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Abstract. The classification problem is considered in which an output varallgsumes discrete values with
respective probabilities that depend upon the simultaneous values of a set of input varialites . . ., xn}. At

issue is how error in the estimates of these probabilities affects classification error when the estimates are usec
a classification rule. These effects are seen to be somewhat counter intuitive in both their strength and nature.
particular the bias and variance components of the estimation error combine to influence classification in a vel
different way than with squared error on the probabilities themselves. Certain types of (very high) bias can b
canceled by low variance to produce accurate classification. This can dramatically mitigate the effect of the bie
associated with some simple estimators like “naive” Bayes, and the bias induced by the curse-of-dimensionalif
on nearest-neighbor procedures. This helps explain why such simple methods are often competitive with ar
sometimes superior to more sophisticated ones for classification, and why “bagging/aggregating” classifiers cz
often improve accuracy. These results also suggest simple modifications to these procedures that can (sometir
dramatically) further improve their classification performance.
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1. Introduction

One of the most common and important uses for data is prediction. The purpose is to predi
(forecast) the unknown value of some attribyteof a system (“output” or “response”
variable), based on the known values of other attribates (xy, ..., x,) (“input” or
“predictor” variables). With the “supervised learning” paradigm the data base provides ¢
“training” sample

T = {x, yi}) (1.1)

of previously solved cases in which both the values of the inputs and corresponding outpu
have been recorded. The goal of a “learning” algorithm is to use this data (1.1) to construc
a reliable rule for predicting likely output valugdor future data where only the values of
the inputsx have been recorded.

The rule construction strategy can depend upon the nature of the output variable i
terms of the types of values it can realize. The two most common data types are orderab
y € R! (“regression”) and categoricgle {yi, ..., y. } (“classification”). With an orderable
variable there is an order relation between every pair of its valuggy < y' ory > y')
and a distancé¢y — y'| defined between them. For a categorical variable there exists no
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order relation nor a continuous distance between its values. Two values are either equ
(y = Y) or they are unequaly(+# y).

Historically, both regression and classification have been developed from the commo
perspective of real valued prediction. Inthe case of classification the real valued (surrogat
outputs are taken to be the respective probabilities yhaalizes each of its individual
values, as a function of the input valuesThese probabilities are then used in a decision
rule to forecast the most likely (categorical) value for the outputMuch research in
classification has been devoted to achieving higher accuracy probability estimates und
the presumption that this will generally lead to more accurate (categorical) prediction. The
(often counter intuitive) results obtained in this paper challenge that presumption. More
accurate probability estimates do not necessarily lead to better classification performan
and often can make it worse.

This has implications concerning applications of classification as well as for future di-
rections of methodological research. In individual applications one is faced with the choice
of which method(s) to consider. Often older simpler techniques are discarded in favor o
newly developed sophisticated methods on the grounds that the latter can provide mo
accurate estimates of the probabilities of the respective output values. Results derived
this paper show that, even if this is the case, it need not result in smaller classification errc
Very simple procedures such as “naive” Bayes and nearest neighbor methods genera
provide very poor probability estimates especially in high dimensional settings involving
many input variables. Never-the-less they often yield lower prediction error than othel
(newer) methods intended to produce higher accuracy estimates of the probabilities. Tt
results derived in this paper indicate those situations in which this is likely to occur. They
also suggest straightforward modifications to these “simple” procedures that can sometim
improve their classification performance even more, by selectively further reducing the ac
curacy of their probability estimates. In terms of methodological research these result
suggest that in situations where the goal is accurate classification, focusing on improve
probability estimation may be misguided and a totally different paradigm may be required

2. Classification

As noted above, in the classification problem the output varigl@esumes values on an
unordered discrete sgte {yi, ...,y }. In this paper the special (but common) case in
which L = 2 is considered. Although many of the concepts generalize to the more genere
casel > 3, the derivations and underlying intuition are more straightforward for this special
(“two-class”) case. As will be seen, even in this restricted setting much of the conventiona
wisdom concerning the classification problem can be brought into question.

Without loss of generality we takge {0, 1}. The goal of a classification procedure is to
predict the output value given the values of a set of “input” variables{xy, . . ., X,} simul-
taneously measured on the same system. Itis often the case that at a particubaeg®int
the value ofy is not uniquely determinable. It can assume both its values with respective
probabilities that depend on the location of the paiitt the n-dimensional input space

Py =1|x)=1-Pr(ly =0|x) = f(x). (2.1)
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Here f (x) is a single valued deterministic function that at every priat R" specifies the
probability thaty assumes its second value.

The role of a classification procedure is to produce a rule that makes a predictioa
{0, 1} for the correct class labsl at every input poink. The goal is to choosg(x) to
minimize inaccuracy as characterized by the misclassification “risk” (expected or averag
loss)

re) =1 fe01yx) =0) +lo(1— f(x))LYX) =1). (2.2)

Herely andl; are the losses incurred for the respective misclassificatioixg,is given by
(2.1), and 1) is an indicator function of the truth of its argument

_ |1 ifpistrue
L = {0 otherwise. (2.3)
The misclassification risk (2.2) is minimized by the (“Bayes”) rule
lo
X) =1 f(x) > 2.4
000 =1( 100 = ) @4
which (by definition) achieves the lowest possible risk
rg(x) = min(y f (x), lo(1 = f(x)). (2.5)

Note that the rule (2.4) is not necessarily the only minimizer of (2.2). Other rules may alsc
achieve minimum risk (2.5). Also, in the special (but common) dase |, = 1, (2.4)
reduces to predicting the most probable class and (2.5) represents the fraction of erronec
predictions thereby encountered.

