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A simple method is presented for fitting regression models that are nonlinear in the explan- 
atory variables. Despite its simplicity-or perhaps because of it-the method has some 
powerful characteristics that cause it to be competitive with and often superior to more 
sophisticated techniques, especially for small data sets in the presence of high noise. 
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1. INTRODUCTION 

In this article, we shall develop an approach to 
regression fitting based on an extremely simple idea. 
Consider first the univariate case in which one has 
N pairs of measurements (y i ,  x,) ( i  = 1, . . . ,N), 
and it is supposed that, as usual, 

Y = f ( X )  + error, (1) 

where f is a function to be estimated and the error 
is assumed to have zero mean; its distribution may 
well depend on the value of X. 

Regression, or curve fitting, is performed for sev- 
eral reasons. The value f (X)  is the conditional ex- 
pectation of Y given the value X and so may be used 
as an estimate of the response Y for future obser- 
vations in which only the value of the predictor vari- 
able Xis  measured. The function f can also be stud- 
ied to try to gain insight into the predictive relationship 
between Y and X. By far the most commonly used 
approach is, of course, linear regression. It is as-
sumed-rightly or wrongly-that f is a linear func- 
tion f ( X )  = a x  + b,  and then the parameters a 
and b are estimated by least squares. 

What should be done if the data are not well ap- 
proximated by a straight-line fit? One way forward 
is to allow f to be a piecewise linear function made 
up of straight-line pieces that join continuously at 
points called knots. If the knot positions are fixed 
before looking at the data-response values yi, then, 
at the expense of introducing more parameters into 
the problem, we will be able to fit a wider range of 
data sets reasonably well while still including simple 
linear regression as a special case. Furthermore, all 

of the necessary parameters can be found and infer- 
ence can be performed using standard linear regres- 
sion methods (see Agarwal and Studden 1980). 

In terms of flexibility, much greater dividends arise 
if the knot positions are not fixed in advance but are 
themselves allowed to depend on the data, including 
the response values. In this case, an enormously wide 
range of models can be closely approximated using 
piecewise linear functions f with a small number of 
knots. There is a computational penalty to be paid, 
because some sort of search procedure needs to be 
used to find suitable positions for the knots. In this 
article, we describe a stepwise procedure that makes 
it feasible to fit piecewise linear models with knot 
positions determined by the data, and we also discuss 
practical strategies for deciding how many knots to 
use. 

One of the attractive features of our method is 
that it can very easily be extended to the multivariate 
case. Suppose that the observations are of the form 
(y,,  xi), where each xi is now a p vector (xli,  xZi, 
. . . ,x,,). It is assumed, as before, that the variable 
Y depends on X by a relation of the form Y = f (X) 
+ error = f (X , ,  X2, . . . ,X,) + error. The way 
that we make use of our ideas about piecewise linear 
fittings is to concentrate on the case in which f is a 
sum of functions of the individual components of X, 

This approach is known as additive regression or ad-
ditive modeling and replaces the problem of esti- 
mating a function f of a p-dimensional variable X 
by one of estimating p separate one-dimensional 
functions f,. Although not completely general, ad- 
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ditive models are often effective; they are easy to 
interpret and represent a very important step beyond 
the simple linear model. 

Our piecewise linear fitting method can be applied 
easily in the additive modeling context. Each of the 
individual functions f j  can be modeled as being 
piecewise linear with knots that depend on the 
data, including the response values. Our stepwise fit- 
ting procedure enables all of the functions fl to be 
constructed together at little more cost than for a 
univariate problem. 

The article is set out as follows. Section 2 is a 
discussion of smoothing methods. In Sections 2.2 and 
2.3 we develop our approach in the univariate case. 
Computational aspects are discussed in Section 2.4. 
The important queston of model selection-how 
many knots to use-is considered in Section 2.5. In 
Section 2.6, we provide a simple extension that pro- 
duces models with continuous first derivatives (if de- 
sired). In Section 3, we explain how the additive 
modeling approach enables our method to be applied 
in the multivariate case, and in Section 4 we dem- 
onstrate how confidence intervals for the estimated 
function(s) can be obtained. Finally, in Section 5, 
practical examples display the scope and power of 
our method as a data-analytic tool. 

2. SMOOTHING 

2.1 Introduction 

We first consider the case of a single predictor 
variable, p = 1. The smoothing problem has been 
the subject of considerable study, especially in recent 
years. The lack of flexibility (ability to closely ap- 
proximate a wide variety of predictive relationships) 
associated with global fitting 

where the PI are predefined functions (usually in- 
volving increasing powers of x), has led to devel- 
opments in two general directions, piecewise poly- 
nomials and local averaging. The basic idea of 
piecewise polynomials is to replace the single pre- 
scribed function f,(x) (of possibly high-order J) de-
fined over the entire range of X values with several 
generally low-order polynomials, each defined over 
a different subinterval of the range of X. The points 
that delineate the subintervals are called knots. The 
greater flexibility of the piecewise polynomial ap- 
proach is gained at some expense in terms of local 
smoothness. The global function is generally taken 
to be continuous and has continuous derivatives to 
all orders. Piecewise polynomials, on the other hand, 
are permitted to have discontinuities in low-order 

derivatives (and sometimes even the function itself) 
at the knots. The trade-off between smoothness and 
flexibility is controlled by the number of knots at 
which discontinuities are permitted and the order of 
the lowest derivative allowed to be discontinuous. 
The most popular piecewise polynomial fitting pro- 
cedures are based on splines (De Boor 1978). An M 
spline consists of piecewise polynomials of degree M 
constrained to be continuous, and it has continuous 
derivatives through order M - 1. Smith (1982) pre- 
sented an adaptable knot-placement strategy for 
spline fitting based on forwardibackward variable 
subset selection. 

Local averaging smoothers directly use the fact 
that f ( x )  is intended to estimate a conditional ex- 
pectation, E(Y I x). These estimates take the form 

where H(x, x ' )  (the kernel function) usually has its 
maximum value at x '  = x with its absolute value 
decreasing as Ix' - xl increases. Therefore, f (x)  is 
taken to be a weighted average of the y,, where the 
weights are larger for those observations that are 
close or local to x. A characteristic quantity associ- 
ated with a local averaging procedure is the local 
span s(x), defined to be the range centered at x over 
which a given proportion of the averaging takes 
place: 

with a a predefined constant fraction (i.e., a = .68 
or .95). If the defining property holds for more than 
one value of s(x), then the smallest such value is 
taken. Many local averaging smoothers take the span 
to be constant over the entire range of x, s(x) = A 
(Rosenblatt 1971). Others take it to be inversely pro- 
portional to the local density of x values, s ( ~ )  = A1 
p(x) (Cleveland 1979). Smoothing splines (Reinsch 
1967) are in fact local averaging procedures in which 
the span turns out to be approximately s(x) - A1 
[ p ( ~ ) ] " ~(see Silverman 1984, 1985). (The quantity 
I. represents a parameter of these procedures.) Re- 
cently, adaptable-span local averaging smoothers 
have been introduced that estimate optimal local span 
values based on the values of the responses, yi(Fried-
man 1984; Friedman and Stuetzle 1982). The span 
function s(x) controls the continuity-flexibility trade- 
off for local averaging smoothers. For the non-
adaptable smoothers, this is in turn regulated by A ,  
the smoothing parameter of the procedure. 

There is, of course, a connection between the 
piecewise polynomial and local averaging ap-
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proaches to smoothing. For a given knot placement, 
piecewise polynomial curve estimates can also be ex- 
pressed in the form given by (4) (as can global fits). 
There will be a characteristic local span associated 
with the corresponding kernel. The more flexible the 
smoother is to local variation, the smaller the span 
will be. The basic difference between the two ap- 
proaches is how the span is specified. With local av- 
eraging smoothers, the span parameter I usually en- 
ters fundamentally into the definition of the kernel 
function (or some other aspect of the definition of 
the smoother); either it is directly set by the user or 
some automated procedure (i.e., cross-validatory 
choice) is employed for its selection. For piecewise 
polynomial smoothers, it is indirectly regulated by 
the choice of the number and placement of the knots 
and the degree. of continuity required at the knot 
positions. 

