) {13) {3) {2) all others 
# time selected: 53 15 11 8 5 8 . 

Without attempting a quantitative assessment, we see 
that the "standard error" of the set of variables selected, 
about the central value {12), is reasonably small in this 
case. 

Remark D. Stone (1974) and Geisser (1975) emphasize 
the use of cross-validation to select among competing pre- 
diction rules. As a simple example suppose we observe 
a random sample X I ,  x2, . . . , X, from a distribution F 
on the real line, and wish to choose between two esti- 
mators .i)l = ql(x), 1 = 1, 2, perhaps the sample median 
and the 10 percent trimmed mean. The goal is to minimize 
the expected squared error of prediction EIXo - q(x)I2 
for a future observation Xo for F .  

We wish to choose 1 = 1 or 2 minimizing Errl(x, F) = 
E F [ X ~- rlr(x)l2. If F is actually normal, the difference 
Err2 - Errl estimated by the bootstrap turns out to be 

so asymptotically the bootstrap selects the estimate near- 
est the sample mean f .  The same can be shown to hold 
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to their correct values. If not, cross-validation can give 
strange answers. Stone (1977) shows that for F - N(0, 
1) the cross-validation method will select .i)2 the median 
as better than .ill the mean with asymptotic probability 
0.5008. 

Remark E. Cross-validation is often carried out re-
moving large blocks of observations at a time. If n = GH 
and x(,) = (xl, x2, . . . ,xk - I )H,X,H + I , . . . ,x,), then 
Err(CVG) = C.F=I Xi'= I Q(x(,- l ) H + / 1 3  x(,))ln requires 
only G recomputations of 7.  There are also theoretical 
reasons for preferring ~ r r ' ' ~ ~ '  As explained to 
in Section 6.2 of Efron (1982), quadratic approximation 
formulas like (2.16) tend to be more trustworthy for H 
large. In other words ~ r r " ~ ~ )  is likely to be closer in 
value to than is ~ r r ' ' ~ ) .  As an example,~ r r ( ~ ~ ~ ~ )  
grouped cross-validation like the bootstrap, selects the 
mean in preference to the median with asymptotic prob- 
ability one in Stone's problem, Remark D, if H is suitably 
large. 

If H is large than ~ r r ' ' ~ ~ )  - err will have substantial 
upward bias as an estimate of w.  For example 
- drr, (8.10), corresponding to G = 2, H = nl2, is up- 
wardly biased O(1ln). This will be true for any choice H 
= cn, c fixed as n -+ m. The bias can be removed by 
estimating Err with Brr + ( ~ r r " ~ ~ )@) instead of -
~ r r " ~ ~ ) ,but that involves calculating the bootstrap quan- 
tity @. At this point it becomes simpler to estimate w by 
;co, = tco, - @ & &(HCV) - 6 .  

Remark F. Cross-validation behaves more like the 
bootstrap if Q[y, rl] is a smooth function, like (y - T ) ~  
rather than ( I .  I), and if q(.,  x) is also a moderately smooth 
function of x. Then (2.16) gives more accurate approxi- 
mations. In this case it is reasonable to estimate Err by 
~ r r ' ~ ~ ) ,though bootstrap calculations may still be helpful 
for other purposes, as in Remark C. 

Remark G. Consider the ordinary least squares (OLS) 
I I ~ 

situation yi = ti p + ei, ei - N(0, u2),  i = 1 ,  . . . , n, 
and rl(to, x) = to(ttt)-I t 'y.  If the predictors ti are p di- 
mensional then w = (2pln) u2. The UMVU estimate of 
w is A = (2pln) b2,  b2 the usual unbiased estimate of u2,  
and it is easily shown that corr(op, A )  = - v ' n .  
For p = 2, n = 14, the correlation is - .93. 

The ,632 estimator had corr(op, A )  nearly zero, and 
this largely accounted for its good performance in the 
sampling experiments. The OLS example suggests that 
we cannot always get corr(op, A) 0 for a good esti- 
mator of w .  

