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VARIABLE BANDWIDTH AND LOCAL LINEAR 

REGRESSION SMOOTHERS 


University of North Carolina and Limburgs Universitair Centrum 

In this paper we introduce an appealing nonparametric method for 
estimating the mean regression function. The proposed method combines 
the ideas of local linear smoothers and variable bandwidth. Hence, it also 
inherits the advantages of both approaches. We give expressions for the 
conditional MSE and MISE of the estimator. Minimization of the MISE 
leads to an explicit formula for an optimal choice of the variable bandwidth. 
Moreover, the merits of considering a variable bandwidth are discussed. In 
addition, we show that the estimator does not havit boundary effects, and 
hence does not require modifications at the boundary. The performance of 
a corresponding plug-in estimator is investigated. Simulations illustrate the 
proposed estimation method. 

1. Introduction. In the case of bivariate observations, it is of common 
interest to explore the association between the covariate and the response. One 
possible way to describe such an association is via the mean regression 
function. A flexible estimation method does not make any assumption on the 
form of this function. This form should be determined completely by the data. 
In other words, a nonparametric approach is preferable. 

In this paper, we will concentrate on nonparametric kernel-type estimation, 
a popular approach in curve estimation. Let (XI, Y,), . . . ,(X,, Yn) be a random 
sample from a population (X, Y) and denote by 

the mean regression function of Y given X. Further, we use the notations 
fx(.) and a'(.) for the marginal density of X and the conditional variance of 
Y given X, respectively. 

Most regression estimators studied in the literature are of the form 

Such a kind of estimator is called a linear smoother, since it is linear in the 
response. In this paper we consider a linear smoother which is obtained via a 
local linear approximation to the mean regression function. More precisely, the 
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estimator is defined as h ( x )  = 6 ,  where ci together with 8 minimizes 

with K( . )  a bounded (kernel) function and h ,  a sequence of positive numbers 
tending to zero, called the smoothing parameter or bandwidth. I t  turns out 
that h ( x )  is the best linear smoother, in the sense that it is the asymptotic 
minimax linear smoother when the unknown regression function is in the 
class of functions having bounded second derivative. This property is estab- 
lished in Fan (1992a). The preceding idea is an extension of Stone (1977), who 
uses the kernel K(x) = 1[,,,,,]/2, resulting in the running line smoother. For 
a further motivation and study of linear smoothers obtained via a local 
polynomial approximation to the regression function see Cleveland (1979), 
Lejeune (1985), Miiller (19871, Cleveland and Devlin (1988) and Fan 
(1992a, b). We will refer to the estimator h ( x )  as a local linear smoother. 

The smoothing parameter in (1.1) remains constant, that is, it depends on 
neither the location of x nor on that of the data X j .  Such an estimator does 
not fully incorporate the information provided by the density of the data 
points. Furthermore, a constant bandwidth is not flexible enough for estimat- 
ing curves with a complicated shape. All these considerations lead to introduc- 
ing a variable bandwidth h ,/cu(Xj), where a( . )  is some nonnegative function 
reflecting the variable amount of smoothing at  each data point. This concept of 
variable bandwidth was introduced by Breiman, Meisel and Purcell (1977) in 
the density estimation context. Further related studies can be found in 
Abrarnson (1982), Hall and Marron (1988), Hall (1990) and Jones (1990). 

The estimation method considered in this paper combines the merits of the 
two preceding procedures. We will study a local linear smoother with variable 
bandwidth. I t  is expected that the proposed estimator has all the advantages of 
both the local linear smoothing method and the variable bandwidth idea. We 
now give a formal introduction of the estimator. Instead of (1.1), we minimize 

with respect to a and b. Denote the solution to this problem by 6 ,  8.Then the 
regression estimator is defined as 6,  which is given by 

