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Flexible Smoothing with 6-splines 

and Penalties 

Paul ti. C. Eifers and Brian D. Marx 

Abstract. B-splines are attractive for nonparametric modelling, but 
choosing the optimal number and positions of knots is a complex task. 
Equidistant knots can be used, but their small and discrete number al- 
lows only limited control over smoothness and fit. We propose to use a 
relatively large number of knots and a difference penalty on coefficients 
of adjacent B-splines. We show connections to the familiar spline penalty 
on the integral of the squared second derivative. A short overview of B- 
splines, of their construction and of penalized likelihood is presented. We 
discuss properties of penalized B-splines and propose various criteria for 
the choice of an optimal penalty parameter. Nonparametric logistic re- 
gression, density estimation and scatterplot smoothing are used as ex- 
amples. Some details of the computations are presented. 

Key words and phrases: Generalized linear models, smoothing, non- 
parametric models, splines, density estimation. 

1. INTRODUCTION 	 There exist several refinements of running statis- 

There can be little doubt that smoothing has a re- tics, like kernel smoothers (silverman, 1986; 

spectable place in statistics today. Many papers and Hardle, 1990) and LOWESS (Cleveland, 1979). 

a number of books have appeared (Silverman, 1986; 	 Splines come in several varieties: smoothing splines, 
regression splines (Eubank, 1988) and B-splines Eubank, 1988; Hastie and Tibshirani, 1990; Hardle, (de Boor, 1978; Dierckx, 1993). With so many tech- 

1990; Wahba, 1990; Wand and Jones, 1993; Green niques available, why should we propose a newand Silverman, 1994). There are several reasons for one? We believe that a combination of B-splines this popularity: many data sets are too "rich" to 
be fully modeled with parametric models; graphical and difference penalties (on the estimated coeffi- 

presentation has become increasingly more impor- cients), which we call P-splines, has very attractive 

tant and easier to use; and exploratory analysis of properties. P-splines have no boundary effects, they 
are a straightforward extension of (generalized) lin- data has become more common. ear regression models, conserve moments (means, Actually, the name nonparametric is not always variances) of the data and have polynomial curve well chosen. It  might apply to kernel smoothers fits as limits. The computations, including those and running statistics, but spline smoothers are de- 

scribed by parameters, although their number can 	 for cross-validation, are relatively inexpensive and 

be large. It might be better to talk about "overpara- 	 easily incorporated into standard software. 

' metric" techniques or "anonymous" models; the pa- B-splines are constructed from polynomial pieces, 

rameters have no scientific interpretation. joined at certain values of x ,  the knots. Once the 
knots are given, it is easy to compute the B-splines 
recursively, for any desired degree of the poly- 
nomial; see de Boor (1977, 1978), Cox (1981) or 
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cult numerical problem and, to our knowledge, no 
attractive all-purpose scheme exists. 

A different track was chosen by O'Sullivan (1986, 
1988). He proposed to use a relatively large num-
ber of knots. To prevent overfitting, a penalty on 
the second derivative restricts the flexibility of the 
fitted curve, similar to the penalty pioneered for 
smoothing splines by Reinsch (1967) and that has 
become the standard in much of the spline litera-
ture; see, for example, Eubank (1988),Wahba (1990) 
and Green and Silverman (1994). In this paper we 
simplify and generalize the approach of O'Sullivan, 
in such a way that it can be applied in any con-
text where regression on B-splines is useful. Only 
small modifications of the regression equations are 
necessary. 

The basic idea is not to use the integral of a 
squared higher derivative of the fitted curve in 
the penalty, but instead to use a simple difference 
penalty on the coefficients themselves of adjacent 
B-splines. We show that both approaches are very 
similar for second-order differences. In some appli-
cations, however, it can be useful to use differences 
of a smaller or higher order in the penalty. With 
our approach it is simple to incorporate a penalty of 
any order in the (generalized) regression equations. 

A major problem of any smoothing technique is 
the choice of the optimal amount of smoothing, in 
our case the optimal weight of the penalty. We use 
cross-validation and the Akaike information crite-
rion (AIC). In the latter the effective dimension, 
that is, the effective number of parameters, of a 
model plays a crucial role. We follow Hastie and 
Tibshirani (1990)in using the trace of the smoother 
matrix as the effective dimension. Because we use 
standard regression techniques, this quantity can 
be computed easily. We find the trace very useful 
to compare the effective amount of smoothing for 
different numbers of knots, different degrees of the 
B-splines and different orders of penalties. 

We investigate the conservation of moments of 
different order, in relation to the degree of the 
B-splines and the order of the differences in the 
penalty. To illustrate the use of P-splines, we 
present the following as applications: smoothing of 
scatterplots; modeling of dose-response curves; and 
density estimation. 

2. 6-SPLINES IN A NUTSHELL 

Not all readers will be familiar with B-splines. 
Basic references are de Boor (1978) and Dierckx 
(1993), but, to illustrate the basic simplicity of the 
ideas, we explain some essential background here. 
A B-spline consists of polynomial pieces, connected 

in a special way. A very simple example is shown at 
the left of Figure l(a): one B-spline of degree 1. It  
consists of two linear pieces; one piece from xl to x2, 
the other from x2 to x3.The knots are xl, x2 and x3. 
To the left of xl and to the right of x3 this B-spline 
is zero. In the right part of Figure l(a), three more 
B-splines of degree 1are shown: each one based on 
three knots. Of course, we can construct as large 
a set of B-splines as we like, by introducing more 
knots. 