Generally the functiorf (x) (2.1) characterizing a particular system is unknown. How-
ever, data from the system is available in the form of a collection of previously solved case
in which both the input and output variables have been measured. This “training” dat:
set (1.1) is used to “learn” a classification ryle< | T) for (future) prediction. The usual
paradigm for accomplishing this is to use the training dat.1) to form an approximation
(estimate)fA(x | T) to f(x) (2.1) and substitute this into (2.4)

R lo
y(x|T>—1<f(x|T) > |O+|l). 2.6)

When f(x) # f (x) this rule (2.6) may be different than from the Bayes rule (2.4) and thus
not achieve the minimal Bayes risk (2.5). Itis the purpose of this study to examine the wa
in which inaccuracied (x) — f (x) in the function estimate are reflected in misclassification
risk.
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3. Function estimation

In the usual function estimation setting one assumes that an output varishlelated to
a set of input variables by

y="fX +e (3.1)

where f (x) (“target function”) is a single valued deterministic functiomadrguments and
¢ is a random variable distributed according to some daw L (¢ | x). By definition its
averageE (¢ | xX) = 0 for all x so that the target function is defined by

f(x) = E(y|X%). (3.2)
The goal is to obtain an estimate
fx|T) =E(yIx, T) (3:3)

using a training data sét (1.1). Inaccuracy is usually quantified by root-mean-squared
prediction error

rms(x) = EX?[(y — f (x| T))?] (3.4)

where the expected value in (3.4) is taken with respect to the distributiof3ot).

The classification problem can be cast in this function estimation setting by observing
that (3.2) holds foly and f (x) in (2.1) so that they can be related by (3.1) wtthistributed
as a (centered) binomial distribution with variance(vax) = f(x)(1 — f(x)). Thus,
regular function estimation technology (3.3) can be applied to obtain the estfroaltd ),
which is plugged into (2.6) to form a classification rule. This is the paradigm used by many
popular classification methods including neural networks (Lippmann, 1989), decision tres
induction methods (Breiman et al., 1984; Quinlan, 1993), projection pursuit (Friedman
1985), and nearest neighbor methods (Fix and Hodges, 1951).

4. Density estimation

An alternative paradigm for estimatiniyx) (2.1) in the classification setting is based on
density estimation. Here Bayes theorem

f(x) = 71 P1(X) (4.1)
7o Po(X) + 71 P1(X)

is applied wherg pj(x) = Pr(x|y = )} are the class conditional probability density
functions andr; = Pr(y = j)}3 are the unconditional (“prior”) probabilities of each class.
The training data (1.1) are partitioned into subgets {Top, T1} with the same class label.
The data in each subset are separately used to estimate its respective probability dens
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{Pj (x| Tj)}3. These estimates are plugged into (4.1) to obtain an estifateT ) which

is in turn plugged into (2.6) to form a classification rule. Examples of this approach are
discriminant analysis (see McLachlan, 1992), kernel discriminant methods (Hand, 1982
Gaussian mixtures (Chow and Chen, 1992), learning vector quantization techniques (K«
honen, 1990), and Bayesian belief networks (Heckerman et al., 1994).

5. Bias, variance, and estimation error

Whether one applies the function estimation (3.3) or density estimation (4.1) approact
the estimated probabilitf(x | T) depends upon the training dafa(1.1) used to obtain

it. A change in the data (usually) results in a change in the probability estimate at (a
least) some of the input points In most applications the training data set (1.1) represents
a random sampling from the system under study. Even if the target probability functior
f (x) is everywhere stationary, sampling the system at different times results in (at leas
somewhat) different training data séfsand thereby different estimatesx | T). For a
given set of input point$xi}’1\‘ the corresponding outpu(sﬁ}’l\‘ are random owing to the
stochastic component(3.1), and generally the input points themselves represent a randor
sampling (observational study).

The random nature of the training datamplies that the estimaté(x | T) is arandom
variable that assumes a distribution of values at each input pogaverned by some
(usually unknown) probability lawf (x) ~ L(f |x) characterized by a probability density
function p(f |x). Estimating f (x) with a particular training data sét gives rise to a
particular random realization df(x | T) with relative probabilityp( f | x). Two important
parameters of any such distribution are its first two moments, the mean (expected value)

Ef(x) = foo fp(fix)df (5.1)

o0

and variance
varf (x) =f (f —Ef))?p(f|x df. (5.2)

Both of these quantities directly affect expected prediction error (3.4) through the well
known decompositions

Erly — f(x| T2 = Er[f(x) — f(x| T)]? + Ec[e |x]? (5.3)
and
Er[f0— (x| T2 =[f0)—Er f(X| DP+Er[f(x| T)—Er fx| T)]% (5.4)

The left side of (5.3) represents the squared prediction errg) éaeraged over repeatedly
realized training samples of the (same) dkzérom the system under study. The last term
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in (5.3) is independent of both the target function and the training sample and reflects th
irreducible prediction error due to the random nature of the output variable (2.1), (3.1). The
other term in (5.3) is the squared “estimation error” in the target functiot) averaged

over training samples. This dependsfogx) and the method used to obtafiix | T). From

(5.4) one sees that this quantity depends only on the mean (5.1) and the variance (5.2)
the distribution off (x| T). The last quantity in (5.4) is just the variance (5.2). The other
guantity in (5.4) is the square of the “bias”

bias f (x) = f(x) — E f(x). (5.5)

The variance (5.2) reflects the sensitivity of the function estinfarg T) to the training
sampleT. Less sensitivity means that the estimate will be more stable against change
(sampling variations) in the data and thus be less variable under repeated sampling. T
bias (5.5) reflects sensitivity to the target functibix). It represents how closely on average
the estimate is able to approximate the target. From (5.4) one sees that it is desirable to he
both low bias-squared and low variance since both contribute to the squared estimation err
in equal measure. There is however a tension between these goals (Geman et al., 199
The purpose of training is to gain information concerning the target function from the data
therefore sensitivity to the training data is essential, and generally more sensitivity results i
lower bias. However, this in turn increases variance and so there is a natural “bias-varian
trade-off” associated with function approximation.

For a given bias (5.5) the variance (5.2) generally decreases with increasing trainin
sample sizeN (1.1). Therefore for problems with large training samples the bias can be the
dominant contributor to estimation error. Since larger and larger data bases are becomil
routinely available, most modern research in learning methodology has focused on increa
ingly flexible techniques that reduce estimation bias, some with considerable success. Frc
(5.3), (5.4) one can see that this is a reasonable strategy for function approximation (bas
on root-mean-squared error (3.4)), provided enough attention is paid to the variance (“ove
fitting”). For classification however this strategy has been less successful in improving
performance. Some simple highly biased procedures such as “naive” Bayes (Good, 196
and nearest neighbor methods (Fix and Hodges, 1951) remain competitive with and som
times outperform more sophisticated ones, even with moderate to large training sample
(Holte, 1993). In the next section we show that this may not be as surprising as it seem
The quantitie<E f (x) (5.1) and vaf (x) (5.2) that characterize the distribution bx | T)
conspire to affect classification error in a very different way wiHer | T) is used in a
classification rule (2.6).