where 
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with 

It  will become clear in the next sections that the estimator (1.3) has several 
important features. First of all, it shares the nice properties of the local linear 
smoother: it adapts to both random and fixed designs and to a variety of design 
densities fx(.) [see Fan (1992a)l. Furthermore, it does not have the problem of 
"boundary effects." Also the implementation of a variable bandwidth leads to 
additional advantages. It gives a certain flexibility in smoothing various types 
of regression functions. By choosing a(x) = f$I4(x) the estimator (1.3) is 
asymptotically equivalent to a smoothing spline [see Silverman (1984)l. With 
a(x) = fx(x) the estimator A(x) corresponds approximately to a nearest-
neighbor estimator [see Jennen-Steinmetz and Gasser (1988)l. The perfor- 
mance of the estimator can be studied via the mean integrated squared error 
(MISE). Optimization over all possible variable bandwidths leads to an optimal 
bandwidth and hence improves this performance. I t  will be seen that for an 
optimal choice of a( . )  this function is proportional to f$I5(.), and this is 
precisely how an ideal variable kernel smoother should behave [see Silverman 
(1984)l. With a particular choice of the variable bandwidth, the estimator will 
have a homogeneous variance (i.e., independent of the location point x), and 
this is a desirable property. Other advantages of the proposed estimation 
method will show up in Sections 2-6. 

The paper is organized as follows. In the next section, we study in detail the 
asymptotic properties of the proposed estimator and derive an optimal choice 
for the variable bandwidth. Section 3 focuses on boundary effects. In Section 4, 
we investigate the performance of the local linear smoother with estimated 
variable bandwidth. The finite sample properties of the estimator are illus- 
trated via simulations in Section 5. Some further remarks and discussions are 
given in Section 6. The last section contains the proofs of the results. 

2. Asymptotic properties and optimal variable bandwidth. First of 
all, we study the asymptotic properties of the local linear smoother (1.3) 
introduced in Section 1. In the following theorem we give an expression for the 
conditional mean squared error (MSE) of the estimator. 

THEOREM Assume that fx(.), a(.), mu(.) and a( . )are bounded func- 1. 
tions, continuous at  the point x, where x is in the interior of the support of 
fx(.). Suppose that min, a(z) > 0, lim sup,,, ,,lK(u)u51 < cc and nh, + a. 

Then, the conditional MSE of the estimator (1.3) at  the point x is given by 
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where 

and 

with s, = /+:K(u)u2 du, I = 0,1,2,3. 

If we take a( . )  = 1, the preceding result slightly generalizes the known 
result for the estimator with a constant bandwidth [see Fan (1992a)l. Here, we 
do not require that the kernel function integrates'out to 1and has mean zero. 
Theorem 1has some important implications: no matter what kernel is used, 
the bias for the local linear fit is always of the second order. This is in contrast 
with the local constant fit, resulting in the Nadaraya-Watson estimator, since 
in this case the asymptotic bias is not of the second order unless the kernel 
function has mean zero. When the kernel function is a density with mean zero 
(i.e., so = 1and s, = 01, expression (2.1) reduces to 

This result is similar to that for the estimator with constant bandwidth, but 
now with h n  replaced by h,/a(x). 

REMARK1. The condition min, a(z) > 0 in Theorem 1is not an obligatory 
one. The result of the theorem remains valid if a( . )  is nonnegative and 
continuous with at  most a finite number of roots, and liminf,,,,, a(z) > 0. 
Note that the function a,,,(.), defined in (2.9), possibly only satisfies this 
weaker condition. This remark also applies to Theorems 2 and 4. 

Next, we investigate the global behavior of the estimator. A commonly used, 
simple measure of global loss is the mean integrated squared error (MISE), 
obtained by taking the expectation of a weighted integrated squared error. 
Theorem 2 provides an expression for the conditional MISE. Let W(.) be a 
nonnegative, bounded weight function with bounded support [a ,  bl which is 
contained in the interior of the support of fx(.). Assume that fx(.) is 
bounded away from zero on [a ,  bl. 

To avoid technicalities in the proof of Theorem 2, we slightly modify the 
estimator (1.3) as follows: 
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The reasan for introducing the factor n - 2  in the denominator of (2.5) is to 
assure that this denominator is bounded away from zero. We emphasize, 
however, that this technical modification has no impact on the forthcoming 
results in this paper. Moreover, it has no practical implications. 

THEOREM Assume that a ( . ) ,  mrr( . )  and a ( . )  are bounded and continu- 2. 
ous functions on [ a ,  b ] ,  and that f x ( . )  is uniformly Lipschitz continuous of 
order r > 0. Suppose that min, a ( z )  > 0 and that / T ; I K ( u  ) uJ  Idu < rn for all 
j 2 0. Then, the conditional MISE of the estimator (2.5) is 

provided that h ,  = dn-Y, with constants d > 0 and 0 < y < 1. 

In case the kernel function K is a density with mean zero, an asymptotic 
expression for the conditional MISE is defined by 

Note that this expression is justified by Theorem 2 and the remark about the 
modification preceding it. Throughout the rest of this section we will work 
with this simplified conditional AMISE. 

