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LOCAL LINEAR REGRESSION SMOOTHERS AND THEIR 
MINIMAX EFFICIENCIES ' 

University of North Carolina 

In this paper we introduce a smooth version of local linear regression 
estimators and address their advantages. The MSE and MISE of the 
estimators are computed explicitly. It turns out that the local linear 
regression smoothers have nice sampling properties and high minimax 
efficiency-they are not only efficient in rates but also nearly efficient in 
constant factors. In the nonparametric regression context, the asymptotic 
minimax lower bound is developed via the heuristic of the "hardest one-
dimensional subproblem" of Donoho and Liu. Connections of the minimax 
risk with the modulus of continuity are made.' The lower bound is also 
applicable for estimating conditional mean (regression) and conditional 
quantiles for both fixed and random design regression problems. 

1. Introduction. Nonparametric regression provides a useful diagnostic 
tool for data analysis. A useful mathematical model is to think of estimating a 
regression function 

based on a random sample of data (XI, Y,), . . . ,(X,, Y,) from an unknown 
joint density f ( .  , . 1. For convenience, we will suppress the dependence of the 
regression function m (. ) on f.  Popular kernel methods for estimating m (. ) 
include the Nadaraya-Watson [Nadaraya (1964) and Watson (1964)l and the 
Gasser-Muller [Gasser and Muller (1979)l estimators. This paper focuses on 
studying the asymptotic properties of the local linear regression smoothers. 
One motivation of introducing this class of estimators is that they repair the 
drawbacks of the Nadaraya-Watson and Gasser-Muller estimators. See Fan 
(1992) and Chu and Marron (1991) for additional discussion. 

Another important motivation of studying the local linear smoother is to 
find (nearly) precise minimax risk in the regression setup. With an optimal 
choice of kernel and bandwidth, the estimator provides a good upper bound on 
the minimax risk. The lower bound is derived by using the heuristic of the 
"hardest one dimensional subproblem". In particular, a geometric 
quantity-modulus of continuity [Donoho (1990) and Donoho and Liu (1991)l 
is involved in both the lower and upper bound. We show that the minimax 
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lower bound is nearly sharp for the following two cases: 

1. Bounded two-derivative constraints [see (3.4)]. 
2. Bounded Lipschitz constraints (see the example in Section 5.1). 

These minimax results, on the other hand, give theoretical supports to the 
intuitively appealing method-local linear smoothers. We would expect, but 
have not yet shown, that such a lower bound is nearly sharp for other 
constraints. 

We decompose the difficulty of nonparametric regression into two parts: 
constraints on the regression function itself and constraints on marginal 
densities and conditional variances. It turns out that the upper bound of the 
conditional variances and the lower bound of the marginal densities are 
strongly related to minimax risks. An important application of the lower bound 
is to determine the efficiency of a regression estimator (see Section 5.1). Even 
though our attention is focused on random design problems whose marginal 
densities are also unknown, the lower bound is also applicable for both fixed 
and random design problems whose marginal distributions are known. 

Our approach on the lower bound is related to other work in the literature 
and in particular the work in white-noise models and density estimation 
models. See Section 5.2 for further references. What seems innovative in our 
approach is the use of normal submodels to avoid the technicalities of conver- 
gence of experiments [Le Cam (1985)l. 

The paper is organized as follows. Section 2 introduces local linear 
smoothers, whose mean squared error (MSE) and mean integrated squared 
error (MISE) are computed in Section 3. We use the risks of these regression 
estimators as upper bounds of the minimax risks. The minimax problems are 
studied in Section 4, paying particular attention to the lower bound. Potential 
applications of the lower bound are discussed in Section 5. Proofs are deferred 
until Section 6. 

