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Abstract. The classification problem is considered in which an output variabley assumes discrete values with
respective probabilities that depend upon the simultaneous values of a set of input variablesx = {x1, . . . , xn}. At
issue is how error in the estimates of these probabilities affects classification error when the estimates are used in
a classification rule. These effects are seen to be somewhat counter intuitive in both their strength and nature. In
particular the bias and variance components of the estimation error combine to influence classification in a very
different way than with squared error on the probabilities themselves. Certain types of (very high) bias can be
canceled by low variance to produce accurate classification. This can dramatically mitigate the effect of the bias
associated with some simple estimators like “naive” Bayes, and the bias induced by the curse-of-dimensionality
on nearest-neighbor procedures. This helps explain why such simple methods are often competitive with and
sometimes superior to more sophisticated ones for classification, and why “bagging/aggregating” classifiers can
often improve accuracy. These results also suggest simple modifications to these procedures that can (sometimes
dramatically) further improve their classification performance.
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1. Introduction

One of the most common and important uses for data is prediction. The purpose is to predict
(forecast) the unknown value of some attributey of a system (“output” or “response”
variable), based on the known values of other attributesx = (x1, . . . , xn) (“input” or
“predictor” variables). With the “supervised learning” paradigm the data base provides a
“training” sample

T = {xi , yi }N
1 (1.1)

of previously solved cases in which both the values of the inputs and corresponding outputs
have been recorded. The goal of a “learning” algorithm is to use this data (1.1) to construct
a reliable rule for predicting likely output valuesy for future data where only the values of
the inputsx have been recorded.

The rule construction strategy can depend upon the nature of the output variable in
terms of the types of values it can realize. The two most common data types are orderable
y ∈ R1 (“regression”) and categoricaly ∈ {y1, . . . , yL} (“classification”). With an orderable
variable there is an order relation between every pair of its valuesy, y′(y ≤ y′ or y > y′)
and a distance|y − y′| defined between them. For a categorical variable there exists no
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order relation nor a continuous distance between its values. Two values are either equal
(y = y′) or they are unequal (y 6= y′).

Historically, both regression and classification have been developed from the common
perspective of real valued prediction. In the case of classification the real valued (surrogate)
outputs are taken to be the respective probabilities thaty realizes each of its individual
values, as a function of the input valuesx. These probabilities are then used in a decision
rule to forecast the most likely (categorical) value for the outputy. Much research in
classification has been devoted to achieving higher accuracy probability estimates under
the presumption that this will generally lead to more accurate (categorical) prediction. The
(often counter intuitive) results obtained in this paper challenge that presumption. More
accurate probability estimates do not necessarily lead to better classification performance
and often can make it worse.

This has implications concerning applications of classification as well as for future di-
rections of methodological research. In individual applications one is faced with the choice
of which method(s) to consider. Often older simpler techniques are discarded in favor of
newly developed sophisticated methods on the grounds that the latter can provide more
accurate estimates of the probabilities of the respective output values. Results derived in
this paper show that, even if this is the case, it need not result in smaller classification error.
Very simple procedures such as “naive” Bayes and nearest neighbor methods generally
provide very poor probability estimates especially in high dimensional settings involving
many input variables. Never-the-less they often yield lower prediction error than other
(newer) methods intended to produce higher accuracy estimates of the probabilities. The
results derived in this paper indicate those situations in which this is likely to occur. They
also suggest straightforward modifications to these “simple” procedures that can sometimes
improve their classification performance even more, by selectively further reducing the ac-
curacy of their probability estimates. In terms of methodological research these results
suggest that in situations where the goal is accurate classification, focusing on improved
probability estimation may be misguided and a totally different paradigm may be required.

2. Classification

As noted above, in the classification problem the output variabley assumes values on an
unordered discrete sety ∈ {y1, . . . , yL}. In this paper the special (but common) case in
which L = 2 is considered. Although many of the concepts generalize to the more general
caseL ≥ 3, the derivations and underlying intuition are more straightforward for this special
(“two-class”) case. As will be seen, even in this restricted setting much of the conventional
wisdom concerning the classification problem can be brought into question.

Without loss of generality we takey ∈ {0, 1}. The goal of a classification procedure is to
predict the output value given the values of a set of “input” variablesx = {x1, . . . , xn} simul-
taneously measured on the same system. It is often the case that at a particular pointx ∈ Rn

the value ofy is not uniquely determinable. It can assume both its values with respective
probabilities that depend on the location of the pointx in then-dimensional input space

Pr(y = 1 | x) = 1 − Pr(y = 0 | x)
.= f (x). (2.1)
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Here f (x) is a single valued deterministic function that at every pointx ∈ Rn specifies the
probability thaty assumes its second value.

The role of a classification procedure is to produce a rule that makes a predictionŷ(x) ∈
{0, 1} for the correct class labely at every input pointx. The goal is to choosêy(x) to
minimize inaccuracy as characterized by the misclassification “risk” (expected or average
loss)

r (x) = l1 f (x)1(ŷ(x) = 0) + l0(1 − f (x))1(ŷ(x) = 1). (2.2)

Herel0 andl1 are the losses incurred for the respective misclassifications,f (x) is given by
(2.1), and 1(·) is an indicator function of the truth of its argument

1(η) =
{

1 if η is true
0 otherwise.