We now discuss the optimal choice of the function a( . ) .  In order to find 
such an optimal function we proceed as follows. We first miniinize the AMISE 
(2.6) with respect to h ,. This yields the optimal nonvariable bandwidth 

Substituting this optimal choice into (2.6) leads to 

where CK = We now minimize (2.8) with respect to ~ ~ / ~ [ ( T ; K ~ ( u ) d u ] ~ / ~ .  
a(.).The solution to this optimization problem is established in the following 
theorem. 
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THEOREM The optimal variable bandwidth is given by 3. 

where b is any arbitrarily positive constant and a*(x) can be taken to be any 
positive value. 

Note that the optimal variable bandwidth a,,,(.) does not depend on the 
weight function W( .), that is, a,,,(. ) is intrinsic to the problem. 

With the preceding optimal choice of a(.), the optimal nonvariable band- 
,,width h ,in (2.7) is equal to 

An important feature is that this optimal choice of h, does not depend on 
unknown functions. With these optimal choices of the nonvariable and the 
variable bandwidth, the AMISE (2.8) is given by 

5CK +m u2(x)  4/5
(2.11) ~ I S E u O p t4 n4'5 m x - iV(x) dx. = -

fx(x> 

On the other hand, the expression for the AMISE (2.6) with a( . )  = 1and an 
optimal choice of the constant bandwidth is 

MISEC,opt 

Now, it is easy to see that 

AMISEu,opt 5 AMISEC,opt, 

and this fact reflects one of the advantages of using a variable bandwidth. 
The concept of variable bandwidth is intuitively appealing: A different 

amount of smoothing is used at different data locations. Even in case of slight 
misspecification of the optimal variable bandwidth a,,,(. ), the proposed method 
[with h,,,, given in (2.10) as the nonvariable bandwidth] can still achieve the 
optimal rate of convergence. Finally, the optimal variable bandwidth a,,,(.) 
depends on fx(.), u2(.)  and [mu( .)I2 only through a 1/5 power function. This 
implies that even if the unknown quantity is misestimated by, say, a factor 2, 
the resulting a,,, would differ only by a factor 1.15. Therefore, we expect that 
substitution of reasonable estimators for the unknown functions into (2.9) will 
lead to a good estimator for the regression function. Denote by the optimal 
-bandwidth [hop,(.) = ,, h opt/aopt(.)] estimated from the data. The decisive 
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question for the practical application concerns the speed of convergence for the 
relative rate AMISE( h)/AMISE( h opt ). This interesting question is, however, 
beyond the scope of the present paper. 

Another intuitive choice for the variable bandwidth is a(x) = ( fX(x)/a2(x)). 
Indeed, this choice implies that a large bandwidth is used at  low-density design 
points and also at  locations with large conditional variance. With such a 
variable bandwidth, the regression smoother (1.3) has a homogeneous variance 
[see (2.311. Hence, this intuitive choice of a( . )  can be viewed as a rule 
comparable to the one introduced in Breiman, Meisel and Purcell (1977), but 
now in the regression setup. In contrast with a,,,(.), this choice of a( . )  is not 
optimal in the sense that it does not minimize the conditional AMISE. 

3. Boundary effects. Let X I , . . . ,X, be i.i.d. random variables with a 
density fx(.), having bounded support. Without loss of generality we consider 
this support to be the interval [0, 11.Theorem 1provides an expression for the 
conditional MSE for points in the interior of [O, 11.In this section we study the 
behavior of the estimator (1.3) at boundary points. Such an investigation is 
necessary since it is not obvious that an estimator has the same behavior at  
the boundary as in the interior of the support. For example, the 
Nadaraya-Watson (1964) estimator and the Gasser-Muller (1979) estimator 
both have so-called boundary effects. In other words, the rate of convergence of 
these estimators at the boundary points is slower than that for points in the 
interior of the support. In practical curve estimation, both estimators require a 
modification at  the boundary. For detailed discussions see Gasser and Muller 
(1979). 

We now investigate the behavior of the estimator (1.3) at  left-bound-
ary points. Put x, = ch,, with c > 0. Assume that nh, + and denote 
a, = a(0 + ). 

4. 
a(z) > 0 and that 

lim sup,, -,lK(u)u51 < w. Then, the conditional MSE of the estimator (1.3) 
at  the boundary point x, is given by 

THEOREM Assume that fx(.), a(.), mu(.) and a ( . )  are bounded on [0, 11 
,(,,and right continuous a t  the point 0. Suppose that min, 

where s,,, = /"_o,"K(u)uz du,  I = 0,1,2,3.  