6. Bias, variance, and classification error

For concreteness we take= |, = 1in (2.4), (2.6) so that the threshold in the indicator
function is 1/2 and misclassification risk (2.2) reduces to probability of misclassification
Pr(§(x) # y). The first step in uncovering ho& f (x) (5.1) and vaf (x) (5.2) affect
classification error is to decompose it into the irreducible error associated with the randor
nature ofy (2.1), (3.1) and a reducible part that dependszch) (3.3) in analogy with
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(5.3) for squared-error loss. Given a particular training saniplel.1) the error rate
Pr(y(x| T) # y) (averaged over all future predictionsxgtdepends on whether or not the
decision (2.6) agrees with that of the Bayes rule (2.4). If it does then its error rate is the
irreducible error associated with the Bayes rule (2.5y8¢| T) # y) = Pr(yg(X) # y) =
min[f(x), 1 — f(xX)]. If not, then it suffers an increased error rat€yRx | T) # y) =
max[f (x), 1 — f(xX)] = |2f (X) — 1] + Pr(ys(X) # y). Therefore one has

Priy(x|1T) #y) = 12f() — 1 1[J(X| T) # ye(X¥)] + Prys(x) # ). (6.1)

Averaging over all training samplds(of sizeN), under the assumption that they are drawn
independently of future data to be predicted, one has

Pr(§ #y) = [2f — 1| Pr(Y # yB) + Pr(ys # Y). (6.2)

Here (6.2) and in what follows all quantities are presumed to be conditioned at a particula
pointx in the input space, and that explicit dependence is suppressed for convenience.

From (6.2) one sees that the classification error ratg Bry) is linearly proportional
to Py # yg) which is the only quantity in (6.2) that involves the probability estiméte
through (2.6). It can be viewed as a decision “boundary” error in that it represents mises
timation of the (optimal) decision boundary separating the two classes in the input space
defined by the set of points (surface) for whi€kx) = 1/2. This “boundary error” is the
analog of the (squared) estimation erkgrf (x) — f (x)]2in (5.3) and (5.4).

In order to proceed further it is necessary to calculate how the boundary error depenc
on the distribution off , p( ), induced by the random variations in training data Jets
(repeatedly) sampled from the system under study. This is just the tail apgd pbn the
opposite side of the valug/2 from the true probabilityf

00 R R 1/2 . R
Pr(y¢y5)=1(f<1/2)[ p(f) df+1(le/2)/ p(f) df. (6.3)
1/2 _

[e¢]

This will depend on the detailed form of the distributipan), and not just on its first two
moments (5.1), (5.2), as was the case with squared estimation error (5.4). In order to ga
some intuition we approximate( f) by a normal distribution

p(f) =

£ £\ 2
1 -EL ) (6.4)

1
S exp(— A
\ 2rvarf 2 varf

This approximation is often reasonable since for many procedures the computation
f involves a (sometimes complex) averaging process. Even when it is not the case tt
qualitative conclusions are still generally valid. Assuming (6.4) the boundary error (6.3)
becomes

I Ef—1/2
Pr(y # ye) = Q[SIgn(f - 1/2)—/] (6.5)
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P(2) = \/% /oo e 2*"du (6.6)

is the upper tail area of the standard normal distribution.

7. Discussion

Inspection of (6.5) reveals that the boundary error depends upon the true probifaiitgt
the systematic component of the estimgte, through

b(f, Ef) =sign1/2— f)(Ef — 1/2). (7.1)

For any (nonzero) value of the random componentfvar 0, the boundary error rate
Pr(§ # yg) is monotonically increasing ib(f, E f). In this sense it can be viewed as an
analog of the estimation bias (5.5) squared for squared-error loss (5.4). For convenien
we refer tob( f, E f) (7.1) as the “boundary bias”. (In cases whexd) is an asymmetric
distribution it is more natural to define boundary bias (7.1) in terms of the median insteac
of the mearE f.)

Comparison of (6.2), (6.5) with (5.3), (5.4) reveals that the quantii€snd varf affect
classification error very differently than they affect estimation error on the probalbility
itself. For a given vaf, estimation (squared) error (5.4) is proportional to the (squared)
distance f — E )2 (bias-squared). In classification (6.2), (6.5) the dependendd®anly
through the sign off — 1/2, and the relevant quantity is boundary bias (7.1). Therefore,
so long as boundary bias is negativef, E f) < 0 classification error decreases with
increasing E f — 1/2| irrespective of the estimation bias — E f). For positive boundary
bias the classification error increases with the distande fofrom 1/2.

For a given value of f, estimation (squared) error (5.4) is proportional tofvaFor
classification error the effect of the vﬁadepends mostly on the sign of the boundary bias
(7.1). For anegative sign classification error decreases with decreasing variance (thoughr
linearly), whereas for a positive sign the error ratereaseswith decreasing variance. The
rate of increase/decrease depends on the absolute boundary bias. With estimation error (-
small variance does not necessarily provide small error; the bias-squared might be qui
large. For classification, zero variance results in optimal classification (Bayes rule) irrespec
tive of the value of the estimation bias (5.5) provided boundary bias (7.1) is negative. For pos
itive boundary bias, zero variance gives rise to maximal error rate (certain boundary error) :
x. Note that imposing the constraint0 f (x) < 1, while often improving estimation bias,
need not improve boundary bias. Infact, it could increase boundary bias and thereby boun
ary error (6.5) unless a requisite reduction in variance is achieved through the constraint.