(2.3)

The misclassification risk (2.2) is minimized by the (“Bayes”) rule

yB(x) = 1

(
f (x) ≥ l0

l0 + l1

)
(2.4)

which (by definition) achieves the lowest possible risk

r B(x) = min(l1 f (x), l0(1 − f (x)). (2.5)

Note that the rule (2.4) is not necessarily the only minimizer of (2.2). Other rules may also
achieve minimum risk (2.5). Also, in the special (but common) casel0 = l1 = 1, (2.4)
reduces to predicting the most probable class and (2.5) represents the fraction of erroneous
predictions thereby encountered.

Generally the functionf (x) (2.1) characterizing a particular system is unknown. How-
ever, data from the system is available in the form of a collection of previously solved cases
in which both the input and output variables have been measured. This “training” data
set (1.1) is used to “learn” a classification ruleŷ(x | T) for (future) prediction. The usual
paradigm for accomplishing this is to use the training dataT (1.1) to form an approximation
(estimate)f̂ (x | T) to f (x) (2.1) and substitute this into (2.4)

ŷ(x | T) = 1

(
f̂ (x | T) ≥ l0

l0 + l1

)
. (2.6)

When f̂ (x) 6= f (x) this rule (2.6) may be different than from the Bayes rule (2.4) and thus
not achieve the minimal Bayes risk (2.5). It is the purpose of this study to examine the way
in which inaccuraciesf (x)− f̂ (x) in the function estimate are reflected in misclassification
risk.
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3. Function estimation

In the usual function estimation setting one assumes that an output variabley is related to
a set of input variablesx by

y = f (x) + ε (3.1)

where f (x) (“target function”) is a single valued deterministic function ofn arguments and
ε is a random variable distributed according to some lawε ∼ L(ε | x). By definition its
averageE(ε | x) = 0 for all x so that the target function is defined by

f (x) = E(y | x). (3.2)

The goal is to obtain an estimate

f̂ (x | T) = Ê(y | x, T) (3.3)

using a training data setT (1.1). Inaccuracy is usually quantified by root-mean-squared
prediction error

rms(x) = E1/2
ε [(y − f̂ (x | T))2] (3.4)

where the expected value in (3.4) is taken with respect to the distribution ofε (3.1).
The classification problem can be cast in this function estimation setting by observing

that (3.2) holds fory and f (x) in (2.1) so that they can be related by (3.1) withε distributed
as a (centered) binomial distribution with variance var(ε | x) = f (x)(1 − f (x)). Thus,
regular function estimation technology (3.3) can be applied to obtain the estimatef̂ (x | T),
which is plugged into (2.6) to form a classification rule. This is the paradigm used by many
popular classification methods including neural networks (Lippmann, 1989), decision tree
induction methods (Breiman et al., 1984; Quinlan, 1993), projection pursuit (Friedman,
1985), and nearest neighbor methods (Fix and Hodges, 1951).

4. Density estimation

An alternative paradigm for estimatingf (x) (2.1) in the classification setting is based on
density estimation. Here Bayes theorem

f (x) = π1 p1(x)

π0 p0(x) + π1 p1(x)
(4.1)

is applied where{pj (x) = Pr(x | y = j )}1
0 are the class conditional probability density

functions and{π j = Pr(y = j )}1
0 are the unconditional (“prior”) probabilities of each class.

The training data (1.1) are partitioned into subsetsT = {T0, T1} with the same class label.
The data in each subset are separately used to estimate its respective probability density
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{ p̂j (x | Tj )}1
0. These estimates are plugged into (4.1) to obtain an estimatef̂ (x | T) which

is in turn plugged into (2.6) to form a classification rule. Examples of this approach are
discriminant analysis (see McLachlan, 1992), kernel discriminant methods (Hand, 1982),
Gaussian mixtures (Chow and Chen, 1992), learning vector quantization techniques (Ko-
honen, 1990), and Bayesian belief networks (Heckerman et al., 1994).

5. Bias, variance, and estimation error

Whether one applies the function estimation (3.3) or density estimation (4.1) approach,
the estimated probabilitŷf (x | T) depends upon the training dataT (1.1) used to obtain
it. A change in the data (usually) results in a change in the probability estimate at (at
least) some of the input pointsx. In most applications the training data set (1.1) represents
a random sampling from the system under study. Even if the target probability function
f (x) is everywhere stationary, sampling the system at different times results in (at least
somewhat) different training data setsT and thereby different estimateŝf (x | T). For a
given set of input points{xi }N

1 the corresponding outputs{yi }N
1 are random owing to the

stochastic componentε (3.1), and generally the input points themselves represent a random
sampling (observational study).