The trade-off between continuity and local flexi- 
bility is a fundamental one that directly affects the 
statistical performance of the smoother as a curve 
estimator. If one assumes that there exists a popu- 
lation from which the data can be regarded as a 
random sample, then the goal is to estimate the 
conditional expectation E(Y 1 X = x) for the popula- 
tion. Even if this is not the case, the goal is usually 
to obtain curve estimates f(x)  that have good (fu- 
ture) prediction ability for new observations not part 
of the training sample used to obtain the estimate. 

Increased flexibility provides the smoothing pro- 
cedure with an increased ability to fit the data at 
hand more closely. This may or may not be good, 
depending on the extent to which this training sample 
is representative of the population of future obser- 
vations to be predicted. Often, fitting the training 
data too closely results in degraded estimates with 
poor future performance. This phenomenon is called 
overfitting and can be quantified through the bias- 
variance trade-off. The (future) expected squared er- 
ror (ESE) can be expressed as 

where f * ( x )  = E(Y I X = x) for the population 
(future observations). The expected values in (5) are 
overrepeated replications of the training sample. The 
first term on the right side of (5) is the squared dis- 
tance of the average (expected) curve estimate from 
the truth. It is referred to as the bias squared of the 
estimate. As the smoother is given more flexibility 
to fit the data, the bias squared generally decreases, 
while the variance increases. Thus for each situation 
there is a (usually different) optimal flexibility. If a 
smoothing procedure is to provide good performance 

over a wide variety of situations, it must be able to 
effectively adjust its flexibility-continuity trade-off for 
each particular application. 

Motivated by the work of Smith (1982), we present 
an adaptable piecewise polynomial smoothing aigo- 
rithm. It uses the data to select automatically the 
number and positions of the knots, and, to some 
extent, the degree of continuity imposed at the knots. 
Although simple, the method has both operational 
and performance characteristics that are similar to 
the recently proposed adaptable-span local averaging 
smoothers (Friedman 1984; Friedman and Stuetzle 
1981). It appears to have superior performance in 
low-sample-size and/or high-noise situations. 

Our focus is on accurate estimation of the curve 
itself and not necessarily its derivatives. We therefore 
restrict our attention to low-order polynomials with 
weak continuity requirements at the knots. This has 
the effect of minimizing the average effective span 
for a given number of knots. This is important if 
accurate solutions with a small number of knots are 
required. This will be the case in high-noise, small- 
sample environments. Our simplest method employs 
piecewise linear fitting in which only the function 
itself is required to be continuous. We also describe 
a companion method that fits with piecewise cubic 
functions in which continuous first-but not sec-
ond-derivatives are imposed. This has the advan- 
tage of producing curves that are more cosmetically 
appealing, if less interpretable. It may sometimes, 
but not always, produce slightly more accurate es- 
timates in situations in which the second derivative 
of the underlying true curve is nowhere rapidly vary- 
ing. 

Our estimate of future prediction error-to be 
minimized-is based on the generalized cross-vali- 
dation measure (Craven and Wahba 1979). A brief 
explanation of generalized cross-validation (GCV) 
was given by Silverman (1985, sec. 4.1). To explain 
GCV, it is first necessary to mention cross-validation 
(CV). Let K be the number of knots in the fitted 
model. The CV score is given by 

where f - , is the estimate calculated with the current 
values of the control parameters (in our case the 
number of knots) from all of the data points except 
the ith. The CV score is then a function of K and 
gives a measure of future prediction error that may 
unfortunately be laborious to calculate. 

GCV can be thought of as an approximate version 
of CV that has better computational properties. For 
a suitable increasing function d(K) of the number of 
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knots, the GCV score is defined by 

If the knot placement values do not depend on the 
sample response values y,, then it can be shown that 
an appropriate choice of d(K) is 

h' 

where H is the kernel function (4). For piecewise 
linear fitting by least squares with K knots, this turns 
out to be d(K) = K + 1. It can be shown that this 
choice of d(K) makes GCV and CV identical in cer- 
tain special cases. 

For adaptable span smoothers, such as those we 
introduce in this article, the approximation is no 
longer good because of the additional flexibility given 
by the free choice of knot positions. To compensate 
for this, we use (6) as an approximation with d(K) 
taken to be a more rapidly increasing function of K; 
we discuss our choice of d(K) in Section 2.5. 

2.2 Piecewise Linear Smoothing 

We describe first piecewise linear fitting. For a 
fixed number of knots K, we aim to place the knots 
to give the minimum possible value of the average 
squared residual (ASR), 

4 N 

for estimates f(x)  chosen to be continuous and 
piecewise linear with the given knots. Given a set of 
knot positions, there are several ways to construct 
the corresponding piecewise linear fit that minimizes 
the ASR. These involve choosing a set of basis func- 
tions bk(x), 1 5 k 5 K, parameterized by the knot 
locations, that have the required continuity proper- 
ties. The curve estimate is then taken to be 

The values of the coefficients an,  . . . ,a, correspond- 
ing to the piecewise linear curve that minimizes the 
ASR are obtained by a (K + 1)-parameter linear 
least squares fit of the response Yon the basis func- 
tion set bk(x). 

There is a variety of basis function sets with the 
proper continuity properties for piecewise linear fit- 
ting. The most convenient for our purposes is the set 

where t, is the location of the kth knot and the su- 
perscript indicates the nonnegative part. The con- 

venience of this basis stems from the fact that each 
basis function is parameterized by a single knot. Thus 
adding, deleting, or changing the position of a knot 
affects only one basis function. 

Optimizing the ASR over all possible (unequal) 
locations for the K knots is a fairly difficult compu- 
tational task. We therefore consider the subset of 
locations defined by the distinct values realized by 
the data set. This has the effect of providing more 
potential knot locations, and thus more potential 
flexibility, in regions of higher data density and cor- 
respondingly less potential flexibility in sparser re- 
gions. This attempts to control the variance, since 
regions where the ratio of data points to knots is low 
can give rise to locally high variance in the curve 
estimate. 

Even the (combinatorial) optimization of the ASR 
over this restricted set of locations is formidable, 
owing to the large number, N, of potential basis func- 
tions from which the optimizing K must be chosen. 
We therefore adopt a stepwise strategy for knot 
placement. The first knot (k = 1) is placed at the 
position that yields the best corresponding piecewise 
linear fit. Thereafter, each additional knot is placed 
at the location that gives the best piecewise linear fit 
involving it and the k - 1 knots that have already 
been placed. Knots are added in this manner until 
some maximum number of knots (K,,,) are posi- 
tioned. This process yields a sequence of K,, models, 
each with one more knot than the previous one in 
the sequence. That model in the sequence with small- 
est GCV as defined in Equation (6) is chosen for . . 
further consideration. The number, K,,,, of models 
to be considered should be chosen so that the model 
minimizing the GCV is not too close to the end of 
the sequence. Owing to the forward stepwise nature 
of the procedure, it is possible for the GCV some- 
times to increase locally as the sequence proceeds 
and then begin to decrease again. The bound K,,, 
should be large enough so that the GCV associated 
with the last model is substantially larger than the -
minimizing one in the sequence. 

The model (with K* knots; 0 r K* < K,,,,,) found 
to minimize the GCV is next subjected to a backward 
stepwise deletion strategy. Each of its knots is in turn 
deleted and the corresponding (K* - 1)-knot model 
is fitted. If any of these fits results in an improved 
GCV, the one with the smallest is chosen, perma- 
nently deleting the corresponding knot. This pro- 
cedure is then repeated on the new (K* - 1)-knot 
model, deleting a knot if a better model is found. 
This continues until the deletion of any remaining 
knot results in a curve with higher GCV. 

This knot-deletion strategy can sometimes result 
in an improved model because of the nature of for- 
ward stepwise procedures. The first few knots must 
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deal with the global nature of the curve without the 
benefit of the additional knots that come later. They 
are, therefore, forced to ignore the fine structure. 
Knots that are added later to model the fine structure 
can, in aggregate, also account for the global struc-
ture, thereby causing the initial few knots to  be re-
dundant. 

Knot deletion as described previously seldom re-
sults in a dramatic improvement in GCV. It is worth 
doing for the small to moderate improvement it 
sometimes provides, because it adds almost nothing 
to the computational burden. All necessary calcu-
lations can be done using summary statistics (basis 
covariance matrix and response covariance vector) 
already calculated for the original K*-knot model. 
No further passes over the data are required. 