The “bias-variance trade-off” is clearly very different for classification error than estima-
tion error on the probability functior itself. The dependence of squared estimation error
(5.4) onE f and varf is additive (bias-squared plus variance) whereas for classification
error (6.2), (6.5) there is a strong (multiplicative) interaction effect. The effect of boundary
bias (7.1) on classification error (6.2), (6.5) can be mitigated by low variance. Similarly,
the affect of the variance depends on the value (especially the sign) of the boundary bia
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Therefore low variance (5.2) can be very important for classification but low (estimation)
bias (5.5) squared is not. For the most part, all that is requireti fofs to insure that it

be on the same side of the valug2las f (negative boundary bias). This being the case,
one can reduce classification error toward its minimal (Bayes) value by reducing varianc
alone. In this sense variance tends to dominate bias for classification.

This different “bias-variance trade-off” for classification error (6.5) suggests that certain
methods that are inappropriate for function estimation because of their very high bias (5.4
(5.5) may none-the-less perform well for classification when their (highly biased) estimate:
are used in the context of a classification rule (2.6). All that is required is predominately
negative boundary bias (7.1) and small enough variance. Among these are procedures:
which the bias is caused by “over-smoothing”; the estimate at eachxofitk), tends to
be shrunk towards the mean output value

1 N
g_ — - 7.2
Y=y ;:1 Yi (7.2)
That is, the result of applying the procedure tends to be

) =1 —ax)fX) +aXy (7.3)

where 0< «a(x) < 1 represents an “over-smoothing” coefficient that usually depends on
X. The larger the value fax(x) the more over-smoothing bias. So longyas 1/2 (equal
number of each class in the training sample) then boundary bias is negative fpaiadi
varf (x) is likely to dominate classification error for such procedures. (Generalization to
y # 1/2 is discussed in Section 10.) The variance is also controlled by the degree of (ovel
smoothing-more smoothing less variance. Therefore, the optimal amount of smoothing fc
minimizing classification error (6.2), (6.5) is likely to be much larger than that for estimation
error (5.4) since the latter is more strongly affected by estimation bias (5.5).

8. “Naive” Bayes methods

The naive Bayes approach is surprisingly effective (Titterington et al., 1981; Langley et al.
1992) given the crude nature of its approximation. It uses the density estimation paradigt
(Section 4) and approximates each class conditional probability desity)}3 (4.1) by

the product of its marginal densitiep}k)(xj )}T:1 on each input variable,

n
oo =[P x)) (8.1)
j=1
with
Py (%)) = / e ] [ dx. (8.2)
I#]
Data from each clads € {0, 1}, and each input variablg € {1, 2, ..., n}, are separately

used to obtain corresponding estimages(x;) of (8.2). These are used in (8.1), which is
d to obtai di i k§,,f()h din (8.1), which i
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in turn plugged into (4.1) to form an estimate bfx). This is then inserted into (2.6) to
produce an output estimate.

Estimatesf (x) obtained in this manner are clearly biased (5.5) estimatdsf(2.1),

(3.1), even if the true marginal densities (8.2) are used, unless the input variables for eve
class happen to be totally independent. Since such total independence is far from beit
realized in most applications, this bias can be quite large, especially when there are ma
inputs. Introducing estimates for (8.2) can introduce further bias and, of course, varianc
as well.

The high degree of bias (5.4), (5.5) associated with the naive Bayes method (8.1), (8.-
makes it generally unsuitable for accurately approximating the target probability function
f(x) (2.1), (3.1). However, this bias is generally of the “over-smoothing” variety discussed
in Section 7. The approximating densitipgx) tend to be much smoother than the corre-
sponding (true) densitigg(x) from which they are derived. They place substantive mass
over broader regions of the input space as evidenced by the fact that the entifiygy)of
is (usually much) greater than that pf(x). This over-smoothing of the class conditional
densities produces an over-smoothed estimatie(®f when inserted into (4.1), producing
(usually large) estimation bias (5.5), and therefore error (5.4). However, as discussed |
Section 7, the boundary bias (7.1) produced by this mechanism is likely to remain negativ
over much of the input space so that low variance estimates of the marginal densities (8.
can produce low boundary error (6.5). This fact may explain why the naive Bayes metho
has seen so much success in classification despite its “naive” approach.

9. K-nearest neighbor methods

Another class of highly biased estimation procedures are those basédhearest neigh-
bors. A local subregioiR(x) ¢ R" of the input space, centered at the estimation point
X, is constructed and the target function estimate is taken to be the average of the trainir
sample output values (1.1) in that region

f(X) = ave,eru Vi - (9.1)

The predicting regiofR(x) is defined to be the subregion of the input space containing the
K closest training points t®

RX) = {X'| [x =X|| < dk)} (9.2)

whered, is theKth order statistic of|| X — X; ||}’1\‘. This method requires the definition of
a distance|x — x'|| on the input space. This is usually taken to be a (weightedistance

N 1/
X =X = [ lwj(Xj — X})Iq] (9.3)
j=1

with g = 2 (Euclidean distance) the most common choice. The weights are usually
chosen to be inversely proportional to the (global) scales of the respective input variable
so as to give each input equal influence in defining the region (9.2).
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For K -nearest neighbor procedures the bias-variance trade-off associated with estimatic
error generally is driven by the bias (5.5) in high dimensional settings (many inputs). This
is due to the geometry of Euclidean spaces; the radius of a region variesis thet of its
volume, whereas the number of training points in the red¢fioraries roughly linearly with
the volume. Thus, even the smallest possible voluikhe<(1) gives rise to large regions in
terms of radius. This can already produce high bias even for the largest varfanred)).

This phenomenon is referred to as the “curse-of-dimensionality” (Bellman, 1961).

Like naive Bayes (Section 8), the bias (5.5) associated Withearest neighbor pro-
cedures is produced by over-smoothing. In factkas> N, f(x) — ¥ (7.2) for all x.
Providedy = 1/2 the boundary bias generally tends to be negative, and decreasing th
variance can have dramatic impact on reducing boundary error (6.5).