In the left part of Figure l(b), a B-spline of 
degree 2 is shown. It consists of three quadratic 
pieces, joined at two knots. At the joining points not 
only the ordinates of the polynomial pieces match, 
but also their first derivatives are equal (but not 
their second derivatives). The B-spline is based on 
four adjacent knots: xl, . . . ,x4. In the right part 
Figure l(b), three more B-splines of degree 2 are 
shown. 

Note that the B-splines overlap each other. 
First-degree B-splines overlap with two neighbors, 
second-degree B-splines with four neighbors and so 
on. Of course, the leftmost and rightmost splines 
have less overlap. At a given x, two first-degree (or 
three second-degree) B-splines are nonzero. 

These examples illustrate the general properties 
of a B-spline of degree q: 

it consists of q + 1 polynomial pieces, each of 
degree q; 

the polynomial pieces join at  q inner knots; 
at  the joining points, derivatives up to order 

q - 1are continuous; 
the B-spline is positive on a domain spanned by 

q + 2 knots; everywhere else it is zero; 
except at  the boundaries, it overlaps with 2q 

polynomial pieces of its neighbors; 
at  a given x, q + 1B-splines are nonzero. 

Let the domain from xmi, to x,,, be divided into 
n' equal intervals by n' +1knots. Each interval will 
be covered by q + 1B-splines of degree q .  The total 
number of knots for construction of the B-splines 
will be n' + 2q + 1. The number of B-splines in the 
regression is n = n' + q.  This is easily verified by 
constructing graphs like those in Figure 1. 

B-splines are very attractive as base functions for 
("nonparametric") univariate regression. A linear 
combination of (say) third-degree B-splines gives a 
smooth curve. Once one can compute the B-splines 
themselves, their application is no more difficult 
than polynomial regression. 

De Boor (1978) gave an algorithm to compute B-
splines of any degree from B-splines of lower degree. 
Because a zero-degree B-spline is just a constant on 
one interval between two knots, it is simple to com-
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FIG. 1. Illustrations of one isolated B-spline and 

pute B-splines of any degree. In this paper we use 
only equidistant knots, but de Boor's algorithm also 
works for any placement of knots. For equidistant 
knots, the algorithm can be further simplified, as 
is illustrated by a small MATLAB function in the 
Appendix. 

Let Bj(x; q) denote the value at  x of the j th  B- 
spline of degree q for a given equidistant grid of 
knots. A fitted curve 5 to data (xi, y,) is the linear 
combination $(x) = C5=lcijBj(x; q). When the de- 
gree of the B-splines is clear from the context, or 
immaterial, we use B j(x) instead of B j(x; q). 

The indexing of B-splines needs some care, espe- 
cially when we are going to use derivatives. The in- 
dexing connects a B-spline to a knot; that is, it gives 
the index of the knot that characterizes the position 
of the B-spline. Our choice is to take the leftmost 
knot, the knot at  which the B-spline starts to be- 
come nonzero. In Figure l(a), xl is the positioning 
knot for the first B-spline. This choice of indexing 
demands that we introduce q knots to the left of the 
domain of x. In the formulas that follow for deriva- 
tives, the exact bounds of the index in the sums are 
immaterial, so we have left them out. 

De Boor (1978) gives a simple formula for deriva- 
tives of B-splines: 

where h is the distance between knots and Aaj = 

a j  - a j - ~ .  


By induction we find'the following for the second 

derivative: 


several overlapping ones (a )degree 1;(b) degree 2. 

where A2a = AAa = a - 2aj-l + a j-2. This fact 
will prove very useful when we compare continuous 
and discrete roughness penalties in the next section. 

3. PENALTIES 

Consider the regression of m data points (xi, yi) 
on a set of n B-splines Bj(.). The least squares ob- 
jective function to minimize is 

Let the number of knots be relatively large, such 
that the fitted curve will show more variation than 
is justified by the data. To make the result less flex- 
ible, O'Sullivan (1986, 1988) introduced a penalty 
on the second derivative of the fitted curve and so 
formed the objective function 

The integral of the square of the second derivative 
of a fitted function has become common as a smooth- 
ness penalty, since the seminal work on smoothing 
splines by Reinsch (1967). There is nothing spe- 
cial about the second derivative; in fact, lower or 
higher orders might be used as well. In the context 
of smoothing splines, the first derivative leads to 
simple equations, and a piecewise linear fit, while 
higher derivatives lead to rather complex mathe- 
matics, systems of equations with a high bandwidth, 
and a very smooth fit. 

We propose to base the penalty on (higher-order) 
finite differences of the coefficients of adjacent B- 
splines: 
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This approach reduces the dimensionality of the 
problem to n, the number of B-splines, instead of 
m, the number of observations, with smoothing 
splines. We still have a parameter A for continuous 
control over smoothness of the fit. The difference 
penalty is a good discrete approximation to the in- 
tegrated square of the kth derivative. What is more 
important: with this penalty moments of the data 
are conserved and polynomial regression models oc- 
cur as limits for large values of A. See Section 5 for 
details. 