2.3 Minimum Span 

A natural strategy would be to make every distinct 
observation abscissa value a candidate location for 
knot positioning. This would correspond to allowing 
the minimum local effective span to include only a 
single observation. In low-noise situations, such a 
strategy can give reasonable results. In high-noise 
environments, however, this can lead to unaccept-
ably high local variance. A solution is to impose a 
minimum effective span by restricting the eligible knot 
locations. The simplest implementation is to make 
every (distinct) Mth observation (in order of as-
cending x value) eligible for knot placement. This 
implementation also reduces computation by a factor 
of NIM in the absence of ties. 

A reasonable value for M, as a function of N, can 
be obtained by a simple coin-tossing argument. Sup-
pose y, = f *(x,) + E~ (1 5 i s N), where E,  is a 
mean-zero random variable with a symmetric distri-
bution. Then E ,  has an equal chance of being positive 
or negative. A smoother will be resistant to a run of 
length L of either positive or negative errors so long 
as its span in the region of the run is large compared 
to L.  If not, the smoother will tend to follow the run 
and hence incur increased (variance) error. A piece-
wise linear smoother can completely respond to a 
run without degrading the fit in any other region 
(irrespective of the placement of the other knots) if 
it can place three knots within its length. It can par-
tially respond with two knots in the run for an un-
favorable placement of the other knots (i.e., one of 
them close to the start or end of the run). This would 
suggest that the minimum knot increment M should 
satisfy M > LmaxI3(or M > L,,,l2.5 to be conserv-
ative), where L,,, is the largest positive or negative 
run to be expected in N binomial trials. 

Let Pr(L) be the probability of observing a run of 
length L or longer in N tosses of a fair coin. For 
small values of this probability, a close upper bound 

is given by 

(Bradley 1968). One can choose a value, a ,  for this 
probability, 

(say a = .05 or .01), and solve (9) and (10) for the 
corresponding length L(a) .  Setting M = L(a)/2.5 
would (with probability a )  give resistance to a run 
of positive or negative error values. Solving (9) and 
(10) for L (a )  would have to be done numerically. 
The simple formula L (a )  = -log,[ -(l/N)ln(l -

a)] approximates the solution quite closely (within 
a few percent) for a < .1 and N r 15. This suggests 
that a conservative increment for knot placement is 
given by 

with .05 s a 5 .01. 

2.4 Computational Considerations 

For each k > 0, at the kth step in the forward 
stepwise procedure described in Section 2.2, it is nec-
essary to optimize the position of the kth knot (over 
all eligible locations) given the positions of the k -
1 previously placed knots. For a given knot-place-
ment increment M, there are (in the absence of ties) 
NIM - k + 1 eligible places to position the kth 
knot. (The positions of the k - 1 previously placed 
knots are not eligible.) At each such potential new 
knot location, a linear least squares fit must be per-
formed to obtain the corresponding piecewise linear 
smooth and its associated ASR. Thus approximately 
NIM linear least squares fits must be computed to 
place each knot. If this were implemented in a 
straightforward manner, it would give rise to pro-
hibitive computation in all but the richest computing 
environments. Enormous computational gains can 
be realized, however, by examining the set of eligible 
knot locations in a special order that permits the use 
of rapid updating formulas associated with the basis 
(8). This strategy involves visiting the potential knot 
positions in descending abscissa value and taking ad-
vantage of the fact that (for t' > t") 

-- t' - t", x > t ' . (12) 

The linear least squares fit for the kth knot (located 
at tk = t") can be accomplished by solving the normal 
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equations 

where B is the k x k covariance matrix of the k basis 
functions (8), 

N 


B,, = 1b,(x,)[b,(x,) - 51, (14) 
r=l  

and c is the k-dimensional covariance vector of the 
response with each basis function 

Here 6,and y represent the averages of the corre- 
sponding quantities. The solution vector a = (a, ,  
. . . , ak )  represents the coefficients corresponding 
to the optimizing piecewise linear fit (7) given the 
knot locations t,, . . . , tk. The ASR of the fit is then 
given by 

P 


ASR = var(Y) - C a,c,lN. (16) 
I= 1 

Using (13)-(16) as prescriptions for computing the 
corresponding quantities at each potential knot lo- 
cation leads to the prohibitive computation men-
tioned previously. The first thing to notice in at- 
tempting to save computation is that only ck and BIk 
(1 Ij 5 k) need to be recomputed, since only the 
kth knot location is changing. (This reduces the com- 
putation by a factor of k.) The next thing to note is 
that, if these quantities have already been computed 
for a knot located at t, = t', then, from (12), a simple 
series of updates gives them for a knot located at tk 
= t" (t" < t'). Let s, = C,,,, , (y, - y), 

S, = (b,(x,) - b,), 1 5jr k - 1, 
x , z t  

u = C,,,lf 1, and u = , , ,  x,. Then, 

and 

give the quantities that enter into the normal equa- 
tion (13) for t, = t", given their values at tk = t'. 

All values are initialized to 0 [i.e., c,(xN) = BIk(xN) 
= 0 (1 r j 5 k)]. 

These updating formulas provide the ingredients 
for the normal equations (13) at all potential knot 
locations with total computation of order kN. It re- 
mains to solve the normal equations at the (approx- 
imately NIM) eligible locations for knot placement. 
This can be done most rapidly by using the Cholesky 
decomposition of B followed by back-substitution 
(see Golub and Van Loan 1983). Since only the last 
row and column of B are changing, its Cholesky de- 
composition can be updated with k' computations 
(Golub and Van Loan 1983). The back substitution 
can also be performed in k2 computation. Therefore, 
the dominant part of the computation for optimizing 
the ASR with respect to the position of the kth knot 
is of order k2NIM. The computation associated with 
a single linear least squares fit is of order k2N. There- 
fore, the updating strategy permits the implicit eval- 
uation of NIM linear least squares fits with less com- 
putation than a single such fit. The entire procedure 
for placing all K,,, knots in the forward stepwise 
procedure requires roughly the same computations 
as Kmd,13 linear least squares fits with K,,, variables. 

The computational strategy outlined previously 
emphasizes speed over numerical stability. First, the 
one-sided basis (8) is known to have poor numerical 
properties compared with other possible represen- 
tations of piecewise linear functions (De Boor 1978). 
Their advantage lies in the fact that each basis func- 
tion is characterized by a single knot. This leads to 
the simple and rapidly computable updating formulas 
derived previously. A second compromise is the 
choice of the normal equations with the Cholesky 
decomposition of the basis covariance matrix to per- 
form each linear least squares fit. It is well known 
that using the QR decomposition of the basis "data" 
matrix would provide superior numerical properties 
(see Golub and Van Loan 1983). Unfortunately, up- 
dating the QR decomposition requires computation 
proportional to kN (compared to k2 for the Cholesky 
strategy), which would cause the total computation 
to be proportional to N2. 

Potential numerical difficulties associated with this 
particular strategy are mitigated by two factors. First, 
the minimal span requirement (11) limits somewhat 
the correlation between basis functions (8) associated 
with adjacent knots. Second, for sample sizes that 
are not extremely large, the number of knots is gen- 
erally quite small, keeping the size of the associated 
least squares problem small. Numerical problems 
tend only to arise when this strategy is applied to 
very large problems (typically N > 500) for which 
the resulting solution is a very complex curve re- 
quiring many knots. For these cases numerical sta- 
bility can be achieved by slightly deoptimizing the 
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least squares fit (13) at each potential location for 
the kth knot. The basis coefficients a = (u,,  . . . , 
uk) of the piecewise linear fit are taken to be the 
solution to (B + E I ) ~= c , with I the k x k identity 
matrix and the value of E chosen to be just large 
enough to maintain numerical stability. Although these 
coefficient values can be somewhat different from 
those produced by (13) in highly collinear settings, 
they produced nearly identical curve estimates (7). 
The criterion used to select the best knot location is 
still the ASR. Typically, taking E = lo-' tr(Blk) 
maintains stable computation while having very little 
effect on the resulting curve estimate. 