This isillustrated with a simple example. The input space is taken to Imedimensional
unit hypercube € [0, 1]". The class densities are

Po(X) =2-1(x1 < 1/2), p(X) =2-1(% = 1/2) (9.4)
so that the target probability function is
fx) =1(x1 = 1/2). (9.5)

The prior probabilities (4.1) are taken to be equa € w1). This target (9.5) is a simple
function ofx; only, so having additional inputs serves to increlsaearest neighbor bias
(5.5) at the maximal rate since these inputs contain no additional information. Note tha
the irreducible squared-prediction ergg[s | x]? (5.3) for this problem (9.5) is zero and
thus the minimal (Bayes) error rate (2.5) is also zero.

Table 1 shows the values of average squared estimation error (Column 2) and classificatit
error (Column 4) as a function of training sample sMe(first column) along with the
corresponding optimal valueK { andKg, respectively) of the number of nearest neighbors
(third and fifth columns) for this example (9.4), (9.5)rat= 20 dimensions. One sees
that classification error is decreasing at a much faster rate than squared estimation error
N increases. The optimal value &f for squared estimation error (third column) is seen
to be very slowly increasing witiN. As the training sample is increased the additional

Table 1 Error rates and optima& as a function oN for n = 20.

N Estimatior? Ke Classification Ke
100 .165 10 .165 57
200 144 11 127 67
400 1132 13 .089 205
800 120 14 .060 417

1600 .108 15 .039 773
3200 .099 17 .029 1651
6400 .091 15 .018 2029

12800 .083 17 .013 7953
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Table 2 Estimation and classification error as a functiomdédr N = 12800.

n Estimatiorf Classification
.0023 .0022
.0079 .0041
.0213 .0055

10 .0467 .0091

20 .0829 .0130

data are being used to reduce the radius of the regions in a (not very successful) atterr
to reduce the impact of the bias (5.5) contribution to squared estimation error (5.4). Fo
classification error, the optimal value fidr(last column) is much larger and increases more
rapidly (almost linearly) with increasinly. The additional data are being used to reduce
variance of the estimate§(x). Because of its interaction (6.5) with (boundary) bias (7.1)
reducing variance has a much bigger impact on classification error. This results in muc
faster decrease in classification error with increasingrhese (and all following) results
were obtained through Monte Carlo simulation using 20 replications at each training sampl
size and 20000 independent (test) observations.

Table 2 shows the relationship of both squared estimation and classification error witl
dimensionn for the largest training sample sizB (= 12800) considered here. One sees
that classification error is not completely immune to the tendendy-ofarest neighbor
methods to degrade as irrelevant inputs are included. But whereas the squared estimat
error degrades by over a factor of 35 as the number of irrelevant inputs is increased by
factor of 20, the corresponding increase in classification error is less than a factor of six. I
this sense one can say that dimensionality is a “problem” here for classification, wherea
for estimation error it definitely qualifies as a “curse”.

An important aspect contributing to the successful resistance of classification error to th
curse-of-dimensionality is the choice of a good value for the number of nearest neighbotr
K. The discussion in Section 7 suggests that this should be typically larger for classificatio
than for estimation error. This is verified in Table 1 for our simple example (9.5). Figure 1
shows plots of the typical dependence of both squared estimation error (upper frame) ar
classification error (lower frame) df (heren = 20, N = 3200). One sees that choice of
number of nearest neighbors is less critical for classification error so loKgiaseither
too small nor too large (here 508 K < 2000). However, it must be substantially
larger than the optimal value for estimation error (Table 1) in order to obtain near optima
classification performance. Quite often whi€éanearest neighbors are compared to other
classification methods a small valu¢ & 1 or K = 5, for example) is used. The simple
example examined here suggests that, at least in some situations, this may underestim
the performance achievable with thenearest neighbor approach. This was dramatically
demonstrated by Rosen et al. (1995), and noted by Henley and Hand (1996), in the conte
of specific (real data) problems.

The example (9.4), (9.5) studied here is a very simple one intended to illustrate the
concepts involved. It was specifically designed to be highly susceptible to the effects of th
curse-of-dimensionality. It may well not be representative of many classification problems
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Figure 1 Squared estimation error (upper) and classification error (lower) as a function of number of neares
neighborsK, for n = 20 dimensions and training sample site= 3200.

especially those with very complicated decision boundaries. It does however illustrate th
different nature of the bias-variance trade-off in classification, and suggests that much
the conventional wisdom, derived from intuition based on (function) estimation, may not
be directly applicable to the classification problem.
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Another potential limitation of the study presented here is that only dimensionalities up
to n = 20 were considered. In many problems, especially those involving signals anc
images, there may be hundreds or even thousands of input variables. However, in tt
context of nearest neighbor methods the number of inputs is not the relevant factor. Th
important quantity is the (localptrinsic dimensionality of the joint distribution of input
values as characterized by the number of its singular values that are not small. Especial
when there are many inputs there is usually a high degree of association among them
that the corresponding intrinsic dimensionality is fairly moderate. In such cases the resul
presented here will likely be relevant.

10. Boundary bias

An important ingredient contributing to the success of both naive Baye¥Kandarest
neighbor procedures is negative boundary bias (7.1). So lohgfag), E f (x)) < 0 they

can use decreasing variance to overcome its (increasing) effect on boundary error (6.5)
produce accurate classificationxat It is the (over-smoothing) nature of the (large) bias
inherent in these methods that leads to predominately negative boundary bias at most ing
points X, and thereby good overall classification performance. Non-negative boundary
bias on the other hand devastates classification performance. In this case the bound:
error is greater than/2 and decreasing variandecreaseghat error. At such pointg

the classification procedure has no alternative but to try to reduce estimation bias (5.5) i
an attempt to bring boundary bias down to a negative value. This generally involves a
increase in variance and the favorable trade-off produced by their multiplicative interactior
effect (6.5) is lost.

The devastating effect of positive boundary bias in the context -ofearest neighbor
procedures is illustrated by a simple example. This example is the same as that used
Section 9 (9.4), (9.5) but with a modification to the prior probabilities (4.1). Here we take
them to be unequal, specifically = 3mp, so that the value of the output mean (7.2) is
y = 3/4. Table 3 shows the values of average squared estimation error (second columr
classification error (fourth column), along with their respective optimal number of neares
neighborsK (columns 3 and 5) as a function of sample sikdfirst column), ain = 20

Table 3 Error rates and optima{ as a function of sample siZ¢ for n = 20 with 77 = 3np.