The random nature of the training dataT implies that the estimatêf (x | T) is a random
variable that assumes a distribution of values at each input pointx governed by some
(usually unknown) probability lawf̂ (x) ∼ L( f̂ | x) characterized by a probability density
function p( f̂ | x). Estimating f (x) with a particular training data setT gives rise to a
particular random realization of̂f (x | T) with relative probabilityp( f̂ | x). Two important
parameters of any such distribution are its first two moments, the mean (expected value)

E f̂ (x) =
∫ ∞

−∞
f̂ p( f̂ | x) d f̂ (5.1)

and variance

var f̂ (x) =
∫ ∞

−∞
( f̂ − E f̂ (x))2 p( f̂ | x) d f̂ . (5.2)

Both of these quantities directly affect expected prediction error (3.4) through the well
known decompositions

ET [y − f̂ (x | T)]2 = ET [ f (x) − f̂ (x | T)]2 + Eε[ε | x]2 (5.3)

and

ET [ f (x)− f̂ (x | T)]2 = [ f (x)−ET f̂ (x | T)]2+ET [ f̂ (x | T)−ET f̂ (x | T)]2. (5.4)

The left side of (5.3) represents the squared prediction error (atx) averaged over repeatedly
realized training samples of the (same) sizeN from the system under study. The last term
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in (5.3) is independent of both the target function and the training sample and reflects the
irreducible prediction error due to the random nature of the output variable (2.1), (3.1). The
other term in (5.3) is the squared “estimation error” in the target functionf (x) averaged
over training samples. This depends onf (x) and the method used to obtain̂f (x | T). From
(5.4) one sees that this quantity depends only on the mean (5.1) and the variance (5.2) of
the distribution of f̂ (x | T). The last quantity in (5.4) is just the variance (5.2). The other
quantity in (5.4) is the square of the “bias”

bias f̂ (x) = f (x) − E f̂ (x ). (5.5)

The variance (5.2) reflects the sensitivity of the function estimatef̂ (x | T) to the training
sampleT . Less sensitivity means that the estimate will be more stable against changes
(sampling variations) in the data and thus be less variable under repeated sampling. The
bias (5.5) reflects sensitivity to the target functionf (x). It represents how closely on average
the estimate is able to approximate the target. From (5.4) one sees that it is desirable to have
both low bias-squared and low variance since both contribute to the squared estimation error
in equal measure. There is however a tension between these goals (Geman et al., 1992).
The purpose of training is to gain information concerning the target function from the data;
therefore sensitivity to the training data is essential, and generally more sensitivity results in
lower bias. However, this in turn increases variance and so there is a natural “bias-variance
trade-off” associated with function approximation.

For a given bias (5.5) the variance (5.2) generally decreases with increasing training
sample sizeN (1.1). Therefore for problems with large training samples the bias can be the
dominant contributor to estimation error. Since larger and larger data bases are becoming
routinely available, most modern research in learning methodology has focused on increas-
ingly flexible techniques that reduce estimation bias, some with considerable success. From
(5.3), (5.4) one can see that this is a reasonable strategy for function approximation (based
on root-mean-squared error (3.4)), provided enough attention is paid to the variance (“over-
fitting”). For classification however this strategy has been less successful in improving
performance. Some simple highly biased procedures such as “naive” Bayes (Good, 1965)
and nearest neighbor methods (Fix and Hodges, 1951) remain competitive with and some-
times outperform more sophisticated ones, even with moderate to large training samples
(Holte, 1993). In the next section we show that this may not be as surprising as it seems.
The quantitiesE f̂ (x) (5.1) and var̂f (x) (5.2) that characterize the distribution off̂ (x | T)

conspire to affect classification error in a very different way whenf̂ (x | T) is used in a
classification rule (2.6).

6. Bias, variance, and classification error

For concreteness we takel0 = l1 = 1 in (2.4), (2.6) so that the threshold in the indicator
function is 1/2 and misclassification risk (2.2) reduces to probability of misclassification
Pr(ŷ(x) 6= y). The first step in uncovering howE f̂ (x) (5.1) and var̂f (x) (5.2) affect
classification error is to decompose it into the irreducible error associated with the random
nature ofy (2.1), (3.1) and a reducible part that depends onf̂ (x) (3.3) in analogy with
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(5.3) for squared-error loss. Given a particular training sampleT (1.1) the error rate
Pr(ŷ(x | T) 6= y) (averaged over all future predictions atx) depends on whether or not the
decision (2.6) agrees with that of the Bayes rule (2.4). If it does then its error rate is the
irreducible error associated with the Bayes rule (2.5) Pr(ŷ(x | T) 6= y) = Pr(yB(x) 6= y) =
min[ f (x), 1 − f (x)]. If not, then it suffers an increased error rate Pr(ŷ(x | T) 6= y) =
max[ f (x), 1 − f (x)] = |2 f (x) − 1| + Pr(yB(x) 6= y). Therefore one has

Pr(ŷ(x | T) 6= y) = |2 f (x) − 1| 1[ŷ(x | T) 6= yB(x)] + Pr(yB(x) 6= y). (6.1)

Averaging over all training samplesT (of sizeN), under the assumption that they are drawn
independently of future data to be predicted, one has

Pr(ŷ 6= y) = |2 f − 1| Pr(ŷ 6= yB) + Pr(yB 6= y). (6.2)

Here (6.2) and in what follows all quantities are presumed to be conditioned at a particular
pointx in the input space, and that explicit dependence is suppressed for convenience.