2.5 Model Selection 

To implement the forwardlbackward stepwise 
knot-placement strategy described in Section 2.2, it 
is necessary to have an estimate of the future pre- 
diction error. For procedures that are linear in the 
responses (4), a variety of estimators (model selec- 
tion criteria) have been proposed (Akaike 1970; 
Breiman and Freedman 1983; Craven and Wahba 
1979; Mallows 1973; Shibata 1980). For a given knot 
placement (fixed set of regression variables), our 
method is linear in the responses. We use the re- 
sponse values, however, to determine where to place 
the knots. As a result our curve estimator is not linear 
in the responses [H(x, x,) depends on y , ...y,] . There 
is increased variance in the curve estimates corre- 
sponding to the variability associated with the knot 
placement that is not incorporated with the preceding 
criteria. For nonlinear procedures, techniques based 
on sample reuse [cross-validation (Stone 1974) and 
bootstrap (Efron 1983)] are appropriate. These re- 
quire considerable computation, however, and a 
common practice is simply to ignore the increased 
variability associated with model selection. If the 
number of selected variables is not very much smaller 
than the size of the initial set, the increased variance 
is not large, and such a strategy may be effective. In 
our situation, however, this is not the case. We intend 
to select a few knots usually from a very large number 
of potential locations. 

The basis for our model selection strategy lies in 
the work of Hinkley (1969, 1970) and Feder (1975). 
They considered the problem of testing the hypoth- 
esis that a two-segment piecewise linear regression 
function in fact consists of only a single segment in 
the presence of normal homoscedastic errors. Spe- 
cifically, it is assumed that 

Y, = a + bX ,  + c ( X ,  - t ) +  + E,, (17) 

with E, - N(0, a'), and one wishes to test the hy- 
pothesis that c = 0. If the knot location t is specified 
in advance, then (under the null hypothesis H, : c 
= 0) the difference between the (scaled) residual 

sums of squares from the respective two- and three- 
parameter least squares fit follows a chi-squared dis- 
tribution on 1df, x:. That is, the additional param- 
eter, c, uses one additional degree of freedom. 

When one adjusts the knot location t ,  as well as 
the coefficient c, then this is no longer the case. Fur- 
thermore, under the condition c = 0, the parameter 
t is not identifiable, so we cannot use the usual asymp- 
totic theory and just add a degree of freedom for the 
additional fitted parameter t .  Feder (1975) showed 
that (under H,, : c = 0) the difference between the 
residual sum of squares from the respective two- and 
four-parameter fits asymptotically follows the distri- 
bution of the maximum of a large number of cor- 
related X f  and X; random variables. Furthermore, 
the precise correlation structure (and thus the dis- 
tribution) depends on the spacings of the observa- 
tions. Such a distribution will give rise to consider- 
ably larger test-statistic values than X: and generally 
larger values than even x:. That is, the additional 
parameter t uses more than one additional degree of 
freedom. Hinkley (1969, 1970) reported strong em- 
pirical evidence that the distribution closely follows 
a chi-squared distribution on 3 df. Thus fitting both 
the additional coefficient, c, and the corresponding 
knot location, t ,  uses about three additional degrees 
of freedom. 

A similar effect was reported by Hastie and Tib- 
shirani (1985) in the context of projection pursuit 
regression (Friedman and Stuetzle 1981). Here the 
model is y, = g(xy=, a,x,,) + E,, with E - N(0, a') 
and g a smooth function whose argument is a linear 
combination of the p predictor variables. The ob- 
jective is to minimize the residual sum of squares 
jointly with respect to the parameters defining both 
the function and the linear combination in its argu- 
ment. The null hypothesis H, is that g is a constant 
function. Hastie and Tibshirani (1985) performed a 
simulation experiment to obtain the distribution of 
the scaled difference of the residual sum of squares 
as a function of the number of parameters associated 
with the function g for p = 5 and N = 360. They 
found that the expected value of this distribution was 
always greater than the sum of the number of pa- 
rameters associated with both the curve and the lin- 
ear combination (except for the degenerate case-g 
linear). This effect became more pronounced as more 
parameters were associated with g. These results, 
together with those of Hinkley (1969, 1970) and Feder 
(1975), indicate that the number of degrees of free- 
dom associated with nonlinear least squares regres- 
sion can be considerably more than the number of 
parameters involved in the fit. 

Our knot-placement strategy does not perform an 
unrestricted minimization, but rather it minimizes 
the ASR over a restricted set of eligible knot loca- 
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tions. In the absence of a large number of ties, how- 
ever, the solution value for the ASR is not likely to 
be much different. Thus following Hinkley (1969, 
1970) and associating a loss of 3 df for each knot 
adaptively placed (with our strategy) seems reason- 
able, if a bit conservative. We therefore use 

d(K) = 3K + 1, (18) 

in conjunction with the GCV estimate of future pre- 
diction error (6), as a model-selection criterion to be 
minimized. 

2.6 Piecewise Cubic Fitting 

Continuous piecewise linear curves provide max- 
imum flexibility for a given (small) number of knots. 
They also have the advantage of ready interpreta- 
tion-linear relationship within subintervals of the 
range of X. Their principal disadvantage is the dis- 
continuity of the first derivative (infinite second de- 
rivative) at each knot location. This causes the curve 
to be cosmetically unappealing to  some. 

Moreover, if the true underlying function f *(x) 
( 5 )  does not have a locally high second derivative 
close to a knot location, then a piecewise linear ap- 
proximation will exhibit a small increased error in 
the neighborhood near that knot. (This is in contrast 
to the corresponding first, and especially, the second 
derivative estimates that contain much larger errors.) 
If the second derivative off  *(x) is everywhere slowly 
varying, then (slightly) more accurate curve esti-
mates can be obtained by restricting the variation of 
the second derivative. This is at the expense of re- 
duced flexibility to fit curves that do have locally 
rapidly varying second derivatives. 

The same considerations (see Sec. 2.1) that led to 
the desirability of piecewise linear approximations 
guide our approach to piecewise cubic fitting. We 
seek a curve estimate whose function and first de- 
rivative values are everywhere continuous. Under 
that constraint we would like an estimate that closely 
resembles the corresponding piecewise linear fit. In 
particular, we do not wish to require, in addition, 
everywhere continuous second derivatives. 

A simple modification of our basis functions (8) 
(used for piecewise linear fitting) leads to an appro- 
priate basis for the corresponding piecewise cubic 
approximation 

with tk- < tk < tk+ .  
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Setting the coefficients qk and rk to 

rk = (2tk - tk+ - fk-)/(tk+- tk-)3 (20) 
causes Bk(x) (19) to be everywhere continuous and 
have continuous first derivatives. Outside the inter- 
val tk- < x < t k+ ,  Bk(x) is identical to  the corre- 
sponding piecewise linear basis function bk(x) (8) 
with a knot at tk. Inside the interval Bk(x) is a cubic 
function whose average first and second derivatives 
(over the interval) match those for the corresponding 
bk(x). The second derivatives of Bk(x) exhibit dis- 
continuities at tk+ and tk_ .  Far from the central knot 
location tk, Bk(x) has the same properties as bk(x), 
so both bases will have similar characteristic spans 
(see Sec. 2.1). Close to the central knot (inside [tk-, 
tk+]), Bk(x) is an approximation to bk(x) with a con- 
tinuous first derivative. 

Knot placement based on piecewise linear fitting 
(Secs. 2.2-2.5) is used to select knot locations for 
piecewise cubic fits. The resulting knot locations t, 
. --tK are used as the central knots for the cubic basis 
Bl(x) ..- BK(x) (19). The side knots {tk-, tk+}, 1 5 

k r K, are placed at the midpoints between the 
central knots. Let t(,) . --t(,, be the central knots in 
ascending abscissa value. Then 

for 2 5 k r K - 1.The extreme knot locations t l+ 
and tK- are defined as in (21). The outer side knots 
are defined by 

where x(,, and X(N) are, respectively, the lowest and 
highest sample abscissa values. If the knot placement 
procedure happens to put a knot at x(,) (pure linear 
term in the model), then the corresponding basis 
function is taken to be B(l)(x) = x - x(,). 