N Est? Ke Class Ke Class{ = —1/4) Ke(t = —1/4)
100 136 11 .195 5 154 44
200 125 11 176 5 110 96
400 116 10 .164 5 .081 192
800 .109 14 154 7 .060 372

1600 .100 15 141 7 .043 772

3200 .092 17 129 7 .029 1488

6400 .086 13 118 7 .024 3292

12800 .078 14 .105 9 .016 4400
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dimensions. For squared estimation error one sees similar results to that shown in Table
for equal priors £o = 7). Error is large and decreases slowly with increadig For
classification error however one sees a quite different result for unequal priots o).
Classification error is here much larger than for equal priors and decreases very slowl
with increasingN at a rate similar to that for squared estimation error. The number of
nearest neighbors that minimize classification error is also very different for unequal priors
they are even smaller than those for squared estimation error and increase very slow
with increasingN. For unequal priorsy( # 1/2) classification error is suffering from the
curse-of-dimensionality in the same way as squared estimation error.

Itis easy to see that the problem wKhnearest neighbors in this setting is positive bound-
ary bias over much of the input space. The over-smoothed nature of the estimates caus
them to be shrunk towards the output médi@.3) and in this casgis not equal to the clas-
sification threshold (2.6), herg2. The boundary bias is non-negative (x), E fA(x)) >0
at all input pointsx for whichx; < 1/2 (f (x) = 0) and ¥3 or more of the volume of the
K-nearest neighborhood overlaps the class one region 1/2 (E f(x) > 1/2). As the
dimensiom increases the average radius of the regions (9.2), (9.3) increases (foKfixed
so that the portion of the input space with positive boundary bias also increases. The on
way to mitigate this effect is to reduce the valuekofand thereby average region radius.
For increasingn this strategy becomes less effective owing to the curse-of-dimensionality;
average radius varies as ttité root of K. At high dimensions there is considerable positive
boundary bias even fd¢ = 1. Therefore, one sees slow decrease for average classificatior
error with increasindN, typical of that associated with the curse-of-dimensionality.

For this particular example there is a simple remedy for this problem. One can simply
apply the procedure as if the prior probabilities were equal, even though there are three tim
as many class ones as class zeros in both the training data and future data to be classifi
This involves weighting each class zero training observation with three times the mass ¢
each class one in the average leading to the computatidrof(9.1). This simple trick
causey = 1/2 (7.2) and thereby produces negative boundary bias everywhere in the inpu
space for this problem. Applying such a weighting scheme is equivalent to modifying the
estimatef (x) by the transformation

fox) = f(x) +t (10.1)

before inserting it into the output estimate (2.6) (hete —1/4).

The sixth column of Table 3 shows the corresponding classification error using the “bia:
adjustment” (10.1) with = —1/4, and the seventh column its corresponding optimal
number of nearest neighbors. Applying the bias adjustrheat —1/4 (10.1) causes
the boundary bias associated witlix) to be everywhere negative and allows decreasing
variance (increasin§() to maximally exploit their interaction effect (6.5) to dramatically
reduce classification error.

The bias adjustment (10.1) changes both estimation (5.5) and boundary (7.1) bias ever
where in the input space. The optimal value dbr estimation error ise = ave f (X) —
ave fA(x). Since these two averages tend to have similar values for most estimation proce
dures (especially those that over-smooth) there is seldom much to be gained by employir
(10.1). In the case of boundary bias (7.1) the modification (10.1) decreases its value ovi
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half of the input spacexf{ < 1/2) and increases it by the same amount at each point
in the other halfx; > 1/2). Therefore average boundary bias is (substantially) increased
since the (pooled) distribution of the input values places three times as much mass in tt
latter half spacex; > 1/2). However the interaction between variance and boundary bias
occurs separately at each individual poinaind the choicé = —1/4 (10.1) here provides
the right balance so that the boundary bias is negative at all

In this example a good bias adjustment val{#0.1) could be determined since the true
target function (9.5) and priorg{ = 3mp) were known. This is seldom the case in practice.
Even when they are known however a good choice may not be obvious. Consider the ca

Po(X) = (4/3) - 1(x1 < 3/4), m(X) =4-1(x1 = 3/4) (10.2)

with equal prior probabilities#y = 1), again on the hypercubee [0, 1]". The target
probability function (3.2) is

f(xX) = 1(x;, > 3/4). (10.3)

Here the response mean (7.2yis= 1/2 but there is positive boundary bias over much of
the input space, caused by the higher density of class ones near the decision boundary.
Table 4 shows (fon = 20 dimensions) values of average squared estimation error (sec-
ond column), classification error for= 0 (fourth column), and classification error using
the optimal valug = t* (sixth column) along with their corresponding optimal nhumber of
nearest neighbots (Columns 3, 5, and 7, respectively). The last column of Table 4 shows
the corresponding optimal valtieof the bias adjustment(10.1). Without the bias adjust-
ment classification error converges to zero at roughly the same rate as squared estimati
error. The bias adjustment dramatically speeds up convergence to small classification err
At N = 12800 classification error is more than five times smaller with the adjustment thar
without it. The optimal adjustment valu€showever are here much smaller (in absolute
value) than in the previous exampke = —0.25). In fact, using = —0.25 in this case
(Table 4) produces higher classification error than no adjustment at-al). Thus one
sees similar results to that of the previous example (Table 3). Without the bias adjustmel
(10.1) classification error suffers from the curse-of-dimensionality in the same manner a

Table 4 Error rates, optimaK, andt as a function olN for n = 20.

N Est? Ke Classt =0) Kc(t =0 Classt = t*) Kc(t = t%) t*
100 161 10 .166 53 161 53  —.025
200 .147 11 139 79 121 97  —.025
400 135 12 120 85 .086 255  —.025
800 .126 15 115 83 .061 442 —.025
1600 117 18 .103 125 .046 985  —.025

3210 .108 17 101 75 .032 2121 —.025

6400 .101 17 .100 81 .027 1949  —.05

12800 .094 20 .096 43 .018 8714  —-.05
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Table 5 Optimal bias adjustment valué for various values of dimensiamand sample siz8l.

n N = 100 N = 400 N = 1600 N = 6400 N = 12800

2 —.250 —.250 —.250 —.225 —.225

3 —.125 —.150 —.225 —.225 —.225

5 —.025 —.075 —.150 —.200 —.225
10 —.025 —.050 —.050 —.075 —.075
20 —.025 —.025 —.025 —.050 —.050

squared estimation error (here slightly worse). With the bias adjustment (convergence rat
immunity to the curse is restored.