From (6.2) one sees that the classification error rate Pr(ŷ 6= y) is linearly proportional
to Pr(ŷ 6= yB) which is the only quantity in (6.2) that involves the probability estimatef̂
through (2.6). It can be viewed as a decision “boundary” error in that it represents mises-
timation of the (optimal) decision boundary separating the two classes in the input space,
defined by the set of points (surface) for whichf (x) = 1/2. This “boundary error” is the
analog of the (squared) estimation errorE[ f (x) − f̂ (x)]2 in (5.3) and (5.4).

In order to proceed further it is necessary to calculate how the boundary error depends
on the distribution off̂ , p( f̂ ), induced by the random variations in training data setsT as
(repeatedly) sampled from the system under study. This is just the tail area ofp( f̂ ) on the
opposite side of the value 1/2 from the true probabilityf

Pr(ŷ 6= yB) = 1( f < 1/2)

∫ ∞

1/2
p( f̂ ) d f̂ + 1( f ≥ 1/2)

∫ 1/2

−∞
p( f̂ ) d f̂ . (6.3)

This will depend on the detailed form of the distributionp( f̂ ), and not just on its first two
moments (5.1), (5.2), as was the case with squared estimation error (5.4). In order to gain
some intuition we approximatep( f̂ ) by a normal distribution

p( f̂ ) = 1√
2πvar f̂

exp

(
−1

2

( f̂ − E f̂ )2

var f̂

)
. (6.4)

This approximation is often reasonable since for many procedures the computation of
f̂ involves a (sometimes complex) averaging process. Even when it is not the case the
qualitative conclusions are still generally valid. Assuming (6.4) the boundary error (6.3)
becomes

Pr(ŷ 6= yB) = 8̃

[
sign( f − 1/2)

E f̂ − 1/2√
var f̂

]
(6.5)
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where

8̃(z) = 1√
2π

∫ ∞

z
e− 1

2 u2
du (6.6)

is the upper tail area of the standard normal distribution.

7. Discussion

Inspection of (6.5) reveals that the boundary error depends upon the true probabilityf , and
the systematic component of the estimateE f̂ , through

b( f, E f̂ ) = sign(1/2 − f )(E f̂ − 1/2). (7.1)

For any (nonzero) value of the random component, varf̂ > 0, the boundary error rate
Pr(ŷ 6= yB) is monotonically increasing inb( f, E f̂ ). In this sense it can be viewed as an
analog of the estimation bias (5.5) squared for squared-error loss (5.4). For convenience
we refer tob( f, E f̂ ) (7.1) as the “boundary bias”. (In cases wherep( f̂ ) is an asymmetric
distribution it is more natural to define boundary bias (7.1) in terms of the median instead
of the meanE f̂ .)

Comparison of (6.2), (6.5) with (5.3), (5.4) reveals that the quantitiesE f̂ and varf̂ affect
classification error very differently than they affect estimation error on the probabilityf
itself. For a given var̂f , estimation (squared) error (5.4) is proportional to the (squared)
distance( f −E f̂ )2 (bias-squared). In classification (6.2), (6.5) the dependence onf is only
through the sign off − 1/2, and the relevant quantity is boundary bias (7.1). Therefore,
so long as boundary bias is negativeb( f, E f̂ ) < 0 classification error decreases with
increasing|E f̂ − 1/2| irrespective of the estimation bias( f − E f̂ ). For positive boundary
bias the classification error increases with the distance ofE f̂ from 1/2.

For a given value ofE f̂ , estimation (squared) error (5.4) is proportional to varf̂ . For
classification error the effect of the varf̂ depends mostly on the sign of the boundary bias
(7.1). For a negative sign classification error decreases with decreasing variance (though not
linearly), whereas for a positive sign the error rateincreaseswith decreasing variance. The
rate of increase/decrease depends on the absolute boundary bias. With estimation error (5.4)
small variance does not necessarily provide small error; the bias-squared might be quite
large. For classification, zero variance results in optimal classification (Bayes rule) irrespec-
tive of the value of the estimation bias (5.5) provided boundary bias (7.1) is negative. For pos-
itive boundary bias, zero variance gives rise to maximal error rate (certain boundary error) at
x. Note that imposing the constraint 0≤ f̂ (x) ≤ 1, while often improving estimation bias,
need not improve boundary bias. In fact, it could increase boundary bias and thereby bound-
ary error (6.5) unless a requisite reduction in variance is achieved through the constraint.

The “bias-variance trade-off” is clearly very different for classification error than estima-
tion error on the probability functionf itself. The dependence of squared estimation error
(5.4) on E f̂ and varf̂ is additive (bias-squared plus variance) whereas for classification
error (6.2), (6.5) there is a strong (multiplicative) interaction effect. The effect of boundary
bias (7.1) on classification error (6.2), (6.5) can be mitigated by low variance. Similarly,
the affect of the variance depends on the value (especially the sign) of the boundary bias.
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Therefore low variance (5.2) can be very important for classification but low (estimation)
bias (5.5) squared is not. For the most part, all that is required ofE f̂ is to insure that it
be on the same side of the value 1/2 as f (negative boundary bias). This being the case,
one can reduce classification error toward its minimal (Bayes) value by reducing variance
alone. In this sense variance tends to dominate bias for classification.