We will show below that there is a very strong 
connection between a penalty on second-order dif- 
ferences of the B-spline coefficients and O'Sullivan7s 
choice of a penalty on the second derivative of the 
fitted function. However, our penalty can be han- 
dled mechanically for any order of the differences 
(see the implementation in the Appendix). 

Difference penalties have a long history that goes 
back at least to Whittaker (1923); recent applica- 
tions have been described by Green and Yandell 
(1985) and Eilers (1989, 1991a, b, 1995). 

The difference penalty is easily introduced into 
the regression equations. That makes it possible to 
experiment with different orders of the differences. 
In some cases it is useful to work with even the 
fourth or higher order. This stems from the fact 
that for high values of h the fitted curve approaches 
a parametric (polynomial) model, as will be shown 
below. 

O'Sullivan (1986, 1988) used third-degree B-
splines and the following penalty: 

From the derivative properties of B-splines it fol- 
lows that 

This can be written as 

Most of the cross products of Bj(x; 1) and Bk(x; 1) 
disappear, because B-splines of degree 1only over- 

lap when j is k - 1, k or k + 1.We thus have that 

Xm,.l Bj(x; l )Bj- l (x; l )dx,  
%in 

which can be written as 

where el and c2 are constants for given (equidistant) 
knots: 

The first term in (11)is equivalent to our second- 
order difference penalty, the second term contains 
cross products of neighboring second differences. 
This leads to more complex equations when mini- 
mizing the penalized likelihood (equations in which 
seven adjacent aj's occur, compared to five if only 
squares of second differences occur in the penalty). 
The higher complexity of the penalty equations 
stems from the overlapping of B-splines. With 
higher order differences andlor higher degrees of 
the B-splines, the complications grow rapidly and 
make it rather difficult to construct an automatic 
procedure for incorporating the penalty in the likeli- 
hood equations. With the use of a difference penalty 
on the coefficients of the B-splines this problem 
disappears. 

4. PENALIZED LIKELIHOOD 

For least squares smoothing we have to minimize 
S in (5). The system of equations that follows from 
the minimization of S can be written as: 

where Dk is the matrix representation of the differ- 
ence operator Ak, and the elements of B are bij = 

Bj(xi). When h = 0, we have the standard normal 
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equations of linear regression with a B-spline basis. 
With k = 0 we have a special case of ridge regres- 
sion. When h > 0, the penalty only influences the 
main diagonal and k subdiagonals (on both sides of 
the main diagonal) of the system of equations. This 
system has a banded structure because of the lim- 
ited overlap of the B-splines. It is seldom worth the 
trouble to exploit this special structure, as the num- 
ber of equations is equal to the number of splines, 
which is generally moderate (10-20). 

In a generalized linear model (GLM), we in-
troduce a linear predictor qi = Cy=lbijaj and a 
(canonical) link function qi = g(pi), where pi is the 
expectation of yi. The penalty now is subtracted 
from the log-likelihood l(y; a)  to form the penalized 
likelihood function 

The optimization of L leads to the following system 
of equations: 

These are solved as usual with iterative weighted 
linear regressions with the system 

where 6 and f i  are current approximations to the 
solution and w is a diagonal matrix of weights 

where vi is the variance of yi, given pi. The only 
difference with the standard procedure for fitting 
of GLM's (McCullagh and Nelder, 1989), with B- 
splines as regressors, is the modification of BTwB 
by hDTDk (which itself is constant for fixed h) at  
each iteration. 

5. PROPERTIES OF P-SPLINES 

P-splines have a number. of useful properties, 
partially inherited from B-splines. We give a short 
overview, with somewhat informal proofs. 

In the first place: P-splines show no boundary ef- 
fects, as many types of kernel smoothers do. By this 
we mean the spreading of a fitted curve or density 
outside of the (physical) domain of the data, gener- 
ally accompanied by bending toward zero. In Sec- 
tion 8 this aspect is considered in some detail, in 
the context of density smoothing. 

P-splines can fit polynomial data exactly. Let data 
(xi, yi) be given. If the yi are a polynomial in x of 
degree k, then B-splines of degree k or higher will 

exactly fit the data (de Boor, 1977). The same is true 
for P-splines, if the order of the penalty is k + 1or 
higher, whatever the value of A. To see that this 
is true, take the case of a first-order penalty and 
the fit to data y that are constant (a polynomial of 
degree 0). Because Cy=ldjBj(x) = c, we have that 
C)=,Ci B)(xi)=0, for all x. Then it follows from the 
relationship between differences and derivatives in 
(1)that all Aaj are zero, and thus that C)=2Aaj = 
0. Consequently, the penalty has no effect and the 
fit is the same as for unpenalized B-splines. This 
reasoning can easily be extended by induction to 
data with a linear relationship between x and y, 
and a second order difference penalty. 

P-splines can conserve moments of the data. For 
a linear model with P-splines of degree k + 1and a 
penalty of order k + 1,or higher, it holds that 

for all values of A, where 5i = C)=lbUfj are the fit- 
ted values. For GLM's with canonical links it holds 
that 

This property is especially useful in the context of 
density smoothing: the mean and variance of the es- 
timated density will be equal to mean and variance 
of the data, for any amount of smoothing. This is 
an advantage compared to kernel smoothers: these 
inflate the variance increasingly with stronger 
smoothing. 