We can change OLS to be more like the dichotomous 
models by assuming u2  a known function of P, say up2 
= a. + bo(p - Po) for p near some fixed vector Po, a. 
and bo given. Then if P is estimated by least squares, the 
obvious parametric estimate A = (2pln) [a0 + bo(P -
Po)] has corr(op, A) = 0, a similar result holding if P is 
estimated by maximum likelihood. In this case, as in the 

for the cross-validation estimate ~ r r ~ ( ~ ~ )  - if~ r r ~ ( ' ~ )sampling experiments, we can expect good nonparame- 
the jackknife estimates of var(.i)[) and cov(.i)l, f )converge tric estimators to have corr(op, A )  nearly zero. 
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10. SUMMARY 

1 .  There are a variety of nonparametric methods avail- 
able for estimating err in the dichotomous prediction 
problem ( 1 . 1 ) ,  (1 .2) , all of which are closely related to 
nonparametric maximum likelihood estimation, that is, 
to the bootstrap. 

2.  In practical situations the different methods can give 
considerably different answers. 

3. Cross-validation (1 .4)gives a nearly unbiased esti- 
mate of err, but often with unacceptably high variability, 
particularly if n is small. 

4 .  The ordinary bootstrap (2.10)gives an estimate of 
err with low variability, but with a possibly large down- 
ward bias, particularly in highly overfitted situations. 

5 .  The double bootstrap of Section 5 and the &") es-
timator (8.9)automatically correct the bias of the ordinary 
bootstrap without increasing the MSE of estimation. 

6 .  The randomized bootstrap, Section 4 ,  requires a 
modest amount of additional input from the statistician, 
but results in substantially lower MSE. Overall it per- 
formed second best in the sampling experiments. 

7 .  The .632 estimator of Section 6 performed best in 
the sampling experiments, but has the weakest theoretical 
justification. It is recommended with caution, pending 
further numerical and theoretical study. 

APPENDIX 

Derivation of (5.4), (5.7) 

The second-level bootstrap vector P** has, given P*, 
a conditional multinomial distribution, divided by n, 

For instance if Pi* = hln, then Pi**(P* - bi(n, hln)ln, 
the proportion of heads observed in n flips of a coin hav- 
ing probability of heads hln. 

Denote by E,,'*' the expectation with respect to prob- 
ability mechanism ( A .I ) ,  with P* held fixed. Also, let E,,  
indicate expectation with respect to the marginal distri- 
bution of P**, obtained from ( A . l )and the distribution 
of P*,  

which agrees with its use in (5 .4 ) .Finally, let E,'**' in-
dicate expectation with respect to the conditional distri- 
bution of P* given P**. In all these expectations the data 
x are fixed. 

We need to evaluate E,(G'BoOT')*,where cj'BOoT) = 

E ,  o p ( X * ,  F ) .  Suppose that r(x) = E, R ( X * ,  F )  is the 
bootstrap expectation of a random variable R ( X ,  F ) ,  
which is invariant under all permutations of the coordi- 
nates of X (as is op(X, F ) ) .  A bootstrap replication of r 
is of the form 

r ( X * )  = E,,'*) R ( X * * ,  p*) = E,,'*) R(P** ,  P * ) .  

( A . 3 )  

The last expression makes sense because, with data x 
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fixed P* determines F*,and P** determines X** up to 
permutations of its components. 

By carefully following through the various definitions 
we can apply ( A . 3 ) to r(x) = = E* o p ( X * ,  k )  
and obtain 

Since E,E,,(*) R(P**,  P*) = E,,E,(**) R(P**,  P*) for 
any function R(P**, P*) ,  ( A . 4 )  gives 

where 

e(Pi**) = E*'**) (Pi* - Pi**).  ( A .  6 )  

This shows that (5 .4)holds with e(Pi**)given by ( A . 6 ) .  
The conditional expectation E,'**' (Pi* - Pi**) is ac- 

tually a function of the entire vector P** and not just of 
the ith component Pi**. However, the effect of the other 
components turns out to be quite small, and will be ig- 
nored in what follows. Let nPi** = Ni** and nPi* = Ni*.  
Then a standard Bayesian calculation gives 

where bi(n, p ;  h )  is the binomial probability ( R )  ph(l  -
p)" -h .  