The piecewise cubic curve estimate 

is obtained by minimizing the ASR with respect to 
the coefficients an ..-a,. In the interior, t ( , ,  < x < 
t(,)+, it is piecewise cubic with second derivative dis- 
continuities at the midpoints between the central 
knots t(k)+ = t(k+, )  (1 5 k 5 K - 1). In the outer 
regions, x t ( l )  or x r t (K)+,the curve estimate is 
taken to be linear. This helps to control the high 
variance associated with the extremes of the interval 
("end effects"). 
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Although the piecewise cubic fit seldom provides 
a dramatic improvement, it requires very little com- 
putation (one additional linear least squares fit) be- 
yond that required for the (piecewise linear) knot 
placement. One can compare the GCV (6) and (18) 
(equivalently, the ASR) for the piecewise linear and 
cubic estimates, choosing the one that is best. If a 
strong prejudice exists for continuous first deriva- 
tives, then one might prefer the cubic estimate given 
even if it provides a slightly poorer fit to the data. 

3. ADDITIVE MODELING 

The simplest extension of smoothing to the case 
of multiple predictor variables, X ,  -..X,, is the ad- 
ditive model (2). Flexible additive regression has been 
the focus of considerable recent interest. It is a spe- 
cial case of the projection pursuit regression model 
["projection selection," Friedman and Stuetzle 
(1981)J. It also represents special cases of the alter- 
nating conditional expectation (ACE) (Breiman and 
Friedman 1985) and generalized additive models 
(Hastie and Tibshirani 1984, 1986). Stone and Koo 
(1985) suggested additive modeling based on a cen- 
tral cubic spline approximation, with linear approx- 
imation past the extremes, and nonadaptive knot 
placement. 

The smoothing procedure described in Section 2 
has a natural extension to multiple predictor vari- 
ables. The piecewise linear basis functions analogous 
to (8) become 

where k (1a k 5 K) labels the knots and j(k) (1 5 

j(k) a p )  labels a predictor variable corresponding 
to each knot. Each knot location tk is associated with 
a particular predictor variable, j(k), and all of the 
predictor variables provide eligible locations for knot 
placement. Additive modeling in this context can 
simply be regarded as a (univariate) smoothing prob- 
lem with a larger number ( p N  vs. N) of ordinate 
abscissa pairs. The forwardlbackward knot-place- 
ment strategy, minimum span (withpN replacing N), 
and model-selection criteria directly apply, as do the 
updating formulas derived in Section 2.4 (reinitial- 
ized to O for each new variable). The resulting 
piecewise linear model, 

K 

f (x) = a, + ak(x,(k) - tk) + , (25) 
k = l  

can be cast into the form by (2) with 

Note that the means of the individual (predictor) 

variable functions (26) can be considered arbitrary 

for purposes of interpretation. 


The corresponding piecewise cubic basis (19) is 
constructed in a manner analogous to that for the 
smoothing problem (p = 1). The only difference is 
that the side knots t ( k )  and t(k)+ (21) are positioned 
at the midpoints between the central knots (tk) de- 
fined on the same variable. The end knots (22) are 
positioned using the corresponding endpoints on the 
same variable. The resulting basis functions Bk(~, (k) )  
define individual variable functions analogously to 
(26): 

again with arbitrary means. 
Although exceedingly simple, this method of ad- 

ditive modeling has some powerful characteristics. 
The knot-placement strategy considers each poten- 
tial knot location in conjunction with all existing knots 
on all of the predictor variables-not just those de- 
fined on the same variable-when deciding whether 
to add (or delete) a particular knot. At each point 
the forward stepwise strategy decides (in a natural 
way) whether to increase the flexibility of an already 
existing variable curve [(26) and (2711 or whether to 
add another variable, either linearly or nonlinearly. 
Variable subset selection thereby occurs as a natural 
by-product of this approach. Note that the smallest 
abscissa value on each predictor variable is always 
made eligible for knot placement (irrespective of the 
minimum span value-Sec. 2.3), so any predictor 
variable can potentially enter in a purely linear way. 

The additive modeling strategy outlined previously 
placed no special emphasis on linearity. A purely 
linear relationship in any variable is represented by 
one of the eligible knot locations (the first) on that 
variable. One can (if desired) place such special em- 
phasis by requiring that the first knot entered for 
each variable be at its smallest value. The price paid 
for this is increased variance in estimating some 
monotone relationships and dramatically increased 
bias against nonmonotone relationships. 

Our strategy does, however, place some special 
emphasis on monotonicity. Monotone trends will en- 
ter before somewhat stronger highly nonmonotone 
relationships. Moreover, there is a slight preference 
for certain types of monotone trends-namely ,those 
that start with a small slope. These can be approxi- 
mated with a single knot, as can a purely linear trend. 

This method of additive modeling is invariant to 
the locations and individual spreads of the variables. 
Translating or rescaling each of the variables by a 
(different) constant factor will, in principle, not affect 
the solution. If, however, the predictor variables 
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have very large absolute locations (compared to their 
scales) and/or wildly different scales, there can be 
undesirable numerical consequences associated with 
the updating and least squares fitting. In such cases 
(as with ordinary linear least squares regression) it 
is wise to center and/or rescale the predictor vari- 
ables to remove the large locations and/or wild scale 
differences before applying the modeling procedure. 
The resulting solution is easily transformed back to 
the original variable locations and scales. 

4. CONFIDENCE INTERVALS 

When attempting to interpret the individual pre- 
dictor variable curve estimates, it is important to 
have a notion of how far the estimate is likely to 
deviate from the true underlying (population) con- 
ditional expectation. This can be quantified by the 
ESE 

Here f: (x,) is the true population curve and f,(x,) 
the estimate from the sample. The expected values 
(28) are over repeated samples of size N drawn 

from the population distribution. For linear (non- 
adaptable) procedures (knots fixed in advance) and 
homoscedastic errors (I),one can estimate the vari- 
ance term in (28) through standard formulas for the 
covariances of the a, appearing in (26) and (27) and 
an estimate of the true underlying error variance, 
(i2.With adaptable procedures such as ours this can 
be highly overoptimistic, because it does not account 
for the variability associated with the knot place- 
ment. 

One way to mitigate this effect is to inflate 6' to 
account for the additional degrees of freedom used 
by the adaptive knot placement (total of three for 
each knot). Even this, however, does not give com- 
pletely satisfactory results. For example, the (con- 
stant) predictor variable curves associated with no 
knots would be calculated to have zero variance. This 
is clearly not the case. In addition, there is seldom 
reason to expect homoscedasticity. Even if one could 
accurately estimate the variance it is, in any case, 
only one part of the ESE. There is still the unknown 
and potentially large bias-squared term in (28). 

Bootstrapping (see Efron and Tibshirani 1986) 
provides a means of estimating the variance of the 
curve estimates (assuming only independence) and 
can give some indication of the bias as well. This is, 
of course, at the expense of additional computing. 
The additive modeling procedure described here, 
however, is generally fast enough (see Sec. 2.4) to 

permit substantial bootstrapping, and honest uncer- 
tainty estimates are usually worth it. 

The basic idea underlying the bootstrap is to sub- 
stitute the sample for the population and study the 
behavior of estimates under repeated samples of size 
N drawn from it. In particular, we can estimate the 
ESE (28) by 

Here EB is the expected value over repeated boot- 
strap samples of size N drawn (with replacement) 
from the data, and fjB) is the (ith) curve estimate for 
the bootstrap samples. In fact, one can approximate 
the distribution of f: (x,) - f,(x,) by that of f,(x,) 
- f !B ' (~ ,> .  