2. Local linear smoothers. Let us extend the idea of local linear regres- 
sion. A similar idea can be found in Stone (1977), Cleveland (1979), Lejeune 
(1985) and Miiller (1987). Assume that we know that the second derivative of 
m( x )exists. Our proposal is to construct a smooth version of a local polyno- 
mial: finding a and b to minimize 

n 

C (Yj - a - b(x0- X j ) )  
1 

where K(.)  is a kernel function and h ,  is a bandwidth. Let li and 8 be the 
solution to the weighted least squares problem (2.1). Simple calculation yields 

with wjdefined by (2.3). For a technical reason (to avoid zero in the denomina- 
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tor), we use h ( x O )  to estimate the regression function m(xo): 


where 

with 

A nice feature of estimator (2.2) is that the weight wj satisfies 
n 

(2.5) C ( x 0  -x j )w j  = 0. 
1 


This property ensures that the bias of the estimator does not depend on the 
derivatives of the marginal density. To see this, we note that by (2.5), 

If we do Taylor expansions for m(Xj) at point x,, the second term is of order 
O(h;), as effective design points have order (X, - x0)' = O(h2,). Thus no 
derivative of fx(.) is involved in the preceding calculation (rigorous proof can 
be found in the proof of Theorem 1). 

We refer to estimator (2.2) as a local linear regression smoother for the 
reasons that it is derived by using a local linear approximation and that it is 
linear in the response. It will become clear in Section 3 that the local linear 
smoother has important sampling properties: It adapts to both random and 
fixed designs and to a variety of design densities fx(.). Moreover, the best local 
linear smoother is the best linear smoother in an asymptotic minimax sense 
(Theorem 5). The local linear smoother also has good finite sampling and 
design-adaptation properties. See the simulations and discussions in Fan 
(1992) for details. 

Let us briefly mention how the previous idea can be extended to the case 
where m(x) has a bounded k th  derivative. The idea is exactly the same except 
replacing the linear polynomial in (2.1) by a (k - 1)-order polynomial. In 
particular, when m(x) has one derivative, one finds the minimizer of 

and the resulting estimator is the Nadaraya-Watson estimator. In other 
words, we use this estimator when the unknown regression function has only 
a bounded derivative. 
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3. Asymptotic properties. We now discuss the asymptotic properties of 
estimator (2.2). Assumptions are as follows. 

(i) The regression function m(.)  has a bounded second derivative. 
(ii) The marginal density fx(.) of X satisfies If(x) - f(y)I 5 C ~ X- yl", for 

0 < a < 1,and fx(xo) > 0. 
(iii) The conditional variance a2(x)  = Var(ZIX = x) is bounded and contin- 

uous. 
(iv) The kernel K( . )  is a bounded and continuous density function satisfy- 

ing 

m 

y2rK(y) < cc, for r = 1 , 2 , .. . . 

Note that the conditions on K( . )  are imposed for the convenience of 
technical arguments and can be relaxed. 

THEOREM1. Under Condition 1, if h, = dn-P, 0 < P < 1, then estimator 
(2.2) has the MSE 

1 m 
2 

E ( h ( x 0 )  - m(x0)l2= -4 (mu(x0) /  UZK(U)  d u )  h", 
-m 

Let w(.) be a bounded weight function with a compact support [ a ,  b]. Then 
the MISE can be obtained as follows. 

THEOREM2. Under Condition 1, iff,(.) is bounded away from 0 on the 
interval [ a ,  b], then the MISE is given by 
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Simple algebra yields the optimal bandwidth for MISE (3.2) 

j m , f - 1 ( ~ ) a 2 ( ~ ) ~ ( ~ )  d~~x~:K~(u) 
n - l / 5 .

2
[j"u2K(u) du]  j ? , ( m " ( ~ ) ) ~ w ( x )  dx 

We now state a uniform convergence result of Theorem 1. 

THEOREM3. If the kernel satisfies Condition 1and h, = dn-P, 0 < /3 < 1, 
then 

where, with C, C*, B, b, c and a being positive constants, 

REMARK1. The Lipschitz condition in (3.4) is imposed only for a technical 
reason in the development of the upper bound. The constants a and c will not 
be involved in the following discussion. The uniform convergence will be used 
in Section 4 where minimax risk is evaluated [see Theorem 4 and (4.3)]. In 
MSE terms, by (4.3), local linear smoother (2.2) with h, minimizing (3.3) has 
minimax efficiency 

where R(n,  6)= infpn supf, 82 E~(f', - m(x0))' is the minimax risk. For 
example, estimator (2.2) with the EpaneEnikov and normal kernel has at  least 
efficiency 89.6% and 87.8%, respectively. 