This different “bias-variance trade-off” for classification error (6.5) suggests that certain
methods that are inappropriate for function estimation because of their very high bias (5.4),
(5.5) may none-the-less perform well for classification when their (highly biased) estimates
are used in the context of a classification rule (2.6). All that is required is predominately
negative boundary bias (7.1) and small enough variance. Among these are procedures for
which the bias is caused by “over-smoothing”; the estimate at each pointx, f̂ (x), tends to
be shrunk towards the mean output value

ȳ = 1

N

N∑
i =1

yi . (7.2)

That is, the result of applying the procedure tends to be

f̂ (x) = (1 − α(x)) f (x) + α(x)ȳ (7.3)

where 0≤ α(x) ≤ 1 represents an “over-smoothing” coefficient that usually depends on
x. The larger the value forα(x) the more over-smoothing bias. So long asȳ = 1/2 (equal
number of each class in the training sample) then boundary bias is negative (for allx) and
var f̂ (x) is likely to dominate classification error for such procedures. (Generalization to
ȳ 6= 1/2 is discussed in Section 10.) The variance is also controlled by the degree of (over)
smoothing-more smoothing less variance. Therefore, the optimal amount of smoothing for
minimizing classification error (6.2), (6.5) is likely to be much larger than that for estimation
error (5.4) since the latter is more strongly affected by estimation bias (5.5).

8. “Naive” Bayes methods

The naive Bayes approach is surprisingly effective (Titterington et al., 1981; Langley et al.,
1992) given the crude nature of its approximation. It uses the density estimation paradigm
(Section 4) and approximates each class conditional probability density{pk(x)}1

0 (4.1) by
the product of its marginal densities{p(k)

j (xj )}n
j =1 on each input variable,

p̃k(x) =
n∏

j =1

p(k)
j (xj ) (8.1)

with

p(k)
j (xj ) =

∫
pk(x)

∏
l 6= j

dxl . (8.2)

Data from each classk ∈ {0, 1}, and each input variablej ∈ {1, 2, . . . , n}, are separately
used to obtain corresponding estimatesp̂(k)

j (xj ) of (8.2). These are used in (8.1), which is
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in turn plugged into (4.1) to form an estimate off (x). This is then inserted into (2.6) to
produce an output estimate.

Estimatesf̂ (x) obtained in this manner are clearly biased (5.5) estimates off (x) (2.1),
(3.1), even if the true marginal densities (8.2) are used, unless the input variables for every
class happen to be totally independent. Since such total independence is far from being
realized in most applications, this bias can be quite large, especially when there are many
inputs. Introducing estimates for (8.2) can introduce further bias and, of course, variance
as well.

The high degree of bias (5.4), (5.5) associated with the naive Bayes method (8.1), (8.2)
makes it generally unsuitable for accurately approximating the target probability function
f (x) (2.1), (3.1). However, this bias is generally of the “over-smoothing” variety discussed
in Section 7. The approximating densitiesp̃k(x) tend to be much smoother than the corre-
sponding (true) densitiespk(x) from which they are derived. They place substantive mass
over broader regions of the input space as evidenced by the fact that the entropy ofp̃k(x)

is (usually much) greater than that ofpk(x). This over-smoothing of the class conditional
densities produces an over-smoothed estimate off (x) when inserted into (4.1), producing
(usually large) estimation bias (5.5), and therefore error (5.4). However, as discussed in
Section 7, the boundary bias (7.1) produced by this mechanism is likely to remain negative
over much of the input space so that low variance estimates of the marginal densities (8.2)
can produce low boundary error (6.5). This fact may explain why the naive Bayes method
has seen so much success in classification despite its “naive” approach.

9. K-nearest neighbor methods

Another class of highly biased estimation procedures are those based onK -nearest neigh-
bors. A local subregionR(x) ⊂ Rn of the input space, centered at the estimation point
x, is constructed and the target function estimate is taken to be the average of the training
sample output values (1.1) in that region

f̂ (x) = avexi ∈R(x)yi . (9.1)

The predicting regionR(x) is defined to be the subregion of the input space containing the
K closest training points tox

R(x) = {x′| ‖x − x′‖ ≤ d(K )} (9.2)

whered(K ) is theK th order statistic of{‖ x − xi ‖}N
1 . This method requires the definition of

a distance‖x − x′‖ on the input space. This is usually taken to be a (weighted)lq distance

‖x − x′‖ =
[

n∑
j =1

|w j (xj − x′
j )|q

]1/q

(9.3)

with q = 2 (Euclidean distance) the most common choice. The weights{w j }n
1 are usually

chosen to be inversely proportional to the (global) scales of the respective input variables
so as to give each input equal influence in defining the region (9.2).
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ForK -nearest neighbor procedures the bias-variance trade-off associated with estimation
error generally is driven by the bias (5.5) in high dimensional settings (many inputs). This
is due to the geometry of Euclidean spaces; the radius of a region varies as thenth root of its
volume, whereas the number of training points in the regionK varies roughly linearly with
the volume. Thus, even the smallest possible volume (K = 1) gives rise to large regions in
terms of radius. This can already produce high bias even for the largest variance (K = 1).
This phenomenon is referred to as the “curse-of-dimensionality” (Bellman, 1961).