The limit of a P-splines fit with strong smoothing 
is a polynomial. For large values of h and a penalty 
of order k, the fitted series will approach a polyno- 
mial of degree k - 1,if the degree of the B-splines 
is equal to, or higher than, k. Once again, the rela- 
tionships between derivatives of a B-spline fit and 
differences of coefficients, as in (1)and (2), are the 
key. Take the example of a second-order difference 
penalty: when h is large, Cy=3(A2a j ) 2  has to be very 
near zero. Thus each of the second differences has 
to be near zero, and thus the second derivative of 
the fit has to be near zero everywhere. In view of 
these very useful results, it seems that B-splines 
and difference penalties are the ideal marriage. 

It is important to focus on the linearized smooth- 
ing problem that is solved at each iteration, because 
we will make use of properties of the smoothing ma- 
trix. From (16) follows for the hat matrix H: 
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The trace of H will approach k as A increases. A 
proof goes as follows. Let 

(21) QB = BTwB and QA= hDTDS 

Write tr(H) as 

This can be written as 

where 

and yj, for j = 1,. . . ,n, are the eigenvalues of L. 
Because k eigenvalues of Q, are zero, L has k zero 
eigenvalues. When A is large, only the (k) terms 
with yj = 0 contribute to the leftmost term, and 
thus to the trace of H.  Hence tr(H) approaches k 
for large A. 

6. OPTIMAL SMOOTHING, AIC AND 
CROSS-VALIDATION 

Now that we can easily influence the smoothness 
of a fitted curve with A, we need some way to choose 
an "optimal" value for it. We propose to use the 
Akaike information criterion (AIC). 

The basic idea. of AIC is to correct the log- 
likelihood of a fitted model for the effective number 
of parameters. An extensive discussion and appli- 
cations can be found in Sakamoto, Ishiguro and 
Kitagawa (1986). Instead of the log-likelihood, the 
deviance is easier to use. The definition of AIC is 
equivalent to 

where dim(a, A) is the (effective) dimension of the 
vector of parameters, a ,  and dev(y; a ,  A) is the 
deviance. 

Computation of the deviance is straightforward, 
but how shall we determine the effective dimension 
of our P-spline fit? We find a solution in Hastie and 
Tibshirani (1990). They discuss the effective dimen- 
sions of linear smoother6 and propose to use the 
trace of the smoother matrix as an approximation. 
In our case that means dim(a) = tr(H). Note that 
tr(H) = n when A = 0, as in (nonsingular) standard 
linear regression. 

As tr(AB) = tr(BA) (for conformable matrices), 
it is computationally advantageous to use 

The latter expression involves only n-by-n matrices, 
whereas H is an m-by-m matrix. 

In some GLM's, the scale of the data is known, 
as for counts with a Poisson distribution and for 
binomial data; then the deviance can be computed 
directly. For linear data, an estimate of the variance 
is needed. One approach is to take the variance of 
the residuals from the ji that are computed when 
A = 0, say, Gi: 

AIC = C
m 

(Y'-6')' 2tr(H)+ 

(27) i=1 &$ 

This choice for the variance is rather arbitrary, as 
it depends on the numer of knots. Alternatives can 
be based on (generalized) cross-validation. For ordi- 
nary cross-validation we compute 

where the hii are the diagonal elements of the hat 
matrix H. For generalized cross-validation (Wahba, 
1990), we compute 

The difference between both quantities is generally 
small. The best A is the value that minimizes CV(A) 
or GCV(A). The variance of the residuals at  the op- 
timal A is a natural choice to use as an estimate of 
a; for the computation of AIC(A). It is practical to 
work with modified versions of CV(A) and GCV(A), 
with values that can be interpreted as estimates of 
the cross-validation standard deviation: 

The two terms in AIC(A) represent the deviance 
and the trace of the smoother matrix. The latter 
term, say T(A) = tr{H(A)), is of interest on its own, 
because it can be interpreted as the effective dimen- 
sion of the fitted curve. 

T(A) is useful to compare fits for different num- 
bers of knots and orders of penalties, whereas A can 
vary over a large range of values and has no clear 
intuitive appeal. We will show in an example below 
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TABLE1 

Values of several diagnostics for the motorcycle impact data, for several values of h 

h 0.001 0.01 0.1 0.2-
CV 24.77 24.02 23.52 23.37-
GCV 25.32 24.93 24.17 23.94 
AIC 159.6 156.2 149.0 146.7 
tdH) 21.2 19.4 15.13 13.6 

that a plot of AIC against T is a useful diagnostic 
tool. 

In the case of P-splines, the maximum value that 
T(h) can attain is equal to the number of B-splines 
(when A = 0). The actual maximum depends on the 
number and the distributions of the data points. The 
minimum value of T(h) occurs when h goes to infin- 
ity; it is equal to the order of the difference penalty. 
This agrees with the fact that for high values of h 
the fit of P-splines approaches a polynomial of de- 
gree k - 1. 

7. APPLICATIONS TO GENERALIZED 
LINEAR MODELLING 

In this section we apply P-splines to a number of 
nonparametric modelling situations, with normal as 
well as nonnormal data. 