REMARK2. In an analogous way we obtain expressions for the conditional 
MSE of the estimator at  right-boundary points which are of the form x, = 
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1- ch,. More precisely, the conditional MSE at x ,  = 1- ch, is 

where now sl , ,  = /"_,, K(U)U' du, I = 0,1,2,3, with a, = a(1 - ). These ex- 
pressions hold through under conditions comparable to those in Theorem 4, 
but now translated to the right-side of the boundary. 

It follows from Theorem 4 and Remark 2 that the estimator (1.3) does have 
the right behavior at the boundary. Indeed, its rate of convergence is not 
influenced by the position of the point under consideration. Hence, the local 
linear smoother does not require modifications at the boundary. So, it turns 
out that the local linear smoother has an additional advantage over other 
kernel-type estimators. The intuition behind this fact goes back to the con- 
struction of the local linear smoother [see also Fan (1992a)l. The local linear 
approximation which was used results into a second order approximation of 
the underlying regression function. This holds through at all points of the 
support, including boundary points. 

We now study how the constant factor 

in the squared bias [see expression (3.111 and the constant factor in the 
variance 

change with aoc. Note that aoc measures how many effective bandwidths (i.e., 
hn/ao) the point x, = ch, is away from the left boundary. We plot both 
functions b2(. ) and v(. ) for three commonly used kernels: 

1 
the standard normal kernel: K( u)  = -

3 
the Epanechnikov kernel : K( u ) = (1  - u2)+ , 

the uniform kernel: K ( u )  = l u  G ~ - O . K , O . K ~ ~  
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0 1 2 3 4 5 

z 

(b) 

FIG.  1 .  Normal kernel. 

Note that Figures 1-3 show the same behavior. A first feature is that 

lim b2(z) = sg and lim u ( r )  = / +m 

K 2 ( u )  du ,  
2 - m  2 - w  -w 

and these limits are exactly the constant factors appearing, respectively, in the 
squared bias and the variance for an interior point. Further, it is clear from 
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FIG. 2. Epanechnikov kernel. 

Figures 1-3 that b2(z )  is smaller than s; and that v(z) is larger than 
/ ? : K 2 ( u )du,  for all values of z. This implies that the squared bias of the 
estimator (1.3) is smaller at a boundary point than at an interior point, at least 
if the value of m" at each of these points is the same and the same amount of 
smoothing is used. On the other hand, the variance is larger at the boundary 
point. That the bias is smaller is due to the fact that one uses a linear 
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FIG.3 .  Uniform kernel. 

approximation on a smaller interval around the boundary point. The variance 
however tends to be larger, because on a smaller interval less observations 
contribute to computing the estimator. 

" 4. Performance of the plug-in estimator. As already mentioned in 
Section 2, the optimal variable bandwidth a,,,(.) depends on the unknown 
functions f x ( . ) ,  mt t ( . )and a2( . ) .Hence, practical implementation of the local 
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linear smoother requires estimation of these unknown quantities. The esti- 
mated quantities are then substituted into the expression for a,,,(.). In this 
section, we justify such a "plug-in" procedure. This validates the applicability 
of the local linear smoother with variable bandwidth. 

To emphasize the dependence of the local linear smoother (1.3) on the 
variable bandwidth a(.), we denote, in this section, the estimator by A(x, a). 
With &,(.) an estimator of a(.), we define the plug-in estimator as 

where 

with 

The following theorem shows that the plug-in estimator A(x, &,) behaves 
asymptotically the same as A(x, a). 

THEOREM Suppose that the conditions of Theorem 1hold. Let &,(. ) be a 5. 
consistent estimator of a ( . )  such that sup, l&,(z) - a(z)l = op(an), where 
a, -+ 0. Assume that K is a uniformly Lipschitz continuous function such that 
l u 3 ~ ( u ) l5 G(u) for all large lul, where G(u) is decreasing as lul increases 
and satisfies G(u;'/~) = o(h ,I. Then, 

Note that if K has bounded support, Theorem 1 states that any uniform 
consistent estimator of a(.) will do the job. 

Furthermore, Theorem 5 provides a tool for obtaining an asymptotic nor- 
mality result for the plug-in estimator via that for the local linear smoother. 
Proving asymptotic normality for A(x, a )  is, however, beyond the scope of this 
paper. 