Like naive Bayes (Section 8), the bias (5.5) associated withK -nearest neighbor pro-
cedures is produced by over-smoothing. In fact, asK → N, f̂ (x) → ȳ (7.2) for all x.
Providedȳ = 1/2 the boundary bias generally tends to be negative, and decreasing the
variance can have dramatic impact on reducing boundary error (6.5).

This is illustrated with a simple example. The input space is taken to be then-dimensional
unit hypercubex ∈ [0, 1]n. The class densities are

p0(x) = 2 · 1(x1 < 1/2), p1(x) = 2 · 1(x1 ≥ 1/2) (9.4)

so that the target probability function is

f (x) = 1(x1 ≥ 1/2). (9.5)

The prior probabilities (4.1) are taken to be equal (π0 = π1). This target (9.5) is a simple
function ofx1 only, so having additional inputs serves to increaseK -nearest neighbor bias
(5.5) at the maximal rate since these inputs contain no additional information. Note that
the irreducible squared-prediction errorEε[ε | x]2 (5.3) for this problem (9.5) is zero and
thus the minimal (Bayes) error rate (2.5) is also zero.

Table 1 shows the values of average squared estimation error (Column 2) and classification
error (Column 4) as a function of training sample sizeN (first column) along with the
corresponding optimal values (Ke andKc, respectively) of the number of nearest neighbors
(third and fifth columns) for this example (9.4), (9.5) atn = 20 dimensions. One sees
that classification error is decreasing at a much faster rate than squared estimation error as
N increases. The optimal value ofK for squared estimation error (third column) is seen
to be very slowly increasing withN. As the training sample is increased the additional

Table 1. Error rates and optimalK as a function ofN for n = 20.

N Estimation2 Ke Classification Kc

100 .165 10 .165 57

200 .144 11 .127 67

400 .132 13 .089 205

800 .120 14 .060 417

1600 .108 15 .039 773

3200 .099 17 .029 1651

6400 .091 15 .018 2029

12800 .083 17 .013 7953
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Table 2. Estimation and classification error as a function ofn for N = 12800.

n Estimation2 Classification

2 .0023 .0022

3 .0079 .0041

5 .0213 .0055

10 .0467 .0091

20 .0829 .0130

data are being used to reduce the radius of the regions in a (not very successful) attempt
to reduce the impact of the bias (5.5) contribution to squared estimation error (5.4). For
classification error, the optimal value forK (last column) is much larger and increases more
rapidly (almost linearly) with increasingN. The additional data are being used to reduce
variance of the estimateŝf (x). Because of its interaction (6.5) with (boundary) bias (7.1)
reducing variance has a much bigger impact on classification error. This results in much
faster decrease in classification error with increasingN. These (and all following) results
were obtained through Monte Carlo simulation using 20 replications at each training sample
size and 20000 independent (test) observations.

Table 2 shows the relationship of both squared estimation and classification error with
dimensionn for the largest training sample size (N = 12800) considered here. One sees
that classification error is not completely immune to the tendency ofK -nearest neighbor
methods to degrade as irrelevant inputs are included. But whereas the squared estimation
error degrades by over a factor of 35 as the number of irrelevant inputs is increased by a
factor of 20, the corresponding increase in classification error is less than a factor of six. In
this sense one can say that dimensionality is a “problem” here for classification, whereas
for estimation error it definitely qualifies as a “curse”.

An important aspect contributing to the successful resistance of classification error to the
curse-of-dimensionality is the choice of a good value for the number of nearest neighbors
K . The discussion in Section 7 suggests that this should be typically larger for classification
than for estimation error. This is verified in Table 1 for our simple example (9.5). Figure 1
shows plots of the typical dependence of both squared estimation error (upper frame) and
classification error (lower frame) onK (heren = 20, N = 3200). One sees that choice of
number of nearest neighbors is less critical for classification error so long asK is neither
too small nor too large (here 500≤ K ≤ 2000). However, it must be substantially
larger than the optimal value for estimation error (Table 1) in order to obtain near optimal
classification performance. Quite often whenK -nearest neighbors are compared to other
classification methods a small value (K = 1 or K = 5, for example) is used. The simple
example examined here suggests that, at least in some situations, this may underestimate
the performance achievable with theK -nearest neighbor approach. This was dramatically
demonstrated by Rosen et al. (1995), and noted by Henley and Hand (1996), in the context
of specific (real data) problems.

The example (9.4), (9.5) studied here is a very simple one intended to illustrate the
concepts involved. It was specifically designed to be highly susceptible to the effects of the
curse-of-dimensionality. It may well not be representative of many classification problems,
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Figure 1. Squared estimation error (upper) and classification error (lower) as a function of number of nearest
neighborsK , for n = 20 dimensions and training sample sizeN = 3200.

especially those with very complicated decision boundaries. It does however illustrate the
different nature of the bias-variance trade-off in classification, and suggests that much of
the conventional wisdom, derived from intuition based on (function) estimation, may not
be directly applicable to the classification problem.
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Another potential limitation of the study presented here is that only dimensionalities up
to n = 20 were considered. In many problems, especially those involving signals and
images, there may be hundreds or even thousands of input variables. However, in the
context of nearest neighbor methods the number of inputs is not the relevant factor. The
important quantity is the (local)intrinsic dimensionality of the joint distribution of input
values as characterized by the number of its singular values that are not small. Especially
when there are many inputs there is usually a high degree of association among them so
that the corresponding intrinsic dimensionality is fairly moderate. In such cases the results
presented here will likely be relevant.