4. Asymptotic minimax theory. It  is well known that estimator (2.2) is 
optimal in terms of rates of convergence [see Stone (1980)l. More precisely, it is 
not possible to improve the rate nP4I5 uniformly in d2defined by (3.4). In 
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other words, the minimax risk 

R ( n ,  4)= inf sup ~ ~ ( f ' ~rn(x,))'- x n-4/5, 
?n fe-e, 

where " x " means that both sides have the same order. That is, only the rate 
of the asymptotic minimax risk is known. Naturally, one would ask how far 
away from optimal is the constant factor of the local linear smoother. In this 
section we are going to show that e s t i q ~ t o r  (2.2) is nearly optimal in constant 
factors as well. Moreover, we will show that it is the best linear smoother in a 
large class of linear methods. These results are new in nonparametric regres- 
sion context. Indeed, without using the local linear smoother, it is not easy to 
give a precise evaluation of the minimax risk R(n,  c?~). 

4.1. An upper bound of minimax risk. An obvious upper bound of R(n,  4,) 
is (3.3). Minimizing the right-hand side of (3.3) yields an optimal choice of 
bandwidth and kernel function: 

Substituting them into (3.3) yields a minimax upper bound: 

The right-hand side of (4.2) is the risk of the estimator riz*(x,) defined by (2.2) 
with bandwidth and kernel given by (4.1). 

THEOREM4. An upper bound of the asymptotic minimax risk is given by 
(4.2). Moreover, the estimator h*(x,) has asymptotic minimax efficiency at  
least 89.6%: 

The last statement in Theorem 4 will be verified in following sections, where 
a more general theory for the lower bound is developed. Combining the two 
statements in Theorem 4 yields the minimax risk: 

Theorem 4 proves that the estimator riz*(x,) is nearly an asymptotic 
minimax estimator. The following theorem shows that it is also an asymptotic 
linear minimax estimator. To ~IX the idea, call an estimator riz,(x,) linear if it 



is a weighted average of 5 ' s :  

Evidently, the local linear regression smoother riz*(x,) is a linear smoother. 
Let the minimax risk of linear smoothers be 

RL(n ,  g2 )  = inf sup E(riz,(x,) - m(x,))'.
riLL linear 

f . 8 2  

Then we have the following result. 

THEOREM The linear minimax risk is given by 5 .  

and the estimator riz*(x,) is the asymptotic best linear smoother in the sense 
that 

~ , ( n ,  d2 ) /  sup E(rizX(x0) - +m ( ~ , ) ) ~1. 
f E 8 2  

4.2. Modulus of continuity. Connections of modulus continuity with both 
upper and lower bounds for nonparametric density models and Gaussian white 
models have been extensively studied in the literature. See Donoho (19901, 
Donoho and Liu (1991), Donoho and Nussbaum (1990), among others. How- 
ever, in a nonparametric regression context the connections appear to be new. 

Assume more generally that we wish to estimate m f(xo) = Ef(YIX = x,) 
with a nonpararnetric constraint f CE F. For convenience of discussion, as- 
sume that F= Fm n Fb,, [compare (3.4)1, where Fm contains constraints 
on m and Fb,, imposes constraints on marginal densities and conditional 
variance: 

Note that the Lipschitz condition Ifx(x) - fx(y)l I clx - yl" is used only for 
technical arguments in the upper bound and hence the constants c and a are 
not related to the upper and lower bound. Indeed, in the lower bound develop- 
ment below this condition will not be used. 

Define the modulus of continuity at  a point x, over Fm by 

where II . II is the usual L2-norm on L2( -w, w). In nonparametric applications, 
one typically has 
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and the extremal pair is attained at m ,( .) and m ,(. ) satisfying 

(4 .8)  m , ( x )  - m , ( x )  
xo - x + o ( 1 ) )  uniformly in x as E= E ~ ~ ! F j ( l  + 0 ,  

where q = 1 - p and H ( .) is a bounded and continuous function. 

DEFINITION.A functional m f ( x o )is regular on Fmwith exponent p ,  if the 
extremal pair of modulus of continuity (4.7)exists and has form (4.8). 

As an illustration, consider the constraint ~ 9 ~ .A similar computation can 
also be found in Donoho and Liu (1991).In this case, 6Y2 = g2n Fb,where 

(4 .9)  g2= { m ( . ) :  I m ( x )  - m ( x , )  - m t ( x 0 ) ( x- x,)l r C ( x  - ~ , ) ~ / 2 } .  