Our goal is to take maximal advantage of the flex- 
ibility of the bootstrap to estimate asymmetric in- 
tervals about the curve that reflect the potentially 
asymmetric nature of the distribution of f: (x,) -
f,(x,). This can be caused by either asymmetric error 
distribution or biased curve estimates (or both). In 
addition, we wish our interval estimates to reflect 
(probable) heteroscedasticity of the errors. To this 
end, we repeatedly draw bootstrap samples (of size 
N with replacement) from the data. For each such 
sample, we perform the same modeling procedure 
as was applied to the original data, thereby obtaining 
a set of curve estimates fjB)(x,), 1 5 i r p. At each 
(original data) value, x,,two averages are computed: 

and 

The first average (30) is over those bootstrap repli- 
cations for which f,(x,) - f jR)(x,) > 0, and the sec- 
ond (31) is over those for which f,(x,) - f("'(x,) < 
0. The individual averages so obtained at each value 
of x,, e$(x,), are then smoothed against x, using a 
simple (constant span) running average smoother. 
The resulting smoothed estimates &Z,(x,) are then used 
to define confidence intervals about the original data 
estimate f,(x,): 

In addition to assessing the variability of the in- 
dividual predictor variable curve estimates f l ( x , ) ,  it 
is important to obtain a realistic estimate of the fu- 
ture prediction error (FPE) of the entire additive 
model (2): 
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Here the expected value is over the population joint 
distribution of the response and predictor variables. 
Sample reuse techniques such as bootstrapping (Ef- 
ron 1983) and cross-validation (Stone 1974) provide 
a variety of such estimates. Of these, the so-called 
"632 bootstrap" has shown superior performance in 
several simulation studies (Crawford 1986; Efron 1983; 
Gong 1982). This estimate is a convex combination 
of two different estimates: 

The second, ASR, is the average squared residual 
corresponding to the original data fit. The first es- 
timate, FPE,,, is obtained from bootstrap sampling. 
As a consequence of the random nature of selecting 
observations for the bootstrap samples, a (different) 
subset of the observations will fail to be selected to 
appear at all in a particular bootstrap sample. On 
average, ,368 N data observations will not contribute 
in this way to a bootstrap sample. Each time an ob- 
servation does not so appear, its prediction error 
(squared) is computed, based on the model estimated 
from the corresponding bootstrap sample from which 
it is absent. The quantity FPE,, is the average of 
these prediction errors over all such left-out obser- 
vations throughout the entire sequence of bootstrap 
replications. 

The bootstrapping procedure outlined previously 
simulates situations in which the response and pre- 
dictors are both random variables sampled (inde- 
pendently) from some joint distribution. That is, if 
another sample were selected, different values of the 
predictor variables as well as the responses would be 
realized. Therefore, the resulting confidence interval 
and FPE estimates are not conditional on the design 
(realized set of predictor values). This is appropriate 
in most observational settings. There are situations, 
however, in which the design is presumed to be fixed. 
That is, every replication of the experiment results 
in an identical set of values for the predictor variables 
and only the responses are random. Bootstrapping 
(as outlined previously) will tend to overestimate both 
the confidence intervals and the FPE in fixed design 
situations (just as estimates conditioned on the de- 
sign underestimate them for observational settings). 
Therefore, if the design is fixed, these bootstrap es- 
timates should be regarded as conservative. 

5. SIMULATION STUDIES AND 
DATA EXAMPLES 

In this section, we compare the technique outlined 
in the previous sections (referred to for identification 
as the Turbo smooth/model) to some other methods 
commonly used for smoothing and additive modeling 
through a limited simulation study and application 

to data. The goal is to identify those settings in which 
this procedure can be expected to provide good per- 
formance when compared to existing methodology. 
For the smoothing problem ( p  = 1) we compare 
with smoothing splines (Reinsch 1967), a popular 
nonadaptive local averaging method and a recently 
proposed adaptive span smoother, Super Smoother 
(Friedman 1984). With smoothing splines, the 
roughness penalty was automatically chosen through 
GCV (Craven and Wahba 1979). For additive model- 
ing, we make comparisons with the projection se- 
lection/ACE approach using Super Smoother. In all 
examples, the knot-placement increment is given by 
(11) with n = .05. 

5.1 Smoothing Pure Noise 

This is a simulation study to compare how well 
these three smoothers estimate a constant function 
in the presence of homoscedastic noise. That is, how 
much structure do they estimate when there is no 
underlying structure in the population? A set of re- 
sponse-predictor pairs (x,, y,), 1 5 i 5 N, was gen- 
erated, with 0 5 x, 5 1 randomly sampled from a 
uniform distribution and the y, drawn from a stan- 
dard normal distribution. Panels a ,  b, and c of Figure 
1 show a scatterplot of one such sample (N  = 20) 
with the corresponding Turbo, smoothing spline, and 
Super smooths, respectively, superimposed. The 
Turbo curve estimate is seen to be a constant (no 
knots) equal to the sample response mean. The 
smoothing spline and Super Smoother estimates show 
a gentle dependence on x. 

Since one cannot discern expected performance 
based on one realization, we study average perform- 
ance over 100 such realizations for each of N = 20 
and N = 40. The results are shown in panels d and 
e ,  respectively; for the larger sample size, the errors 
are generally smaller, but the qualitative compari- 
sons are the same. In both cases the average absolute 
error is plotted as a function of abscissa value. (For 
the Turbo smoother, the piecewise linear and cubic 
smooths give almost identical results.) The Turbo 
smoother (solid line) is seen to give uniformly smaller 
average error than the other methods, although, of 
course, this overall performance is mostly caused by 
the relative amount of smoothing chosen (automat- 
ically) by the method rather than to the choice of 
method itself. Perhaps of more interest is the uni- 
formity of the error across the range of observations; 
for this problem in particular, Turbo seems not to 
exhibit large error near the ends of the interval ("end 
effects") associated with the other methods. The es- 
pecially poor performance of Super Smoother 
(dashedline)inveryhigh-noiseenvironmentshas been 
noted before (Breiman and Friedman 1985). It is also 
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Figure 7. Smoothing a Small Sample (N = 20) of Pure Noise: (a) Turbo Smooth; (b) Smoothing Spline; (c) Super Smoother; 
(dlAverage Absolute Error as a Function of Abscissa Value (Turbo smooth, -; smoothing spline, ...;Super Smoother, ---); 
(e)Average Absolute Error for a Larger (N = 40) Sample. 

known, as most easily is seen by considering the 
"equivalent kernel" formulation discussed by Sil- 
verman (1984), that the smoothing spline will have 
higher variance near the ends. Moreover, the 
smoothing spline can be affected by bias effects if the 
true underlying curve does not satisfy appropriate 
boundary conditions (see Rice and Rosenblatt 1983); 
Agarwal and Studden (1980) showed that these end 
bias effects are not felt if one uses piecewise poly- 
nomial models with fixed knots, but, since the un- 
derlying model is constant in this case, the bias effects 
are not relevant. It is clear that further theoretical 
work will be required to understand Turbo's appar- 
ent improvement in boundary behavior over other 
methods. 

5.2 Smoothing a Monotonic Function 

Our next example increases the complexity of the 
problem slightly. Here N = 25 response-predictor 
pairs (x,, y,) were generated according to the pre- 
scription 

with the x, randomly drawn from a uniform distri- 
bution in the interval [O, 11 and the E ,  drawn from a 
(heteroscedastic) normal distribution 

In this example, the curvature of the true underlying 
conditional expectation is increasing with abscissa 
value and the noise is heteroscedastic with standard 
deviation decreasing with abscissa value. 
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Figure 2a shows a scatterplot of such a sample 
superimposed with both the piecewise linear and 
piecewise cubic Turbo smooths and the true under- 
lying conditional expectation, exp(6x). Panels b and 
c show the corresponding smoothing spline and Super 
smooths. In this case, the piecewise cubic Turbo es- 
timate gives a slightly better fit than the piecewise 
linear to the sample (as well as the true underlying 
curve). The smoothing spline estimate exhibits con- 
siderable variability in the high-noise region and the 
Super Smoother somewhat less. 

To study expected performance, 100 replications 
(25 observations each) were generated according to 
(34) and (35) and fit with the three smoothing meth- 
ods-piecewise cubic Turbo model, smoothing 
splines, and Super Smoother. Figure 2d plots their 
average absolute error, If (x) - exp(6x)l, as a func- 
tion of abscissa value x. In the high-noise region x 
< .2, both the smoothing spline (dotted line) and 
Super Smoother (dashed line) exhibit large error as- 
sociated with the high variance of their estimates. In 
the intermediate region .2 < x < .9, both the Turbo 
(solid line) and Super smoothers have comparable 
performance. In the low-noise, high-curvature ex-
treme x > .9, all three methods produce considerable 
increased error (bias) with the Super Smoother de- 
grading the least. Over most of the region, the (non- 
adaptable) smoothing spline method gives relatively 
poor performance. This might be expected, since 
both the curvature and the noise level are varying, 
thereby causing a single span value to be less appro- 
priate. 
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Figure 2. Smoothing a Monotonic Function With Heteroscedastic Noise: (a) Turbo Smooth; (b)  Smoothing Spline; (c) Super 
Smoother; (d ) Average Absolute Error as a Function of Abscissa Value (Turbo smooth, -; smoothing spline, ..-; Super 
Smoother, ---). 