A simple way to estimate the unknown functions fx(. ), mff(. ) and a2 ( .  ) is 
as follows. Starting with constant bandwidths, one can estimate fx(.) and 
mff(.) using cross-validation techniques. Further, an estimator for a2( .  ) is 
based on the residuals = Y, - A(Xj). These preliminary estimators are 
then substituted into the expression for a,,,(.), and the resulting &,,,,,(.) is 
used to calculate , &,, ,,,I. 

5. Simulations. In this section, we illustrate the performance of the local 
linear smoother. I t  will be seen that the proposed method does a reasonable job 
for curve estimation, including the fact that it captures the shape of the 
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theoretical curves. A finite sample comparison with other kernel-type estima- 
tion methods can be found in Fan (1992a). The simulation studies presented 
here are only a small part of larger sets of simulations which were carried out, 
but the simulations given in this section are typical. For each of the following 
examples we used the standard normal kernel function, simply for conve- 
nience. Further, we used the optimal nonvariable and variable bandwidths [see 

FIG.4, (a)True regression curve. (b) Estimated regression functions. 
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expressions (2.10) and (2.911. In a first example, we simulated 200 data points 
from a normal regression model 

Y .J = rn(Xj) + E ~ ,  

where Xj -i,i.d, N(0, 11, E~ -i,i,d. N(0,0 .7~)and 

m(x)  = x  + 2exp(-16x2). 
Hence, here we have to detect linearity and a bump. Remark that only about 

FIG. 5 .  (a)True regression curve. (b) Estimated regression functions. 
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5%of the design points lie outside the interval [ -2,2]. Therefore, this interval 
can be viewed as a bounded support corresponding to the design density. 
Figure 4 presents the true regression curve and five estimated regression 
functions, each based on one simulation. 

Next, we considered a normal regression model 

Yj = m ( X j )+ s j ,  

FIG.6. (a) True regression curve. (b) Estimated regression functions. 
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where Xj -i.i.d. N(0, I), E~ -i.i.d. N(0, 0.52) and 

The results of five simulations (sample size 200) can be found in Figure 5. 
As a last example, we imposed the binary response model 

where Xj uniform (-2,2) and 

Note that in this example u2(x) = m(x)(l - m(x)). The true regression func- 
tion and its simulated estimates (sample size 400) are shown in Figure 6. 

A referee pointed out that the bias of the preceding estimates can be further 
reduced by using a local-quadratic approximation to the mean regression 
function instead of a local linear approximation. See, for example, Cleveland 
and Devlin (1988). Note also that the regression curves considered here are 
complicated, and that the local linear smoother with variable bandwidth is 
capable of capturing the various shapes. 

6. Further discussions. In the context of density estimation, Abramson 
(1982) aims at choosing a variable bandwidth in order to reduce the order of 
the bias of the kernel estimator for f .  This leads to the choice h n / f  l/'(Xj) for 
the smoothing parameter, which is known as the square root law. Also see 
Silverman (1986) for expressions of the asymptotic bias. Hall (1990) considers 
estimators of the form 

where K( t ) denotes the t th  derivative of the symmetric probability density 
function K. Examples include estimation of the t th  derivative of a density 
function and estimation of the mean regression function. In his paper Hall 
provides a simple approach for calculating the bias of (6.1). In the special case 
of estimating the mean regression function, Hall (1990) proposes to use the 
estimator 

which is the ratio of two quantities having the form (6.1) with t = 0. The 
function a,(.) [respectively, a,(.)] is chosen in such a way that it reduces the 
bias of the numerator (respectively, the denominator). Heuristically, the re- 
sulting estimator will have a reduced bias. Basically, this reduction is due to 
thefact that the estimator (6.2) does not have total weight 1,which already 
introduces a kind of bias correction. Note that the estimator (1.3), however, 
has total weight 1. In such a situation, there is no hope of finding a variable 
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bandwidth which results in a reduction of the order of the bias. In other 
words, there will be no equivalent of the square root law in this regression 
setup. An attempt to reduce the order of the bias would be: Estimate the bias 
of the estimator, subtract it from the estimator and define this as the new one. 
But, this would result in a linear smoother which has total weight not equal 
to 1. 