First we look at a problem with additive errors. 
Silverman (1985) used motorcycle crash helmet im- 
pact data to illustrate smoothing of a scatterplot 
with splines; the data can be found in Hardle (1990) 
and (also on diskette) in Hand et al. (1994). The 
data give head acceleration in units of g, at  differ- 
ent times after impact in simulated accidents. We 
smooth with B-splines of degree 3 and a second- 
order penalty. The chosen knots divide the domain 
of x (0-60) into 20-intervals of equal width. When 
we vary h on an approximately geometric grid, we 
get the results in Table 1, where Go is computed 
from GCV(h) at the optimal value -of A.  At the op- 
timal value of h as determined by GCV, we get the 
results as plotted in Figure 2. 

It  is interesting to note that the amount of work 
to investigate several values of A is largely indepen- 
dent of the number of data points when using GCV. 

' The system to be solved is 

The sum of squares is 

So BTB and BTyhave to be computed only once. 
The hat matrix H is m by m, but for its trace we 
found an expression in (26) that involves only BTB 
and D ; D ~ .So we do not need the original data for 
cross-validation at any value of A. 

0.5 1 2 5 10 
23.26 23.38 23.90 25.50 27.49 
23.74 23.81 24.28 25.87 27.85 

144.7 145.4 150.6 169.1 194.3 
11.7 10.4 9.2 7.7 6.8 

Our second example concerns logistic regression. 
The model is 

The observations are triples (xi, t i ,  yi), where ti is 
the number of individuals under study at dose xi, 
and yi is the number of "successes." We assume that 
yi has a binomial distribution with probability p i  
and ti trials. The expected value of yi is t ipi  and 
the variance is t i p i ( l  - pi). 

Figure 3 shows data from Ashford and Walker 
(1972) on the numbers of Trypanosome organisms 
killed at  different doses of a certain poison. The data 
points and two fitted curves are shown. For the thick 
line curve h = 1and AIC = 13.4; this value of h is 
optimal for the chosen B-splines of degree 3 and a 
penalty of order 2. The thin line curve shows the 
fit for A = lo8 (AIC = 27.8). With a second-order 
penalty, this essentially a logistic fit. 

Figure 4 shows curves of AIC(A) against T(h) at  
different values of k, the order of the penalty. We 
find that k = 3 can give a lower value of AIC (for 
h = 5, AIC = 11.8). For k = 4 we find that a very 
high value of A is allowed; then AIC = 11.4, hardly 
different from the lowest possible value (11.1). A 
large value of h with a fourth-order penalty means 
that effectively the fitted curve for 7 is a third-order 
polynomial. The limit of the fit with P-splines thus 
indicates a cubic logistic fit as a good parametric 
model. Here we have seen an application where a 
fourth-order penalty is useful. 

Our third example is a time series of counts yi, 
which we will model with a Poisson distribution 
with smoothly changing expectation: 

n 

(34) In pi = vi = C ajBj(xi). 
j=1 

In this special case the xi are equidistant, but this 
is immaterial. Figure 5 shows the numbers of dis- 
asters in British coal mines for the years 1850- 
1962, as presented in (Diggle and Marron, 1988). 
The counts are drawn as narrow vertical bars, the 
line is the fitted trend. The number of intervals is 
20, the B-splines have degree 3 and the order of the 
penalty is 2. An optimal value of A was searched 
on the approximately geometric grid 1, 2, 5, 10 and 
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FIG.2. Motorcycle crash helmet impact data: optimal fit with B-splines of third degree, a second-order penalty and A = 0.5. 

FIG.3. Nonparametric logistic regression of Trypanosome data: P-splines of order 3 with 13 knots, difference penalty of order 2, A = 1 
and AIC = 13.4 (thick line); the thin line is effectively the logistic fit (A = lo8 and AIC = 27.8). 

FIG.4. AIC(A) versus T(A), the effective dimension, for several orders of the penalty ( k ) .  

so on. The minimum of AIC (126.0) was found for noted by Diggle and Marron (1988). In the next sec- 
A = 1,000. tion we take a detailed look at density smoothing 

The raw data of the coal mining accidents pre- with P-splines. 
sumably were the dates on which they occurred. 
So the data we use here are in fact a histogram 8. DENSITY SMOOTHING 
with one-year-wide bins. With events on a time scale 
it seems natural to smooth counts over intervals, In the preceding section we noted that a time se- 
but the same idea applies to any form of histogram ries of counts is just a histogram on the time axis. 
(bin counts) or density smoothing. This was already Any other histogram might be smoothed in the same 
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FIG. 5. Numbers of severe accidents in  British coal mines: number per year shown as vertical lines; fitted trend of the expectation of the 
Poisson distribution; B-splines of degree 3 ,  penalty of order 3, 20 intervals between 1850 and 1970, h = 1,000 and AIC = 126.0. 

way. However, it is our experience that this idea 
is hard to swallow for many colleagues. They see 
the construction of a frequency histogram as an un- 
allowable discretization of the data and as a pre- 
lude to disaster. Perhaps this feeling stems from 
the well-known fact that maximum likelihood es- 
timation of histograms leads to pathological results, 
namely, delta functions at  the observations (Scott, 
1992). However, if we optimize a penalized likeli- 
hood, we arrive at  stable and very useful results, as 
we will show below. 