10. Boundary bias

An important ingredient contributing to the success of both naive Bayes andK -nearest
neighbor procedures is negative boundary bias (7.1). So long asb( f (x), E f̂ (x)) < 0 they
can use decreasing variance to overcome its (increasing) effect on boundary error (6.5) to
produce accurate classification atx. It is the (over-smoothing) nature of the (large) bias
inherent in these methods that leads to predominately negative boundary bias at most input
points x, and thereby good overall classification performance. Non-negative boundary
bias on the other hand devastates classification performance. In this case the boundary
error is greater than 1/2 and decreasing varianceincreasesthat error. At such pointsx
the classification procedure has no alternative but to try to reduce estimation bias (5.5) in
an attempt to bring boundary bias down to a negative value. This generally involves an
increase in variance and the favorable trade-off produced by their multiplicative interaction
effect (6.5) is lost.

The devastating effect of positive boundary bias in the context ofK -nearest neighbor
procedures is illustrated by a simple example. This example is the same as that used in
Section 9 (9.4), (9.5) but with a modification to the prior probabilities (4.1). Here we take
them to be unequal, specificallyπ1 = 3π0, so that the value of the output mean (7.2) is
ȳ = 3/4. Table 3 shows the values of average squared estimation error (second column),
classification error (fourth column), along with their respective optimal number of nearest
neighborsK (columns 3 and 5) as a function of sample sizeN (first column), atn = 20

Table 3. Error rates and optimalK as a function of sample sizeN for n = 20 withπ1 = 3π0.

N Est.2 Ke Class Kc Class(t = −1/4) Kc(t = −1/4)

100 .136 11 .195 5 .154 44

200 .125 11 .176 5 .110 96

400 .116 10 .164 5 .081 192

800 .109 14 .154 7 .060 372

1600 .100 15 .141 7 .043 772

3200 .092 17 .129 7 .029 1488

6400 .086 13 .118 7 .024 3292

12800 .078 14 .105 9 .016 4400
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dimensions. For squared estimation error one sees similar results to that shown in Table 1
for equal priors (π0 = π1). Error is large and decreases slowly with increasingN. For
classification error however one sees a quite different result for unequal priors (π1 = 3π0).
Classification error is here much larger than for equal priors and decreases very slowly
with increasingN at a rate similar to that for squared estimation error. The number of
nearest neighbors that minimize classification error is also very different for unequal priors;
they are even smaller than those for squared estimation error and increase very slowly
with increasingN. For unequal priors (̄y 6= 1/2) classification error is suffering from the
curse-of-dimensionality in the same way as squared estimation error.

It is easy to see that the problem withK -nearest neighbors in this setting is positive bound-
ary bias over much of the input space. The over-smoothed nature of the estimates causes
them to be shrunk towards the output meanȳ (7.3) and in this casēy is not equal to the clas-
sification threshold (2.6), here 1/2. The boundary bias is non-negativeb( f (x), E f̂ (x)) ≥ 0
at all input pointsx for which x1 < 1/2 ( f (x) = 0) and 1/3 or more of the volume of the
K -nearest neighborhood overlaps the class one regionx1 ≥ 1/2 (E f̂ (x) ≥ 1/2). As the
dimensionn increases the average radius of the regions (9.2), (9.3) increases (for fixedK )
so that the portion of the input space with positive boundary bias also increases. The only
way to mitigate this effect is to reduce the value ofK and thereby average region radius.
For increasingn this strategy becomes less effective owing to the curse-of-dimensionality;
average radius varies as thenth root ofK . At high dimensions there is considerable positive
boundary bias even forK = 1. Therefore, one sees slow decrease for average classification
error with increasingN, typical of that associated with the curse-of-dimensionality.

For this particular example there is a simple remedy for this problem. One can simply
apply the procedure as if the prior probabilities were equal, even though there are three times
as many class ones as class zeros in both the training data and future data to be classified.
This involves weighting each class zero training observation with three times the mass of
each class one in the average leading to the computation off̂ (x) (9.1). This simple trick
causes̄y = 1/2 (7.2) and thereby produces negative boundary bias everywhere in the input
space for this problem. Applying such a weighting scheme is equivalent to modifying the
estimatef̂ (x) by the transformation

f̃ (x) = f̂ (x) + t (10.1)

before inserting it into the output estimate (2.6) (heret = −1/4).
The sixth column of Table 3 shows the corresponding classification error using the “bias

adjustment” (10.1) witht = −1/4, and the seventh column its corresponding optimal
number of nearest neighbors. Applying the bias adjustmentt = −1/4 (10.1) causes
the boundary bias associated with̃f (x) to be everywhere negative and allows decreasing
variance (increasingK ) to maximally exploit their interaction effect (6.5) to dramatically
reduce classification error.