An alternative way of introducing the idea of variable bandwidth is to 
consider hn/p(xo) as the smoothing parameter at  the location point xO. 
Knowing the value p(xo) suffices to estimate the regression function at  this 
point. Hence, this type of variable bandwidth can be viewed as a local variable 
bandwidth. The variable bandwidth hn/a(Xj), however, requires knowledge 
of the function a at each observation Xj. Therefore, one could refer to the 
latter bandwidth as a global variable bandwidth. 'For a location point xo such 
that Im"(xo)l is small, the optimal local variable bandwidth hn/p,,,(xo) will be 
very large. The resulting estimator will misestimate the true value of m(x,). 
This illustrates that an estimator based on a local variable bandwidth relies 
too much on the particular value of P(xo). For Gasser-Muller type estimation 
of regression curves, using the idea of local variable bandwidth, see Muller and 
Stadtmuller (1987). 

7. Proofs. Theorems 1 and 4 will be proved along the same lines. The 
proof of Theorem 4 is more involved and requires more details. For this reason 
we decide to prove Theorem 4 before Theorem 1and hence postpone the proofs 
of Theorems 1and 2. 

PROOFOF THEOREM We have to minimize (2.8) with respect to a(.). First 3. 
of all, note that 

(7.1) 
= min a4 min +m 

m"(x)]%(x)/a4(x) dx, 

where = (a(.)  2 0: ~ ~ ~ a ( x ) ( ~ ~ ( x ) W ( x ) / f ~ ( x )= a}. In order to solve the dx 
second minimization problem in (7.0, we use the method of Lagrange multipli- 
ers. Hence, we search for the minimum of 

with respect to a. This translates into minimizing 

for each x. The solution to problem (7.2) is given by 
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where a*(x )can be taken to be any nonnegative value and A is chosen so that 
a ,  E E.  Denote this choice of h by A,. Substituting the solution (7.3) into 
(7.1), we find that the objective function for the first minimization (that in 
terms of a )  does not depend on a .  Hence, any choice of a and, therefore, of A, 
is appropriate. This completes the proof. 

In the sequel we prove Theorem 4. This will involve the following two 
lemmas. 

LEMMA1. Assume that f x ( . ) ,  a ( . )  and mu( . )  are bounded on [O, 11 and 
right continuous at the point 0. Suppose that min,,Io,ll a ( z )  > 0 and that 
lim sup,, - , ~ K ( u ) u ~ + ~ ~< w for a nonnegative integer 1. Then, 

where R ( X j )  = m ( X j )- m ( x n )+ mt(xn)(xn- Xj) .  

PROOF.Throughout this proof, we use the notations d j ,  j = 1,.. . ,8, for 
arbitrarily positive constants. Let 

zn,j = a ( x j ) ~ ( ( ( x n- x j ) / h n ) a ( x j ) ] ~ ( x j ) ( x n-xj)' 

and note that 

In the sequel, we will calculate the first two moments of Z,, ,. By a change of 
variable, we obtain 

a ( x ,  - zh,) K ( z a ( x n  - zh,))  

x R ( x n  - z h n ) z l f x ( x n- zh,) dz.  

A two-term Taylor expansion gives that 

(7.6) 
2

R ( x ,  - zh,) = + m " ( t n ) ( z h n ), 
where 5, is between xn and xn - zh,. We will now approximate (7.5) by 
h : 3 ~ n / 2  with 
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Therefore, we study the following difference: 

xfx(xn - zhn)  - aOK(zaO)m"(O+) fx(O + ) I  1z11+2 dz 
-
= I n , ,  + In,,, 

with M a fixed positive number large enough such that 

(7.9) I < d lK ( u ) u ' + ~ ~  for all u < -Ma*, 
where a* = min,,[,, a(z). Note that the tail condition on K parantees the 
existence of such a number. Applying the dominated convergence theorem, 
together with the continuity assumptions, we obtain that limn,, I,,, = 0. 
The term I,,, is bounded by 

First note that 

J,,, = d,/:mMffOl K(U)U '+ ' I  du ,  

and this tends to zero as M + m. Using (7.9), the boundedness of a(.), mtt(.) 
and fx(.) and the definition of a,, we find 

a dld4(a*)-1-4~-Mlz1-2dz,-cx 

which tends to zero as  M + w.  By (7.10), we conclude that  
lim, ,,limn,,I,,,= 0. Hence (7.8) leads to 
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Finally, by (7.51, (7.6) and (7.11)we get 

For the second moment, we proceed as follows. Using (7.6) and (7.9), we 
obtain 

Combining (7.4), (7.12) and (7.13), along with n h ,  -t w,  completes the proof. 