Let yi, i = 1,.. . ,m, be a histogram. Let the ori- 
gin of x be chosen in such a way that the midpoints 
of the bins are xi = ih; thus yi is the number of raw 
observations with xi - h/2 5 x < xi + h/2. If pi is 
the probability of finding a raw observation in cell i, 
then the likelihood of the given histogram is propor- 
tional to the multinomial likelihood nZ1ppYi. Equiv- 
alently (see Bishop, Fienberg and Holland, 1975, 
Chapter 13), one can work with the likelihood of m 
Poisson distributions with expectations pi = piy+, 
where y+ = m yi. 

To smooth the histogram, we again use a general- 
ized linear model with the canonical log link (which 
guarantees positive p): 

and construct the penalized log likelihood 

with n a suitable (i.e., relatively large) number of 
knots for the B-splines. The penalized likelihood 
equations follow from the minimization of L: 

These equations are solved with iteratively re-
weighted regression, as described in Section 4. 

Now we let h, the width of the cells of the his- 
togram, shrink to a very small value. If the raw 
data are given to infinite precision, we will even- 
tually arrive at  a situation in which each cell of 
the histogram has at  most one observation. In other 
words, we have a very large number (m) of cells, of 
which y+ are 1and all others 0. Let I be the set of 
indices of cells for which yi = 1.Then 

If the raw observations are u, for t = 1,. . . ,r ,  with 
r = y+, then we can write 

and the penalized likelihood equations in (37) 
change to 

For any j ,  the first term on the left-hand side of 
(40)can be interpreted as the "empirical sum" of B- 
spline j ,  while the second term on the left can be 
interpreted as the "expected sum" of that B-spline 
for the fitted density. When h = 0, these terms have 
to be equal to each other for each j .  

Note that the second term on the left-hand side 
of (40) is in fact a numerical approximation of an 
integral: 
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TABLE2 
The value of AIC at  several values of lambda for the Old Faithful density estimate 

h 0.001 0.01 0.02 0.05 
AIC 50.79 48.21 47.67 47.37 

The smaller h (the larger m), the better the app- 
proximation. In other words: the discretization is 
only needed to solve an integral numerically for 
which, as far as we know, no closed form solution 
exists. For practical purposes the simple sum is suf- 
ficient, but a more sophisticated integration scheme 
is possible. Note that the sums to calculate BS in- 
volve all raw observations, but in fact at each of 
these only q + 1 terms Bj(u,) add to their corre-
sponding B f . 

The necessary computations can be done in terms 
of the sufficient statistics Bf: we have seen their 
role in the penalized likelihood equations above. But 
also the deviance and thus AIC can be computed 
directly: 

In the extreme case, when the yi are either 0 or 
1, the term C yiln yi vanishes. In any case it is 
independent of the fitted density. 

The density smoother with P-splines is very 
attractive: the estimated density is positive and 
continuous, it can be described relatively parsimo- 
niously in terms of the coefficients of the B-splines, 
and it is a proper density. Moments are conserved, 
as follows from (19). This implies that with third- 
degree B-splines and a third-order penalty, mean 
and variance of the estimated distribution are equal 
to those of the raw data, whatever the amount of 
smoothing; the limit for high A is a normal distri- 
bution. 

a 

The P-spline density smoother is not troubled by 
boundary effects, as for instance kernel smoothers 
are. Marron and Ruppert (1994) give examples and 
a rather complicated remedy, based on transforma- 
tions. With P-splines no special precautions are nec- 
essary, but it is important to specify the domain of 
the data correctly. We will present an example be- 
low. 

We now take as a first example a data set from 
(Silverman, 1986). The data are durations of 107 
eruptions of the Old Faithful geyser. Third-degree 
B-splines were used, with a third-order penalty. The 

0.1 0.2 0.5 1 10 
47.70 48.61 50.59 52.81 65.66 

domain from 0 to 6 was divided into 20 intervals 
to determine the knots. In the figure two fits are 
shown, for A = 0.001 and for A = 0.05. The latter 
value gives the minimum of AIC, as Table 2 shows. 
We see that of the two clearly separated humps, the 
right one seems to be a mixture of two peaks. 

The second example also comes from (Silverman, 
1986). The data are lengths of spells of psychiatric 
treatments in a suicide study. Figure 7 shows the 
raw data and the estimated density when the do- 
main is chosen from 0 to 1,000. Third-degree B- 
splines were used, with a second-order penalty. A 
fairly large amount of smoothing ( A  = 100) is in- 
dicated by AIC; the fitted density is nearly expo- 
nential. In fact, if one considers only the domain 
from 0 to 500, then A can become arbitrarily large 
and a pure exponential density results. However, if 
we choose the domain from -200 to 800 we get a 
quite different fit, as Figure 8 shows. By extending 
the domain we force the estimated density also to 
cover negative values of x, where there are no data 
(which means zero counts). Consequently, it has to 
drop toward zero, missing the peak for small posi- 
tive values. The optimal value of A now is 0.01 and 
a much more wiggly fit results, with an appreciably 
higher value of AIC. This nicely illustrates how, with 
a proper choice of the domain, the P-spline density 
smoother can be free from the boundary effects that 
give so much trouble with kernel smoothers. 