Let us determine the modulus function for the class g2: 

First, by Lemma 7 of Donoho and Liu (1990 , the extremal pair can be chosen 
of the form: m ,  = m and m ,  = - m .  Thus 

It follows that wg2 is the inverse function of 

E ( W )  = 2  inf{llm(.)ll: Im(x,)l = w / 2 ,  m  E g2}. 

A solution to the last problem is obviously the function m*( . )which is equal 
to w/2  at xO and descends to 0 as rapidly as possible: 

m * ( x )  = [ w- C ( X- xo)2]2 . 

The L2-norm of m*( .) is given by 

This implies 

Hence 

(4.10) w d ~ )= 

The extremal pair is attained at  m ,  = m* and m ,  = -m* with 

m * ( x ) = 2 - 1 [ ( 1 5 / 1 6 ) 2 / 5 ~ 1 / 5 ~ 4 / 5C ( X-- x , ) ~ ]+ 

Hence condition (4.8) holds with p = 4 / 5  and 

H ( x )  = ~ ' / ~ [ ( 1 5 / 1 6 ) ~ / ~C4/ 'x2]+.-
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The relationship between the modulus of continuity and the upper bound 
(4.2) can be expressed as 

where p = 4/5, the exponent of the modulus of continuity, and q = 1- p .  

4.3. Heuristics of the hardest one-dimensional subproblem. Let us turn 
our attention away from the specific constraint 8'2toward a general constraint 
F =  Fmn Fb,,. Assume that m(xo) (suppress the dependence on f )  is 
regular on Fmwith exponent p .  Consider the nonparametric minimax risk 

R ( n ,  F )  = inf sup E f ( f n- m(x0)l2 .  
p, measurable f~ F 

Assume that Fmis convex so that 

where mo and m, are an extremal pair of the modulus of continuity 
(2JpB/(nbq)) [compare (4.11)]. Thus there exists a family of joint densi- 

@ ~ m
ties Fo= { f,: 0 E [O, 11) such that 

An obvious lower bound on R(n,  F )  is 

2 
= Imo(xo)- ml(xo)12A inf sup E(Pn - 0) 

(4.14) T, measurable 05 8 5 1 

2 
inf sup E(Pn - 0) ( 1  + o(1)). 

The last equality holds since mo and m, are the extremal pair of the modulus. 
Thus we have reduced the full nonparametric problem to a one-dimensional 
subproblem (estimating 0 from the parametric family Yo) and made the 
connection of the lower bound with the modulus of continuity. 

Relevant information on the second factor of (4.14) is estimating a bounded 
normal mean from a normal model. See Bickel (1981), Ibragimov and 
Khas'minskii (1984), Donoho, Liu and MacGibbon (1990)' among others. 
Consider observing the real-valued random variable Y - N(0, a2);  the objec- 
tive is to estimate 0 knowing that 0 is bounded: 101 I T. The minimax risk for 
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this problem is denoted by 

(4.15) p , (~ ,  o )  = inf S U P E ( P ~ ( Y )- o)', 
p measurable 1 0 1  1 7  

which has a simple relation: 

PN(T, = u 2 ~ N ( ~ / ~ ,1) .  

Similarly, minimax affine risk is 

T 2 a 2  
pA(7,u) = inf sup (a  + bY - 6) = ---

T 2  + u 2  ' 
a s  IeIsr 

However, there is no closed form for p,, but a simple inequality is available: 

(4.16) 0.8 5 qE- pN(1/2, &)/pA(1/2, &) 2 1 

[Donoho, Liu and MacGibbon (1990)l. 
We would expect that the second factor of (4.14) is (see Section 4.4 for 

details) 

If we show that 

2 
(4.17) liminfinf sup E(P~(x, ,Y,, . . . ,Xn,Yn) - 0)  r p ,  

n-m Tn lOl21/2 

then (4.14) leads to 

where (4.16) was used in the last expression and 5, = 7m. 
Comparing the last display with (4.12), we have given a nearly sharp 

evaluation of the asymptotic minimax risk for the class of constraint 8'2.In 
that case, p = 4/5 and a better evaluation is available: 5,/, 2 1/1.243 [see 
Table 1 of Donoho and Liu (1991)l. This proves the second conclusion of 
Theorem 4 and it remains to verify (4.17). 