As n + x the distribution of Ni* + P o ( l ) , a Poisson 
with parameter one, and Ni** 1 Ni* -,Po(N;**) .In this 
case ( A . 7 )simplifies considerably, and can be rewritten 
as 

where Z - P o ( e P 1 ) ,a Poisson with parameter X = e - '  
= .3679. Formula ( A . 8 )was used to calculate (5 .7) .These 
values are within a few percent of ( A . 7 ) ,even for small 
n.  For example with n = 10, Pi** = 0 ,  ( A . 7 )  gives e(Pi**)  
= .0359 compared with e(Pi**)= .0368 for ( A . 8 ) .  

Verificationof (6.9) 

Define the set T(xo, A) = {x:xo E S(x, A)} .  Then 
?I 

Prob{G(Xo,X) > A) = Prob XOe U S ( X i ,  A) 
i =  l 

= Prob{Xi @ T(Xo, A) ,  i = 1 ,  2 ,  . . . , n) 

= E [ l  - Prob{T(XO,A))]". (A.9) 
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Suppose that Prob{T(XO, A)) approximately equals A. 
This will be true, at  least for small values A, if the original 
neighborhoods S(x, A) are based on a distance function 
symmetric in x and xo, as in (6.4). Then (A.9) gives the 
approximation 

Prob{S(XO, X) > A) - (I - A)". (A.10) 

Let n* be the number of cases xi having Pi* > 0 in a 
given bootstrap sample X*. The same reasoning as in 
(A.9) gives 

Prob{S(Xo*, X*) > A ( S* > 0) 

= EL1 - Prob{T(Xo*, A))]"*. (A. 11) 

Both the probability and the expectation in (A.11) are 
marginal over X and X*, XO*. The approximation 
Prob{T(Xo*, A)) A gives 

Prob{S(Xo*, X*) > A / 6* > 0) (1 - A).632n, (A. 12) 

where we have substituted E n* - .632n for n*. 
If (A.11) and (A.12) can be trusted then Prob{6(XO. X) 

> A) A e-"4 and PrOb{s(X~*, > ' e-'14, 
verifying (6.9). The insert in Figure 2 compares 
Prob{6(X0, X) < A) with 

Prob{6(Xo*, X*) < 
,632 

showing excellent agreement. 

Derivation of (7.13) 

There are simple algebraic relationships between the 
terms in (7.1) and those in (7.8), 

\ / 

&I = CLx, + a,, (.) + -7y p,, ( a ,  .)n 

+ [r.r, (xjl? ., - Y..;,(.. ., '11 + ... ,n 

Pj(j1 ,j2) = [Px,(xjl,xjZ) - Px,(x,,, '1 - Px,(~.12,.) + P.ri(.,.)I 

+ \ ' - ~ x , ( x j l ~ ~ ~ * )[ ~ x , ( x j I ~ x j ~ ~ . )  
n 

+ YX,(X.~,.) + YX,(., '11 + ,-., (A. 13) 

the dot notation indicating averages, a,, (.) = 

EX = I axJ(xjl )In, PxJ (xj,, .) = Ej:= I PxJ (xjl? xj2)/n, and 
so  on. (This last average involves terms like Px, (x2, x l ) ,  
which do not seem to exist in (7.1). However, the cor- 
responding terms there are really random variables pxJ 
(Xi, Xi,), which have well-defined values for Xi = xl ,  X I ,  
= X I  .) Relationships (A. 13) are familiar in the comparison 
of random effects with fixed effects models in ANOVA. 

The second line of (A.13) shows that E &j(j) = E axJ 
(Xi) + O(l1n). The O(1ln) term can be computed explicitly 
giving, from (7.4), (7.12), formula (7.13). 