5.3 A Difficult Smoothina Problem w 

Our linal smoothing is intended to em-
ulate the motorcycle impact data of Silverman (1985, 
fig. '1. A random of y,) pairs was 
generated with the x ,  from a uniform distribution in 
the interval [ - .2, 1.01 and the y, given by 

with the E, randomly generated from E ,  -N [0, max2(.05, 
x,)]. The second derivative of the underlying con- 
ditional expectation changes sign four times and is 
infinite at x = 0. The standard deviation of the ad- 
ditive noise is small and constant for X 5 .05, and 
then increases linearly with x. Figure 3a shows a 
scatterplot of such a sample. Figure 3b superimposes 
the piecewise linear and cubic Turbo smooths along 
with the true underlying conditional expectation. 
Panels c and d show the corresponding smoothing 
spline and Super Smoother smooths, respectively. 
All but the piecewise linear estimate have a down- 
ward bias at the derivative discontinuity. Both Turbo 
smooths have a downward bias at the minimum, 

whereas the smoothing spline and Super smooths 
have an upward bias. he smoothing-spline estimate 
exhibits considerably more variation in the higher- 
noise regions. The piecewise cubic Turbo smooth 
again gives a slightly better fit to the data than does 
the piecewise linear. 

As in the previous examples, we compare expected 
performan& of the three methods over 100 repli- 
cations of 50 observations each. Figure 3e shows the 
averageabsolute error (from the true underlying con- 
ditional expectation) for the piecewise cubic Turbo 
smooths, smoothing splines, and Super Smoother. In 
the higher-noise regions (X > .25), the Turbo and 
Super smoothers are seen to have comparable error, 
but in the lower-noise, high-curvature region (x < 
.25) the Super Smoother exhibits about 20% higher 
accuracy. It has considerably less bias at the deriv- 
ative discontinuity and the minimum points. Smooth- 
ing splines exhibit relatively poorer performance over 
almost the entire interval. Again, this might have 
been expected, since this is a highly heteroscedas- 
tic situation with varying curvature. Nonadaptable 
smoothers must choose a compromise smoothing pa- 
rameter for the entire region, whereas the adaptable 
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Figure 3. Difficult Smoothing Problem: (a) Data Scatterplot; (b)Turbo Smoother; (c) Smoothing Spline; (d)  Super Smoothec 
(el Average Absolute Error as a Function of Abscissa Value (Turbo smooth, -; smoothing spline, ...;Super Smoother, ---). 

procedures can adjust the span to try to account for 
such effects. 

5.4 Additive Modeling With Pure Noise 

Since it is as important for a method not to find 
predictive structure when it is absent as it is to find 
it when present, we first study the performance of 
our additive modeling procedure when there is no 
predictive relationship between the response and 
predictors. Two simulation experiments were per- 
formed. In the first, 100 replications of a sample of 
size N = 50 were generated. The responses were 
drawn from a standard normal distribution. There 
were p = 10 predictor variables, each independently 
drawn from a uniform distribution in the interval [O, 
11. The Turbo modeling procedure was applied to 
each of these I00 replicated samples. In 67 replica- 
tions, no knots were placed on any of the 10 predic- 
tors. The estimated response function was taken as 
the sample response mean. In 24 replications one 
knot was placed, and in 9 cases two knots were 
used. Thus two-thirds of the time the Turbo model 
reported no predictive relationship. In the rest of 
the cases it reported a small one. Table 1 summa-
rizes the distribution of both the sample multiple 
correlation ( R y  between the response and the esti- 
mated model, and the root mean squared distance 
(ESE)" of the estimated model from the truth, 
,f(x, ... x,,,) = 0 .  

For comparison we also applied to these data sets 
the projection selection procedure (Friedman and 
Stuetzle 1981) or, equivalently, the ACE procedure 

with the resporlse transformation restricted to be lin- 
ear (Breiman and Friedman 1985) using the Super 
Smoother (Friedman 1984). The corresponding dis- 
tribution of R2 and (ESE)'" are also summarized in 
Table 1. In contrast to the Turbo model, this method 
is seen to seriously overfit the data as reflected in 
the high values of both quantities. The propensity of 
ACE (based on the Super Smoother) to overfit in 
low signal-to-noise situations was discussed by Folkes 
and Kettenring (1985) and Breiman and Friedman 
( 1 985). 

A second simulation experiment was performed, 
using the same setting but increasing the sample size 
of each replication to N = 100. The Turbo model 
placed no knots 63 times. The frequency of one 
through five knots were, respectively, 26 ,6 ,3 ,1 ,  and 
1. The corresponding distributions for both methods 

Table 1. Comparison of Turbo and ACE Additive Modeling 
of Pure Noise (Sec. 5.4) 

R2 (ESE)' 

Model .05 .5 .95 .05 .5 .95 

N = 50 

Turbo .O .O .21 .02 .18 .50 
ACE .74 .91 .97 .68 .85 1.00 

N = 100 

Turbo .O .O .12 ,008 .12 .41 
ACE .49 .70 .86 .55 .69 .89 

NOTE: The 5%. 50%. and 95% points are given forthedistribution of the multiple 
correlation a2(resub~titutionland the root expected squared error (ESE)' 2. 
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are shown in Table 1. The increased sample size is 
seen to improve the performance of both methods, 
but the qualitative aspects of their comparison are 
the same as with the smaller (N = 50) sample size. 
The Turbo modeling procedure is seen to be fairly 
conservative. Note that the tendency of the ACE 
method to drastically overfit in low-signal-to-noise, 
small-sample settings is not a fundamental property 
but is mainly a consequence of its implementation 
using the highly flexible Super Smoother. 

5.5 A Highly Structured Additive Model 

This example is intended to contrast with the pre- 
vious one. As in the previous example, there are p 
= 10 predictor variables, each independently gen- 
erated from a uniform distribution on [O, 11. Two 
simulation experiments of 100 replications each were 
performed with N = 50 and N = 100. The response 
variables were generated by yi = f *(x,,~... X,O,~)+ 
E ~ ,with the ei independently drawn from a standard 
normal distribution. The function f * was taken to 
be 

+ 4 
1 + exp[- (X, - .5)/.05] 

+ 3X3 + 2X4 + X,. 

In this case, the signal-to-noise ratio (standard de- 
viation off *) is 2.47. The true underlying conditional 
expectation is additive in the 10 predictor variables. 

The relationship is highly nonlinear in the first 2, 
linear with decreasing strength in the next 3, and 
constant (0) in the last 5. 

Figure 4 shows the piecewise linear and cubic curve 
estimates [(26) and (27)] for the first five variables 
in the first replication of N = 50. Moreover, super- 
imposed on the figures is the true underlying function 
for the corresponding variable (solid line) with the 
errors F, added to it (dots). As can be seen, the Turbo 
model placed one knot on X,, two on X,, and one 
each on variables X3, X4, and X,. No knots were 
placed on the last five predictor variables. Both the 
piecewise linear and cubic models fit the data with 
R2values of .93. The root mean squared error (RMSE) 
of the piecewise linear model from the true f *(X, 
. --X,,) was .45, whereas for the corresponding 
piecewise cubic it was .47. 

More important than performance on a single sam- 
ple is average performance over 100 independent 
replications of this situation. Table 2 summarizes the 
results for piecewise cubic fitting. The results shown 
in Figure 4 (based on the first replication of the 100) 
are seen to be somewhat more favorable than those 
on the average. A second simulation experiment with 
100 replications of N = 100 observations each was 
also performed. These results are summarized in Ta- 
ble 2 as well. The ACEISuper Smoother procedure 
was applied to the same sets of replicated data, with 
the results also shown in Table 2. 