9. DISCUSSION 

We believe that P-splines come near to being the 
ideal smoother. With their grounding in classic re- 
gression methods and generalized linear models, 
their properties are easy to verify and understand. 
Moments of the data are conserved and the limiting 
behavior with a strong penalty is well defined and 
gives a connection to polynomial models. Bound- 
ary effects do not occur if the domain of the data is 
properly specified. 

The necessary computations, including cross-
validation, are comparable in size to those for a 
medium sized regression problem. The regression 
context makes it natural to extend P-splines to 
semiparametric models, in which additional ex-
planatory variables occur. The computed fit is 
described compactly by the coefficients of the B- 
splines. 
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FIG. 6. Density smoothing of durations of Old Faithful geyser eruptions: density histogram and fitted densities; thin line, third-order 
penalty with h = O.OOl(AIC = 84.05);thick line, optimal h = 0.05,with AIC = 80.17;B-splines of degree 3 with 20 intervals on the 
domain from 1 to 6. 

FIG. 7. Density smoothing of suicide data: positive domain (0-1,000);B-splines of degree 3, penalty of order 2, 20 intervals, h = 
100.AIC = 69.9. 

FIG. 8. Density smoothing of suicide data: the domain includes negative values (-200-800);B-splines of degree 3, penalty of order 2, 
20 intervals, h = 0.01, AIC = 83.6. 

P-splines can be very, useful in (generalized) ad- the iterative smoothing for each separate dimen- 
ditive models. For each dimension a B-spline ba- sion, is eliminated. We have reported on this ap- 
sis and a penalty are introduced. With n knots in plication elsewhere (Marx and Eilers, 1994, 1996). 
each base and d dimensions, a system of nd-by-nd Penalized likelihood is a subject with a grow-
(weighted) regression equations results. Backfitting, ing popularity. We already mentioned the work of 
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O'Sullivan. In the book by Green and Silverman 
(19941, many applications and references can be 
found. Almost exclusively, penalties are defined in 
terms of the square of the second derivative of the 
fitted curve. Generalizations to penalties on higher 
derivatives have been mentioned in the literature, 
but to our knowledge, practical applications are 
very rare. The shift from the continuous penalty to 
the discrete penalty in terms of the coefficents of 
the B-splines is not spectacular in itself. But we 
have seen that it leads to very useful results, while 
gving a mechanical way to work with higher-order 
penalties. The modelling of binomial dose-response 
in Section 7 showed the usefulness of higher-order 
penalties. 

A remarkable property of AIC is that it is easier to 
compute it for certain nonnormal distributions, like 
the Poisson and binomial, than for normal distribu- 
tions. This is so because for these distributions the 
relationship between mean and variance is known. 
We should warn the reader that AIC may lead to 
undersmoothing when the data are overdispersed, 
since the assumed variance of the data may then be 
too low. We are presently investigating smoothing 
with P-splines and overdispersed distributions like 
the negative binomial and the beta-binomial. Also 
ideas of quasilikelihood will be incorporated. 

We have paid extra attention to density smooth- 
ing, because we feel that in this area the advan- 
tages of P-splines really shine. Traditionally, kernel 
smoothers have been popular in this field, but they 
inflate the variance and have troubles with bound- 
aries of data domains; their computation is expen- 
sive, cross-validatio-n even more so, and one cannot 
report an estimated density in a compact way. 

Possibly kernel smoothers still have advantages 
in two or more dimensions, but it seems that 
P-splines can also be used for two-dimensional 
smoothing with Kronecker products of B-splines. 
With a grid of, say, 10 by 10 knots and a third-order 
penalty, a system of 130 equations results, with 
half bandwidth of approximately 30. This can easily 
be handled on a personal computer. The automatic 
construction of the equations will be more difficult 
than in one dimension. First experiments with this 
approach look promising; we will report on them in 
due time. 

We have not touched on many obvious and in- 
teresting extensions to P-splines. Robustness can 
be obtained with any nonlinear reweighting scheme 
that can be used with regression models. Circular 
domains can be handled by wrapping the B-splines 
and the penalty around the origin. The penalty can 
be extended with weights, to give a fit with noncon- 
stant stiffness. It this way it will be easy to specify 

a varying stiffness, but it is quite another matter to 
estimate the weights from the data. 

Finally, we like to remark that P-splines form a 
bridge between the purely discrete smoothing prob- 
lem, as set forth originally by Whittaker (1923) and 
continuous smoothing. B-splines of degree zero are 
constant on an interval between two knots, and zero 
elsewhere; they have no overlap. Thus the fitted 
function gives for each interval the value of the co- 
efficient of the corresponding B-spline. 

APPENDIX: COMPUTATIONAL DETAILS 

Here we look at the computation of B-splines 
and derivatives of the penalty. We use S-PLUS and 
MATLAB as example languages because of their 
widespread use. Also we give some impressions of 
the speed of the computations. 