Table 5 shows the optimal bias adjustment vaftuer selected sample sizés(columns
2-6) as a function of dimensian(first column) for this example (10.2), (10.3). One sees
thatt* depends on bothandN for this (fixed) target (10.3). Atall sample sizes the absolute
value oft* tends to decrease with increasing dimension. At fixed dimemsitive absolute
value tends to increase with sample size (excepnfer2).

As with the previous examples, this one is especially simple and may not be a clos
reflection of reality in many classification problems. It does illustrate that even in cases
where the true target probability function and the priors are known, the best choice of bia
adjustment level (10.1) may not be obvious. In reality neither are generally known so (ir
any case) model selection techniques such as cross-validation must be employed to estim
good jointvalues af andK . Note thatthis requires very little added computation over that of
estimatingK alone. Asthese examplesillustrate there may be considerable gains associat
with such a strategy, especially in cases where the effects of the curse-of-dimensionalit
are hindering classification performance.

In the naive Bayes approach applying a bias adjustment (10.1) is equivalent to altering tt
relative prior probabilitiegr; }3 (4.1) from those values that would be optimal when used
in conjunction with the true class conditional densit{q&rﬁ(x)}é. Since the density esti-
mates associated with naive Bayes (8.1), (8.2) are generally highly biased (over-smoothe
estimates of the true densities, bias adjustment may be highly beneficial with it as well
Generally an optimal value for this adjustment will not be known in practice and model
selection techniques (such as cross-validation) must be used to obtain an estimate.

11. Bias plus variance in classification

There has been a flurry of recent activity (Dietterich and Kong, 1995; Kohavi and Wolpert,
1996; Breiman, 1996; Tibshirani, 1996) also directed at the goal of attempting to understan
the relative influence of the systematic and random components of classification error. The:
efforts have concentrated on developing an additive decomposition in direct analogy witl
the (seductively simple) form for squared estimation error (5.3), (5.4). In this section thes
decompositions are reviewed and related to the definitions and concepts derived in this pap
The formulation of Kohavi and Wolpert (1996) is somewhat different than that of this
paper. Central to their decomposition (for the two-class case) is the probabyitiyattthe
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classification procedure (2.6) predigts) = 1
Pi(x) = Prii(f(x) > 1/2) = 1] = Pr[f (x) > 1/2] (11.1)

which under the Gaussian assumption (6.4) becomes

Pi(X) = é(w). (11.2)

Jvarf (x)

Kohavi and Wolpert (1996) define the classification “bias-squarer’aat

biag,, (X) = [ f (X) — P1(x)]%, (11.3)
the “variance” as

varkw (X) = PL(x)[1 — P1(¥)], (11.4)
the “irreducible error-squared” as

o?(x) = f[1 — fX)], (11.5)
and show that

Pr(9(x) # y) = biash, (X) + variw (X) + o2(X). (11.6)

The last quantity-?(x) is the variance of the error terf.[¢? | x] in (3.1). The definitions
(11.3), (11.4) each involve both the systemaid (x) (5.1) and random vér(x) (5.2)
components of the estimafex), and the irreducible error is not defined as the Bayes error
rate (2.5). However this decomposition does have the desirable property thatxar 0
at all x.

The formulations of Dietterich and Kong (1995), Breiman (1996), and Tibshirani (1996)
are more similar to the approach adopted in this paper. Dietterich and Kong (1995) defin
the “statistical bias” of a classification procedure as

biagk (x) = 1[Pr(§(x) #y) > 1/2]. (11.7)

With this definition a procedure has unit bias at an input pgiiftit makes the wrong
decision there half of the time or more, as averaged over training gdt4), and has zero
bias otherwise. The “statistical variance” is defined as the difference between the error ra
(atx) and the statistical bias

varpk (X) = Pr(Y(x) # y) — biask (X) (11.8)
so that one obtains the decomposition

Pr(Y(x) # y) = biask (X) + varpk (X). (11.9)



ON BIAS, VARIANCE, 0/1—LOSS, AND THE CURSE-OF-DIMENSIONALITY 73

From (6.2), (6.5), (7.1) one sees that bia&) is
biask (x) = 1[b(f (X), E f(x)) > 0] (11.10)

sothatitis justan indicator of positive boundary bias (7.X) athe quantity vask (x) (11.8)
involves both the systematic and random componelEté(((), varfA(x)) of the estimate
f (x), as well as the Bayes error rate(fs(x) # y) (2.5), in a fairly complicated way, and
can assume negative values.

Breiman (1996) defines bias and variance in terms of the “reducible” error rate

r(x) =Pr(y(x) #y) — Pr(ys(X) # y) (11.11)

where Ptyg(X) # Y) is the Bayes error rate (2.5), and in terms of an “aggregated” classifier
which in the notation of this paper is

ya() = (Ef(x) > 1/2). (11.12)
(Inthe case( f | x) is asymmetric the median replades (x).) The “bias” is defined to be

biass (x) = 1[ya(X) # ys()]r (X) (11.13)
and the “variance” as

varg(x) = 1[ya(x) = ys(¥)]r (x). (11.14)

Thus at a given point the classifier has either bias or variance (but not both) depending
upon whether or not the aggregated classifier (11.12) disagrees with the Bayes rule (2.
there. By construction(x) = biasz(x) + varg(x) so that the decomposition

Pr(y(x) # y) = bias(x) + varg(x) + rg(x) (11.15)

is produced.
In terms of the concepts developed in this paper one has

1[ya(x) # ys(®)] = 1[b(f (x), Ef(x)) > 0] (11.16)

so that the reducible error (11.11) is called “bias” in regions of positive boundary bias (7.1)
and “variance” in regions of negative boundary bias.