Comparing the results, the Turbo modeling pro- 
cedure is seen to exhibit substantially better per- 
formance in terms of RMSE. The effect is, however, 

0 d e 

4 4 

a - a 

-% 0 1  0.4 0.8 P I  I - 2 ~  0.2 0.4 M 0.E L 

Figure 4. Solution Predictor Variable Curves for the Simulated Additive Modeling Example: (a) f,(X,l; (6)f,(XZ); (c) f3(X3); 
(dl f4(X41; (el f5(X51. 
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Table 2. Comparison of Turbo and ACE Additive Modeling 
in a Higher Signal-to-Noise Situation (See. 5.5) 

R2 (ESE)' 

Model .05 .5 .95 .05 .5 .95 

N = 50 

Turbo .79 .86 .93 .34 .75 .99 
ACE .97 .99 1.0 .68 .87 1.OO 

N = 100 

Turbo .84 .87 .91 .31 .48 .62 
ACE .93 .96 .99 .60 .72 .85 

NOTE: The 5%. 50%. and 95% points are given for the distribution of the multiple 
correlation R2 (resubstitutionl and the root expected squared error (ESEl"2. 

less dramatic than in the pure noise case. On average, 
ACEISuper Smoother fits the data sample 3.7 times 
more closely than the Turbo model for N = 50. For 
N = 100, this factor is 1.8. This overfitting results 
in an increased median modeling error of 16% for 
N = 50 and 50% for N = 100. On the other hand, 
the Turbo model has a tendency to be conservative 
and underfit the data, producing estimates that are 
sometimes overly smooth (too few knots). This has 
an interpretational advantage and a predictive ad- 
vantage when curvature variation of the true under- 
lying conditional expectation is reasonably gentle. 
This example, however, simulates a situation in which 
that variation is fairly dramatic and the advantage of 
the Turbo modeling procedure (in terms of ESE) is 
thereby somewhat reduced. 

5.6 	 Molecular Quantitative Structure- 
Activity Relationship 

We illustrate here Turbo modeling on a data set 
from organic chemistry (Wright and Gambino 1984). 
The observations are 36 compounds that were col- 
lected to examine the structure-activity relationship 
of 6-anilinouracils as inhibitors of Bacillus subtilis 
DNA polymeraze 111. The four structural variables 
measured on each compound are summarized in Ap- 
pendix A. The response variable is the logarithm of 
the inverse concentration of 6-anilinouracil required 
to achieve 50% inhibition of enzyme activity. 

Turbo modeling applied to these data placed four 
knots-one on the first variable, two on the second, 
and one on the third. The e' = 1 - R' for the 
piecewise linear fit was .12; for the piecewise cubic 
it was .11. The corresponding 632-bootstrap esti- 
mates (33) were .23 and .22. Figure 5 shows the 
piecewise cubic curve estimates f,(x,), i = 1,4,  along 
with the bootstrap confidence intervals (37). The data 
points (dots) on the figures are the scaled residuals 
from the fit added to the curve at each abscissa value 
(component plus residual plot). The scale factor is 

the square root of the ratio of the 632-bootstrap es- 
timate to the resubstitution e2. The curve estimates 
on the first three predictors are all seen to be fairly 
nonlinear, especially the second one. 

ACEISuper Smoother was also applied to these 
data. The resubstitution e2 was .054, whereas the 632- 
bootstrap estimate was .29. As in the simulated data 
example (Sec. 5.5), ACEISuper Smoother is seen to 
fit the data more closely than the Turbo model, but 
the resulting overfit results in an inferior future pre- 
diction error in this case. 

5.7 	 Air-Pollution Data 

This data set consists of daily measurements of 
ozone concentration and eight meteorological vari- 
ables for 330 days of 1976 in the Los Angeles basin. 
Appendix B describes the variables. These data were 
introduced by Breiman and Friedman (1985) to il- 
lustrate the ACE procedure. They were also ana- 
lyzed by Hastie and Tibshirani (1984) using their 
generalized additive modeling method (see also Has- 
tie and Tibshirani 1986). In contrast to previous ex- 
amples, this is a large (N = 330), complex, and not 
very noisy data set. One might, therefore, expect 
that the simple Turbo modeling procedure would be 
at a disadvantage when compared with the more so- 
phisticated approaches that have been applied to 
these data. 

Applying the Turbo model resulted in 10 knots 
being placed, one each on variables 1, 4, 5, and 6 
and two each on variables 3, 8, and 9. The resulting 
resubstitution e2 was .20 for both the piecewise linear 
and cubic fits. The corresponding 632-bootstrap 
estimates (20 replications) were .24 for both. The 
piecewise cubic individual variable curve estimates, 
f,(x,), 1Ii 5 9, (27), are shown in Figure 6, along 
with their bootstrap confidence intervals (32) and 
(scaled) residuals. 

Exact comparison with the ACE results in Brei- 
man and Friedman (1985) is not possible, since they 
applied ACE in a mode that estimates an optimal 
(minimum e2) response transformation as well. The 
resulting response estimate was, however, not too 
far from the identity function, so a rough comparison 
is possible. They applied a variable-based forward 
stepwise procedure, selecting five variables. Their 
resubstitution e2 for the optimal response function 
was .18. The variables that were selected and the 
corresponding curves are fairly consistent with (but 
not identical to) the TURBO model results. Gen- 
erally, the Turbo curves are a bit simpler than the 
corresponding ACEISuper Smoother estimates. 
Since bootstrapping or cross-validating the forward 
stepwise ACE procedure would be prohibitively 
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Figure 5. Solution Predictor Variable Curves for the Quantitative Structure-Activity Relationship (see App. A): (a) f l (Xl ) ;  (b) 
fZ(X2); (c) f3(X3); (d) f4(X4). 

expensive, no estimate of (honest) future prediction 
error could be given. 

Hastie and Tibshirani (1984) also analyzed these 
data. Their generalized additive modeling procedure 
as applied in this setting is equivalent to the ACE 
method with the response function constrained to 
linearity. Therefore, we can make direct compari- 
son with their results. They did not employ Super 
Smoother, but rather a nonadaptable local linear 
smoother with constant span. With all nine predictors 
in the regression function, they obtained an e2of .20. 
With the same subset of variables as those used by 
Breiman and Friedman (1985), the e2was .22. Hastie 
and Tibshirani (1986) provided a method of esti- 
mating the equivalent degrees of freedom used by 
their fitting process. This estimate accounts for the 
flexibility associated with the resulting smooths but 
does not account for the (nonlinear) span selection 
and variable subset selection process. They reported 
21.8 df for their fit with all variables and 12.4 for the 
five-variable subset. The corresponding degree-of- 
freedom count for the Turbo fit would be 11 (constant 
term plus coefficients for 10 knots). 

6. DISCUSSION 

The examples of Section 5 indicate that the smooth- 
ing method outlined in Section 2 and the correspond- 
ing additive modeling procedure described in Section 
3 are competitive with the techniques with which they 
were compared. They seem to have a substantial 
advantage in situations with low sample size and high 
noise in which the underlying functions are fairly 
simple. In this context, a simple function is one that 
can be reasonably well approximated by a piecewise 
linear function with a few (judiciously placed) knots. 
This was the case in the examples in Sections 5.1, 
5.2, 5.4, 5.5, and 5.6. Our procedures appeared to 
have similar performance to the corresponding com- 
petitors in large-sample, low-noise situations, again 
with fairly simple underlying functions (Sec. 5.7). 
The example in Section 5.3 represented a moderate- 
sample-size situation with both high- and low-noise 
regions (strong heteroscedasticity) and a complex un- 
derlying function. In this particular case, Super 
Smoother appeared to perform somewhat but not 
dramatically better. 
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Figure 6. Solution Predictor Variable Curves for the Air-Pollution Data (see App. 6). 

FORTRAN programs implementing the proce- 
dures described herein are available from us. 
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APPENDIX A: VARIABLES ASSOCIATED 

WlTH THE MOLECULAR QUANTITATIVE 


STRUCTURE-ACTIVITY DATA 

EXAMPLE (SEC. 5.6) 


XI-meta substituent hydrophobic constant 
X,-para substituent hydrophobic constant 
X,-group size of substituent in the meta position 
X,-group size of substituent in the para position 
Y-logarithm of the inverse concentrations of 6-an- 

ilinouracil required to achieve 50% inhibition of 
the enzyme. 

APPENDIX B: VARIABLES ASSOCIATED 

WlTH THE AIR-POLLUTION DATA 


EXAMPLE (SEC. 5.7) 


XI-Vandenburg 500 millibar height 
Xz-humidity 
X,-inversion base temperature 
X,-Sandburg Air Force Base temperature 
X,-inversion base height 
X,--Daggot pressure gradient 
X,-wind speed 
X,-visibility 
X,-day of the year 
Y-Upland ozone concentration 
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