Proofs for Results of Section 8 

For any bootstrap random variable R *  = R(X*, P I ,  
and for any choice of i = 1, 2, . . . , n, 

n 

E,R* = 2 p,,( l"E,{R*/Pl* = hln) (A.14) 
h = O  

since p n ( h )  = prob,{p,* = hln). ~ ~( ~ ~ 1 4 )to R*  
= Q(xi, X*) gives (ii = E, x * )  = xZ=o~p,l( 11) 

l 

c?), where 

= E,{Q(xi, X*) I Pi* = hln). (A.15) 

It is easy to see that x;=,ii'"'1n = i"", (8.1), so (i= 

E:'=Ikiln = XS=Opn(11) ; ( IT)  , as claimed at (8.8). Like- 
wise letting R *  in (A. 14) equal Ri* - (lln - PI*) Q(xi, 
X*) gives E, Ri* = ((1 h)ln) ii(ll), and then ~ ; : = o P , I ( l l )  -

= E* zy=I RI* = = O  ( I  - h)i( l l ) ,  ver- 
ifying (8.7). 

Rather than prove the theorem we will prove the 
stronger result 

Averaged over n = 1, 2,  . . . , n, (A.16) gives (8.5). Be-
cause we  have assumed that Q(xi, X*)= Q[y,,  q( t i ,  X*)] 
is unchanged under permutations of X*'s components, 
(A.15) can be written as 

i,'h' = E*{Q(xi, X*) / X I * ,  . . . ,XI,* 

= xi and X,l,I*, . . . ,X,,* + x,}. (A.17) 

Now we use (7.8) and (7.11) to evaluate this conditional 
expectation. For  example, 

-- 1 2 6ii(iI) = 
- &(i) 

n - 1 ,,+I n - 1 
(A. 18) 

http:Px,(~.12
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and so 

E * { i  &i(Xj*)1 XI*, . . . ,XIl* 
j = l  

= xi and X I + * . . . .X,,* ix i }  

Similar calculations for the higher-order terms in (7.8) 
evaluate (A.17) as 

( A .18) 

The bracketed terms are obviously related to hypergeo- 
metric expectations of the form (8.6),and results (A.16),  
(8.5) follow easily. 

The proof of (8.11) also relies on (7.8) and (7.11). In 
the notation of (8 .lo) ,  

all sums being only over cases xj in X*S. Then 

(A.21) following from (A.20) by (7.1 1 ) .  But = 

El= ~ r r ~ ' " ~ ~ ' / nso (A.20)  is an improved version of 
(8.1 I ) .  Formulas (8.13) and (8.4) follow from similar al- 
gebraic manipulations of (7.8)and (7.l l ) .  

The first line in (A.21) is the beginning of expansion 
(A.16) for C'". The quantity Cj f iq i ( j ,  j ,  j)l(n - 1 )  ap-
pearing in the next term of (A.21) can be written as 

x S,, (x j ,  x,,, xj,,, x ~ )  (A.22)+ ... . 
The constants c i ( j ,  j ' ,  j") ,  d i ( j ,  j ' ,  j",  j"'), . . . , are cal- 
culated from (A.13). For example, c i ( j ,  j ,  j )  = l / ( n  - l )  
- 3/n(n - 1 )  + 3/n2(n- 1 )  - l / n 3if i ij. The variance 
of C j  Cj ,  Cj.. ci( j ,  j' ,j") yx , (X j ,  X i , ,Xj,,)can be calculated 
exactly and has the limiting form, as n -.x ,  [var y x o ( X l ,  
X I ,  X l ) ] l n .  Likewise its expectation approaches E 
y x o ( X 1 ,X I ,  X I ) .  Ignoring further terms in (A.22)this gives 
Cjfi q l ( j ,  j ,  jY(n - 1 )  = E y x , ( X ~ ,  X I ,  X I )  + O p ( l l  
n1I2).Returning to (A.21)  

which is an improved version of (8.12). 

[Received May 1982. Revised October 1982.1 
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