LEMMA2. Assume that f x ( .  ), a ( .), L( .) and S ( .) are bounded on [0,11 and 
right continuous at the point 0. Suppose that min,,Io,ll a ( z )  > 0, and that 
lim sup,, - , ~ L ( u ) u ~ + ~ ~< w for a nonnegative integer 1. Then, 

The proof follows the same lines as that of Lemma 1. 

PROOFOF THEOREM4. The conditional M S E  of the estimator (1.3) is given 
by 

Recall the definition of s,,, [see (I.@].Applying Lemma 2, with L = K and 
S ='1, we obtain 

(7.15) s,,, = nao(h , /ao) l+ls , , ,f X ( 0+ ) ( I  + o p ( l ) ) ,  1 = 0 , 1 , 2 ,  
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and hence, 
n 

= n":(hn/ffo)4(~2,cso,c - s?,,) f a 0  + ) ( I  + 0P(l)) .  

Further, Lemma 1with I = 0 yields 

Similarly, Lemma 1with I = 1leads to 

Now, since Cj",lwj(xn - Xj) = 0, we obtain from (7.15), (7.17) and (7.18) that 

Next, we write 


5W?U'(X,) = a:,, 5 a 2 ( X j )K( xn -X j a ( X j ) ) ~ ' ( X j )  

1 1 h n 
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and apply Lemma 2 to each of the three terms. This yields 
n 

Cw,'c2(Xj)  = n3a2(hn/ao)7a2(0+) f i ( 0  +) 

(7.20) 1 

x j : 3 ~ ~ , ~- ~ S ~ , . I ~ K ~ ( U )d u ( l  + op(1) ) -

The result now follows from (7.14),(7.161, (7.19) and (7.20). 

In order to prove Theorem 1, we need the following lemmas. Note that they 
are comparable with Lemmas 1 and 2. 

LEMMA3. Assume that f x ( . ) ,  a ( . )  and mu(.)are bounded functions, 
continuous at the point x ,  which is i n  the interior ,of the support of fx( ' ) .  
Suppose that min, a ( z )  > 0 and that lim s ~ p ~ , ~ , , l ~ ( u ) u ~ + ~ 1< 03, for a non-
negative integer 1. Then,  

where R ( X j )  = m ( X j )- m ( x )  + mt(x ) (x- X j ) .  

The basic ideas of the proof are similar to those in the proof of Lemma 1. 
We omit the proof. 

LEMMA4. Assume that f x ( .), a ( .), L( .) and S ( .) are bounded functions, 
continuous at the point x ,  which is in  the interior of the support of fx( .) .  
Suppose that min, a ( z )  > 0 and that lim suplul, , JL(u)u~+~J< w for a non-
negative integer 1. Then,  

The proof is similar to the proof of Lemma 3. 

PROOFOF THEOREM1. The proof follows the same lines as that of Theorem 
4, using Lemmas 3 and 4 instead of Lemmas 1 and 2. 

PROOFOF THEOREM2. Denote d n ( x )= E[(riz*(x)- m ( ~ ) ) ~ l X , ,. . . ,Xnl -
b:(x) - u:(x). The proof of Theorem 1in Fan (199213) yields that 

Ed%) 
= ( 1 ,  V x  E [ a ,b ] ,

h4, + ( n h n )  
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and moreover (Ed;(x)) / (h:  + (nh, ) - l )  is bounded uniformly in x and n .  
Using the Cauchy-Schwarz inequality, it follows that 

1 / 2  

s ( b  - a ) 1 / 2 ( p d , ( x ) ~ ( x )l 2  d x )  

= o(h: + ( n h , ) ' ) .  

Since L ,-convergence implies convergence in probability, we conclude that 

which proves the theorem. 

In what follows we will prove Theorem 5. The proof will rely on the next 
two lemmas. 

LEMMA5.  Assume that f,(.), a ( . )  and mu( . )are bounded functions. Let 
& , ( a )  be a consistent estimator of a ( . )  such that sup, l&,(z) - a(z)l = op(a,), 
where a ,  -,0. Assume that K is a uniformly Lipschitz continuous function 
such that Iu'+~K(u)II G ( u )  for all large lul, where G ( u )is decreasing as lul 
increases and satisfies G(a; = o( h ,) for a nonnegative integer 1. Fur-
ther, suppose that min, a ( z )  > 0. Then, 

x R ( X j ) ( x  -x,)' = op(nh',i3), 

where R ( X j )  = m ( X j )- m ( x )  + ml(x ) (x- Xj) .  