Tibshirani (1996) also defines “bias” and “variance” in terms of the aggregated classifie
(11.12). From the point of view of this paper these definitions reduce to

biasr (X) = [2f (x) — 1] 1[b(f (x), E f(x)) > 0] (11.17)
and

varr (X) = |Pi(X) —1/2| (1—|2Pi(x) — 1)) (11.18)
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wherePy(x) (11.1) is the probability that the classifier (2.6) predigtg) = 1 atx. This
definition of variance has a similar flavor to that of Kohavi and Wolpert (1996) (11.4);
it has zero value wheR;(x) assumes its extreme values (0, 1) and is non-negative over
the entire range. However vgix) (11.18) achieves its maximum value Bi(x) = 1/4
and Py (x) = 3/4 and has the value zero Bt(x) = 1/2 where vagw (X) (11.4) takes on
its maximum value. Using the definitions (11.17), (11.18) does not lead to an additive
decomposition of classification error in a form similar to that of (11.6), (11.9), or (11.15).
All of these additive decompositions are quite useful in providing insight into the nature
of classification error. The bias definitions (11.10), (11.13), (11.16), and (11.17) all sugges
(from different perspectives) the importance of the concept of boundary bias (7.1) develope
in this paper. All emphasize the contribution of variability to the error rate of a classifier.
This latter contribution especially (as noted by the authors) has often been overlooked i
the development of machine learning procedures. To the extent that the development
this paper makes an additional contribution, it is that for classification error (unlike squarec
estimation error) the systematic and random componatgsactin a multiplicative and
highly nonlinear way, and this interaction effect can sometimes be exploited to reduce erro

12. *“Aggregated” classifiers

A principal motivation for proposing the additive decompositions discussed in Section 11
was to explain the apparent success of variance reduction techniques based on aggregal
methods. From the perspective developed in this paper these methods can be viewed
obtaining an estimate d& f (x)

fax) = Ef(x) (12.1)

and using it in place of (x) (3.3) for function estimation (3.2) and classification (11.12).
Examples of (12.1) are “bagging” (Breiman, 1995) which uses the “bootstrap smoothed
estimate of Efron and Tibshirani (1995) and “arcing” (Breiman, 1996) which includes other
alternatives based on “boosting”.

In the ideal limit

fax) = fa(x) = Ef(x) (12.2)

this aggregation approach will reduce estimation error (5.4) since the bias (5f3pof
(12.2) isthe same as that 6tx) butvarfa(x) = 0. The degree of this reduction will depend
onthe relative importance of vétx) (5.2) as compared to bias(x) (5.5). For classification
also, the (boundary) biases (7.1) are the saifgx), fa(x)) = b(f(x), E f(x)), but in

this case there is a multiplicativeteractioneffect with variance (6.5) and véx(x) = 0.
Therefore, usingfa(x) in place of f (x) in (2.6) will produce zero boundary error (6.2),
(6.5), and the minimal Bayes error rate (2.5)xaprovidedb(f(x), Ef(x)) < 0. On

the other hand, ib(f (x), E f (x)) > 0 this approach will produce certain boundary error
Pr(ya(x) # ys(X)) = 1 andincreasederror rate over using‘A(x). As noted by Breiman
(1996) and observed by Tibshirani (1996), aggregation can make a good classifier bett
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but can make a bad classifier worse. Clearly, this effect occurs separately at each individu
prediction pointx, so success of aggregation for classification depends on the relative siz
of the portion of the input space with negative boundary bias.

As discussed in Section 10 the success of variance reduction techniques for classificati
can be enhanced by the use of a bias adjustment (10f1)<no This is a consequence of the
(boundary) bias-variance multiplicative interaction effect at eadfor the same reason it
seems likely that such an adjustment

fa(®) = fa(x) +1t (12.3)

will be beneficial in the context of aggregated classification as well. Bias adjustment (10.1)
(12.3) can (sometimes dramatically) reduce the proportion of the input space with positiv
boundary bias. As with other methods of variance reduction a good adjustment ¥&lue
not likely to be known in any particular situation, and therefore it will have to be estimated
through some model selection technique such as cross-validation.

13. Limitations and future work

The most serious limitation of the work presented here is the restriction to the two-clas:
problem. Intuition suggests that many of the concepts developed in this context may hay
analogs in thd. > 3 class case, but the detailed development will be more complicated.
In particular, there will likely be analogs to the notion of boundary bias and its interaction
with the variances of the estimates of thearget probability functiongf; (x)}%. Also the
concept of bias adjustment(s) may also be helpful in the multi-class problem. This is lef
for future work.

Another limitation is the use of the Gaussian approximation (6.4). This is clearly not cru-
cial to the qualitative results obtained. For example, the distributidt-o€arest neighbor
estimates is not strictly Gaussian but, as seen in Section 9, its behavior closely follows th:
suggested by (6.5). As noted, the mediapof | x) should replace the medhf (x) in the
definition of boundary bias (7.1) in the case of asymmetry, and an appropriate measure
its spread (variability off (x)) would substitute for/varf (x) in deriving a boundary error
analog to (6.5). Clearly, these two quantities would strongly interact in whatever detailec
form emerged from the derivation.

The illustrative examples presented were intensionally chosen to be quite simple so th
one could easily understand the geometry of the decision boundaries, and thus the natt
of the boundary bias (7.1) associated with the classification methods studied here. Actu
decision boundaries for specific problems encountered in practice may of course be qui
different, as could the nature of the boundary bias associated with other classificatio
methods. Thus the gains associated with bias adjustment (10.1) may not be the same
other situations. All of this is problem dependent and can only be determined througt
experimentation in each specific case.

The goal of the work presented here is to illustrate that classification error responds t
error in the target probability estimates in a much different (and perhaps less intuitive
way than squared estimation error. This helps explain why improvements to the latter d
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not necessarily lead to improved classification performance, and why simple methods sut
as naive BayesK -nearest neighbors, and others remain competitive, even though they
usually provide very poor estimates of the true underlying probabilities. Good probability
estimates are not necessary for good classification; similarly, low classification error doe
not imply that the corresponding class probabilities are being estimated (even remotely
accurately. An understanding of these issues may help improve the chance of success
future methodological developments.
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