In the linear case we have to solve the system of 
equations 

and to compute 1 B&12 and t r { ( ~ ~ B  y - +hDTD)- l  . 
B ~ B ) .  We need a function to compute B, the B- 
spline base matrix. In S-PLUS, this is a simple mat- 
ter, as there is a built-in function spline. des () that 
computes (derivatives) of B-splines. We only have to 
construct the sequence of knots. Let us assume that 
xl is the left of the x-domain, xr the right, and that 
there are ndx intervals on that domain. To compute 
B for a given vector x,based on B-splines of degree 
bdeg,we can use the following function: 

bspline <- function(x, xl, xr, ndx, bdeg) ( 
dx<- (xr-xl) /ndx 
knots<- seq(x1- bdeg * dx, xr +bdeg * dx, by = dx) 
B <- spline. des (knots, x, bdeg + I,0 * x) $design 
B 

1 

Note that S-PLUS works with the order of B- 
splines, following the original definition of de Boor 
(1977): the order is the degree plus 1. 

The matrix Dk can also be computed easily. The 
identity matrix of size n by n is constructed by 
diag (n) and there is a built-in function dif f ( ) to 
difference it. With a short loop we arrive at  Dh. 
The computations thus are given as (with pord the 
order of the penalty) follows: 

B <- bspline (x, xl, xr, ndx, bdeg) 
D <- diag(ncol(B)) 
for (k in I :pord) D <- dif f (Dl 
a <- solve (t (B) %*% B + lambda * t (D) %*% D, 

t(B) %*% y) 
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yhat <- B %*% a 
s <- s m ( ( y  - yhat)-2)  
Q <- s o l v e ( t  (B) %*% B + lambda * t (D) %*% D) 

# matrix inversion 
t <- sm(d iag (9  %*% ( t  (B) %*% B) 1) 
gcv <- s / (nrow(B) - t ) - 2  

There is room to optimize the computations above 
by storing and reusing intermediate results. 

MATLAB has no built-in function to compute B- 
splines, so we have to program the recursions our- 
self. We start with the recurrence relation that is 
given in de Boor (1978, Chapter 10): 

where B j, k ( ~ )  -in de Boor's notation is our B j(x; k 
1) (de Boor uses order 1for the constant B-splines, 
whereas we use degree 0). The use of a uniform 
grid of knots at  distances dx = (x,, - xmi,)/nf 
greatly simplifies the formulas. If we define p = 
(x -xmin)/dx, we arrive a t  the following recurrence 
formula: 

The recursion can be started with k = 0, because 
Bj(x; 0 ) =  1w h e h ( j -  1)dx < x-xmin 5 jd, and 
zero for all other j .  Also, Bj(x; k) = 0 for j < 0 and 
j > n. This leads to the following function: 

funct ion B = bspl ine  (x ,  x l  , xr  , ndx, bdeg) 
dx = (xr  - x l )  / ndx ; 
t = x l  + dx * [-bdeg :ndx-I] ; 
T = ( O * x + l )  * t ;  
X = x *  ( O * t + l ) ;  
P = (X - T) / dx; 
B =  (T<=X)  & (X<  ( T + d x ) ) ;  
r = [2 : l eng th ( t )  I] ; 
f o r  k  = 1:bdeg 

B =  (P . * B +  ( k + l  - P )  . * B ( : ,  r ) )  / k ;  
end ; 

end ; 

The computation of Dk is a little simpler, because 
there is the built-in function d i f f  0 that accepts 
a parameter for the order of the difference. Conse- 
quently, in MATLAB the computations look like the 

following: 

B = bspl ine  (x,  x l  , x r  , ndx, bdeg) ; 
[m n] = s i z e  (B) ; 

D = di f  f  (eye (n) , pord) ; 
a =  (B' * B + l a m b d a * D '  * D )  \ (B' * y ) ;  
yhat = B * a ;  
Q = inv(B1 * B + lambda * D '  * Dl; 
s = sum((y - yhat) . ^  2) 
t = sum(diag(Q* (B' * B ) ) ) ;  
gcv = s / (m - t ) - 2 ;  

The formulas for the penalized likelihood equa- 
tions describe how to incorporate the penalty when 
one has access to all the individual steps of the re- 
gression computations. If this is not the case, data 
augmentation can help. Instead of working with the 
matrices B of B-splines regressors and Dk of the 
penalty separately, and combining their inner prod- 
ucts, augmented data can be constructed as follows: 

where - indicates regression of the left-hand vector 
on the right-hand matrix. For linear problems, it 
is enough to do this only one time. In generalized 
linear models, data augmentation has to be done 
anew in each of the iterations with weighted linear 
regressions. 

We tested the above program fragments on a PC 
with 75-MHz Pentium processor, with S-PLUS 3.3 
and MATLAB 4.2, both operating under Windows 
for Workgroups. The data were those from the mo- 
torcycle helmet experiment, as presented in Fig- 
ure 2. There are 133 data points and we used 20 
intervals on the x-domain. S-PLUS took about 0.9 
second, Matlab about 0.2 second (for one value of 
A). These times can be reduced to 0.6 second and 0.1 
second, respectively, by storing and reusing some in- 
termediate results (BT B and the inverse of BT B + 
AD; D ~ ) .  

Functions for generalized linear estimation can 
be obtained from the first author. We are preparing 
a submission to Statlib. 
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B-splines. I also enjoyed reading the part where the 
authors applied their procedure to some examples. 
As shown in the paper, the approach has several 
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posed procedure needs a parameter 
control the smoothness of the fitting curve. My com- 