PROOF.In this proof d j ,  j = 1,2,3,4,  denote positive constants. Let 

where a* = min, a(z ) .  Denote the left-hand side of (7.21)by D,(x) and write 
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First of all, note that 

# ( I )  = n [ p n ( x+ 2(a*)-1a;1/ (1+4)h.)- pn(x - 2(a*)-1a;1/ (1+4)hn ) ]  

where $n(x) is the empirical distribution function of X,, . . . ,X,. Let Fx(.)  
denote the corresponding distribution function of the Xj's. It is clear that 

which implies that 

We will now deal with each of the two terms in (7.22), starting with the first 
one. Using the conditions on K( .), a ( .), &n( .) and mu(.),and incorporating the 
definition of I and (7.23),we obtain 

- a ( Z )  lhF2[a;(1+3)/(1+4)+ a;(1+2)/(1+4)# I-< d 3  Sup lo  
Z 

= o P ( n h F 3 ) ,  

where tj lies between x and Xj. For the second term in (7.22) we rely on the 
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conditions on 4.)and mu(.) ,and the tail condition on K ,  and find 

IDn,2(x)I 

= ~ ~ ( n h : ~ ) ,  

where we used the fact that 

min &,(Xj )  2 - -+ 1 as n -,a. 
l s j s n  "*2 I 

The result now follows from (7.22), (7.24)and (7.25). 

LEMMA6. Assume that f,(.), a(.)and S( . )  are bounded functions. Let 
be a consistent estimator of a(.)such that sup, I&,(z) - a(z)l = op(an) ,  

whe+e a n  -+ 0. Assume that L is a uniformly Lipschitz continuous function 
such that lulL(u)l s G ( u )  for all large lul, where G ( u )  is decreasing as lul 
increases and satisfies G(a = o(h,I, for a nonnegative integer 1. 
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Further, suppose that min, a(z)> 0. Then,  

The proof uses similar arguments as that of Lemma 5 and is omitted. 

We now are in the position to prove Theorem 5. 


PROOFOF THEOREM5. By the definitions of the estimators and a mean- 
variance decomposition, we get 

E [ ( A ( x ,6,) - A(%,a ) )
2 
1x1,. .  x,] 

We first handle the term B,(x). Using that L5=l d j ( x  - X j )  = 0 and 
Cy=lwj(x- X j )  = 0,  we rewrite B,(x) as 

For the numerator of the first term in (7.27),we have 
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Applying Lemmas 5 and 6 ,  we find that 
n 

C Lis.R(Xj) 
j = 1  

x R ( X j ) ( x- X j )  + o p ( n h gI . 

Hence, Lemmas 5 and 6 allow us to replace &,(.) by a ( . ) in expression (7.28). 
Further, using Lemmas 3 and 4 we can simplify (7.29)to 

x [s,2- s1s31(1 + 0 P ( l ) ) .  

For the denominator of the first term in (7.27),we use similar arguments and 
obtain 

(7.31) 	 5Gi = n 2 a 2 ( x ) ( h n / a ( x ) ) 4f $ ( x )  [szso - s f ]  ( 1  + O P ( ~ ) ) .  
i = l  

Combination of (7.30) and (7.31) leads to 

From the proof of Theorem 1 (which refers to that of Theorem 4), it can be 
seen that 

Expressions (7.27), (7.32) and (7.33) assure that 

(7.34) 	 B n ( x )  = OP(h2,). 

We now deal with the variance term in (7.26).First use the boundedness of 
u2(.)to obtain 

2 
W ,  

h ( x )  a sup u2(.z)  5i ---2)
j = 1  C;=lGi c;=lwiz 	 '" 

(7.35) 	 cg=lq cg= wj Cg=lwj2 

= sup u 2 ( z )  - 2 + 
z 	 [ (E;=I $ i ]  C?= lGiC1= lwi (c;=l ~ i )1. 
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Note that it suffices to evaluate the numerators of the first and the second 
term in (7.35). Indeed, all the other factors appearing in that expression have 
been discussed previously. Again relying on Lemmas 3-6 and the proof of 
Theorem 1,we find 

and 

Substituting the expressions we have evaluated so far, including those proved 
in Theorem 1,into (7.35) we get 

(7.38) 

The result now follows from (7.26), (7.34) and (7.38). 
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