4.4. Modulus continuity and minimax lower bound. To validate (4.17), we 
consider a normal submodel: 

where g(x) is a marginal density, and m, was defined by (4.13). We make an 
assumption on the richness of F. 
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Richness ofjoint densities. There exists a bounded density g with g(x,) = b 
such that the normal submodel (4.18) is in  the class of constraint F=Fmn 
=%, B .  

Based on the normal submodel (4.18),a sufficient statistic for 0 would be 
n 

8 n  C (5- m o ( x j ) ) ( m l ( x j )- m o ( X j ) ) ?  
1 

(4.19) 
n 

6: = C ( m o ( X j )- m , ( x j ) )  
2 . 

1 

Thus considering statistics based on 6:, and 6: would be good enough for 
estimating the unknown parameter 6. Note that conditioning on X I , . . . ,X,, 

8,/6,2 N ( 0 ,  B / 6 2 ) .  

Hence definition (4.15)gives 

(4.20) inf sup E ( ( P ,  - o)~Ix , ,. . . ,  x,) = p 
1 
~ 

JB 
T, leis 112 

Recall that m o  and m ,  are the extremal pair of w ~ J E , ) with E ,  = 

2 \ l i m .  Regularity condition (4.8) leads to 

m o ( x )- m l ( x )  = E P ~ ( c ) ( l  and&? + o ( 1 ) )  

The last two displays imply / "_H2(x )  dx = 1. Note that by (4.211, 

and 
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These two facts demonstrate that 

Heuristically (rigorous proof is given in Section 6), (4.20) and (4.22)entail 

2 =,,[-,-I 1 JB  =pN(i,E),i,Tn Is15 1/2 E(% - ensup 2 

This together with (4.20)validate (4.17). 

THEOREM6.  Let Fm be convex and F= Fm n Fb,, be rich. If m f ( x o )  is 
regular on Fm with exponent p, then a minimax lower bound is given by 

where Fb,, and 6, = 17 1/4/4p were defined by (4.6) and (4.161, respectively. 
The left-hand side of (4.23), omitting the factor tP,is also a linear minimax 
lower bound. 

REMARK2. The result of Theorem 4 holds also for a random-design 
regression problem whose marginal density is known to be g ( . )with g(x,)  = b. 
The reason is that in the lower bound development, the marginal density was 
fixed all the time. The lower bound is also applicable for fixed designs with 
design points xi = G ( i / n )  and G' = g ,  since previous arguments were condi- 
tioned on covariates X I , . . . ,X,. 

REMARK3. Suppose that we wish to estimate a conditional quantile Qr(xo)  
defined by [see Truong (1989)l 

P{Y I Q,(x,)lX = x,) = r ,  

based on a random sample of size n .  Then for normal submodel (4.18), 

Q,(.O) = mo(x0)  + z ,JB,  

where z ,  = W 1 ( r )and @(.) is the standard normal cdf. Thus estimating 
Q,(xO)in the normal submodel is as difficult as estimating mo(xo) .This yields 
a lower bound: 

2 ppqq
inf suPEf(!f' - Q , ( X , ) )  2 6 p T @ $ m [ 2 G ) ( 1  + ~ ( l ) ) ,  
Fn f € F  

However, it remains unknown how sharp this lower bound is for estimating 
conditional quantiles. 

5. Discussion. The minimax lower bound is derived via the heuristic of 
hardest one-dimensional subproblem. We have shown that such a bound is 
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indeed nearly sharp for a two-bounded-derivative constraint. Analysis of 
minimax upper bounds for other constraints goes beyond the intent of this 
paper, but provides interesting topics for future research. 

5.1. Nearly sharp lower bound. We have shown that a minimax lower 
bound is [tp2 0.8 = 0.894', by (4.16)l 

If one can find an estimator such that its maximum risk is no larger than 

then such an estimator has at least a minimax efficiency 89.4% in a sense 
similar to Theorem 4, and consequently the lower bound is nearly sharp. With 
such a sharp minimax lower bound, we can compute the efficiency as follows: 

Minimax lower bound (5.1) 
(5.3) Efficiency of an estimator 2 

Maximum MSE of the estimator 

Two-bounded-derivative constraints 8' are not the only examples that the 
upper bound (5.2) holds. We conjecture that a general theory can be made if 
one makes connections with white-noise models as Donoho and Liu (1991) did 
in density estimation. Let us give another example in which the minimax 
upper bound (5.2) holds. 

EXAMPLE(Bounded Lipschitz constraints). Let (XI, Y,), . . . ,(X,,Y,) be 
i.i.d. from a joint density f E 6 = 9,n Fb, with 

9,= { m ( . ) :  Im(x) - m(y)l I Clx - y l , V x , y  E R} .  

A similar machinery from (4.9) to (4.10) yields the modulus of continuity: 

,) = 31/3C1/382/3,wg;a,( 

and m(x,) is regular on 9,.This together with Theorem 6 leads to 

where = 1/1.178 = 0.92' by Donoho and Liu (1991). On the other hand, 
exhibiting the maximum risk of the estimator 

with h(,2)= ( 3 ~ / b C ' n ) ' / ~  [corresponding to estimator (2.6) with K(x) = 
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(1 - lxl)+lyields an upper bound: 

that is, (5.2) holds. In summary, we have the following result. 

THEOREM Under the constraint dl,the minimax risk is bounded by 7. 

Moreover, estimator (5.4) has asymptotic minimax efficiency at least 92%. 

5.2. Relation to other work. Vast literature has been devoted in analyzing 
the behavior of the Nadaraya-Watson and the Gasser-Miiller regression 
estimators. Drawbacks of these estimators are eliminated via introducing a 
new class of estimators. 

Previous work on minimax regression problems has mainly focused on 
determining optimal rates of convergence [Stone (1980)l. Local polynomial 
regression estimators were used in Stone (1980) to determine the rates of 
convergence. To analyze constant factors, we extend the idea of local polyno- 
mial regression estimators. 

A closely related idea for minimax bounds is the work of Donoho (1990) and 
Donoho and Liu (1990, where white-noise and density estimation models are 
emphasized. What seems innovative in our approach is the decomposition of 
nonparametric constraints into two parts: Fm and Fb,,, and the use of 
normal submodels to avoid technicalities of convergence of experiments. 

Other efforts in finding minimax risks in the regression setup include Sacks 
and Ylvisaker (1978) and Li (1982) who find minimax linear estimates for fixed 
designs under some specific constraints, and Nussbaum (1985) and Low (1993) 
where the attention is mostly focused on some specific global problems. In 
particular, Sacks and Ylvisaker (1978) offer a method of solving the linear 
minimaxity issues. This paper attempts to give a general theory for under- 
standing minimax nonparametric regression and provides an insight to this 
problem. In the density estimation setup, contributions include Sacks and 
Ylvisaker (19811, Efroimovich and Pinsker (19821, Sacks and Strawderman 
(1982), Birg6 (1987) and Donoho and Liu (1991). There is also a long history in 
finding minimax risks for Gaussian white-noise models and other related 
problems. See Pinsker (19801, Ibragimov and Khas'minskii (1984), Brown and 
Liu (1989), Donoho and Johnstone (1989), Donoho, Liu and MacGibbon 
(1990), Donoho and Nussbaum (1990), among others. 

6. Proof. Theorems 1-3 can be proved along the same lines. The proof of 
Theorem 3 is more involved and requires more details. For this reason we 
decide only to prove Theorem 3. 



210 J. FAN 

PROOFOF THEOREM First of all, estimator (2.2) has the MSE 3. 

Denote Zn = Or(a .), if supf, 42 E (Zn(' = O(a',). A similar meaning extends 
to or(a ,). Obvious operations include 

Or(an)  Or(bn) = OrI2(an b,) (Cauchy-Schwarz inequality) 

and 

We also use o and 0 to denote the order of magnitude uniformly in f E d2.  
For example, expression (6.3) means that 

sup IEs,,, - nhflf(xo)sll = O ( h 3 ) .  
fed2 

Then it is easy to show, by using the method of the kernel density estimate, 
that with s,, ,defined by (2.4), 

(6.3) Es,,, = nhflfx(xo)s,( l  + O(h",), 1 = 0 ,1 ,2 ,  
and that [see (6.2)] for an integer r > 0, 

where s, = ~ " u ~ K ( u )du and, in particular, so= 1 and s, = 0. A direct 
consequence of (6.4) is that 

Next, let Wn = (C;wj + nP2)/(n2hi) and W = s2fi(xO). We are going to 
show that 
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To see this, we first note that 

( w / ~ ) ~ E ( w ,- w)' + n16E(Wn - W ) ' ~ ~ ~ ~ , - W ~ , W / O )  

= A n  + B,, 

where the fact that Wn 2 n-' was used in the second term. Next (6.5) assures 
that A, = o(1) and that 

by choosing a sufficiently large r. Thus (6.6) holds. A direct consequence of 
(6.6) is that the second term of (6.1) has order 

This and (6.1) lead to 

and the conclusion follows if we show that the main term 

c?[Y,- m(xo)] wj 
C:wj + n P 2  

has bias and variance decomposition (3.3). 
Conditioning on covariates Xj, j = 1,. . . ,n and then using mean and 

variance decomposition, we have 

Let R(Xj) = m(Xj) - m(xo) - m1(x0)(Xj- x,). Then (2.5) leads to 
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By a standard argument [see (6.211, for I = 0,1, we have 

and 

xo - X  
sup h ; 3 - 1 E ( m ( X )- m ( x o )- m l ( x o ) ( x- ) - O K (] 1 

fE - e ,  

Substituting the last two displays into (6.9) and using (6.4), we have 

where 

It is concluded from (6.6) that 

By (6.10), we have 
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Hence (6.11) entails that 

To complete the proof, we need only to compute the second term of (6.8). 
Note that 

n 

u z ( x j )w," 
1 

A standard argument [see (6.2)l yields 

Since s, = 0 the dominant term of (6.12) is its first term: 

Consequently, combination of (6.4), (6.12) and (6.13) gives 

and we conclude from (6.6) that 

C;u2(Xj) w," n3h;~ f i ( x , ) s ~ j K ~ ( u )du 
sup E 
P=&, (c;wj + n-')' n4his,Zf$(xo) 

This completes the proof. 

PROOFOF THEOREM5. Since (4.2) also supplies an upper bound for 
RL(n,8,), it suffices to show that 
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For a linear smoother (4.41, by Lemma 1of Fan (1992), 

Thus, by Jessen's inequality, 

Specifically, take a submodel fo(.,  . ) E 8, such that mo(y) = (bz/2)[1 -
C(y - ~ ~ ) ~ / b ~ ] + ,a t ( . )  = B and fX(xO)= b, where b, = ( 1 5 @ ~ / b n ) ' / ~max-
imizes (6.16). Then it is easy to verify that 

Substituting this into (6.15), we have 

This verifies (6.14) and completes the proof. 

PROOFOF THEOREM6. We need only to prove (4.17). First of all, let ~ ( 8 )be 
a least favorable prior for problem (4.15) with 7 = 0.5 and a = dq/4p, 
namely, 

Denote the Bayes risk with the prior .rr for normal model X - N(8, a 2 )by 

Then (6.17) can be expressed as 

(6.18) B,(~X)= P N ( o . ~ ,\iq/lp). 
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Next, let us turn our attention back to problem (4.17) with n i.i.d. observa-
tions {(X,,Y,)}from (4.18). By sufficiency, 

2 
inf sup E(~',(x,, Y,, . . . ,X,, Y,) - 8) 
T, lelso.5 

= inf sup E(9: ($,, 6,j - 8)' 
ri.2 1 8 1 ~ 0 . 5  

2 
r inf E, E(f': ($,, &, - 8)

ri.2 

2 E6,inf E, Ei, [(f',($,, 19,)- 8)21&n], 
ri., 

where 2, and 6:,were defined by (4.19). Given &,, &/en- N(8, B/&:). Thus, 
by (6.19), 

2 
inf sup ~ ( f ' ,- 8) 2 E , ~ B , ( ~ / & , ) .  
T, 181~0.5 

Note that BJ.1 is bounded by 1/4 (as 181 I0.5) and continuous. The domi-
nated convergence theorem, (4.22) and (6.18) yield 

This together with (6.19) entail 
2 

liminfinf sup E(P, - 8) 2 p N ( ~ . 5 , d a ) ,  
n - m  ri., 1elSo.a 

as was to be shown. 
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