The bias adjustment (10.1) changes both estimation (5.5) and boundary (7.1) bias every-
where in the input space. The optimal value oft for estimation error iste = avex f (x) −
avex f̂ (x). Since these two averages tend to have similar values for most estimation proce-
dures (especially those that over-smooth) there is seldom much to be gained by employing
(10.1). In the case of boundary bias (7.1) the modification (10.1) decreases its value over
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half of the input space (x1 < 1/2) and increases it by the same amount at each pointx
in the other half (x1 ≥ 1/2). Therefore average boundary bias is (substantially) increased
since the (pooled) distribution of the input values places three times as much mass in the
latter half space (x1 ≥ 1/2). However the interaction between variance and boundary bias
occurs separately at each individual pointx, and the choicet = −1/4 (10.1) here provides
the right balance so that the boundary bias is negative at allx.

In this example a good bias adjustment valuet (10.1) could be determined since the true
target function (9.5) and priors (π1 = 3π0) were known. This is seldom the case in practice.
Even when they are known however a good choice may not be obvious. Consider the case

p0(x) = (4/3) · 1(x1 < 3/4), p1(x) = 4 · 1(x1 ≥ 3/4) (10.2)

with equal prior probabilities (π0 = π1), again on the hypercubex ∈ [0, 1]n. The target
probability function (3.2) is

f (x) = 1(x1 ≥ 3/4). (10.3)

Here the response mean (7.2) isȳ = 1/2 but there is positive boundary bias over much of
the input space, caused by the higher density of class ones near the decision boundary.

Table 4 shows (forn = 20 dimensions) values of average squared estimation error (sec-
ond column), classification error fort = 0 (fourth column), and classification error using
the optimal valuet = t∗ (sixth column) along with their corresponding optimal number of
nearest neighborsK (Columns 3, 5, and 7, respectively). The last column of Table 4 shows
the corresponding optimal valuet∗ of the bias adjustmentt (10.1). Without the bias adjust-
ment classification error converges to zero at roughly the same rate as squared estimation
error. The bias adjustment dramatically speeds up convergence to small classification error.
At N = 12800 classification error is more than five times smaller with the adjustment than
without it. The optimal adjustment valuest∗ however are here much smaller (in absolute
value) than in the previous example (t∗ = −0.25). In fact, usingt = −0.25 in this case
(Table 4) produces higher classification error than no adjustment at all (t = 0). Thus one
sees similar results to that of the previous example (Table 3). Without the bias adjustment
(10.1) classification error suffers from the curse-of-dimensionality in the same manner as

Table 4. Error rates, optimalK , andt as a function ofN for n = 20.

N Est.2 Ke Class(t = 0) Kc(t = 0) Class(t = t∗) Kc(t = t∗) t∗

100 .161 10 .166 53 .161 53 −.025

200 .147 11 .139 79 .121 97 −.025

400 .135 12 .120 85 .086 255 −.025

800 .126 15 .115 83 .061 442 −.025

1600 .117 18 .103 125 .046 985 −.025

3210 .108 17 .101 75 .032 2121 −.025

6400 .101 17 .100 81 .027 1949 −.05

12800 .094 20 .096 43 .018 8714 −.05
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Table 5. Optimal bias adjustment valuet∗ for various values of dimensionn and sample sizeN.

n N = 100 N = 400 N = 1600 N = 6400 N = 12800

2 −.250 −.250 −.250 −.225 −.225

3 −.125 −.150 −.225 −.225 −.225

5 −.025 −.075 −.150 −.200 −.225

10 −.025 −.050 −.050 −.075 −.075

20 −.025 −.025 −.025 −.050 −.050

squared estimation error (here slightly worse). With the bias adjustment (convergence rate)
immunity to the curse is restored.

Table 5 shows the optimal bias adjustment valuet∗ for selected sample sizesN (columns
2–6) as a function of dimensionn (first column) for this example (10.2), (10.3). One sees
thatt∗ depends on bothn andN for this (fixed) target (10.3). At all sample sizes the absolute
value oft∗ tends to decrease with increasing dimension. At fixed dimensionn, the absolute
value tends to increase with sample size (except forn = 2).

As with the previous examples, this one is especially simple and may not be a close
reflection of reality in many classification problems. It does illustrate that even in cases
where the true target probability function and the priors are known, the best choice of bias
adjustment level (10.1) may not be obvious. In reality neither are generally known so (in
any case) model selection techniques such as cross-validation must be employed to estimate
good joint values oft andK . Note that this requires very little added computation over that of
estimatingK alone. As these examples illustrate there may be considerable gains associated
with such a strategy, especially in cases where the effects of the curse-of-dimensionality
are hindering classification performance.

In the naive Bayes approach applying a bias adjustment (10.1) is equivalent to altering the
relative prior probabilities{π j }1

0 (4.1) from those values that would be optimal when used
in conjunction with the true class conditional densities{pj (x)}1

0. Since the density esti-
mates associated with naive Bayes (8.1), (8.2) are generally highly biased (over-smoothed)
estimates of the true densities, bias adjustment may be highly beneficial with it as well.
Generally an optimal value for this adjustment will not be known in practice and model
selection techniques (such as cross-validation) must be used to obtain an estimate.

11. Bias plus variance in classification

There has been a flurry of recent activity (Dietterich and Kong, 1995; Kohavi and Wolpert,
1996; Breiman, 1996; Tibshirani, 1996) also directed at the goal of attempting to understand
the relative influence of the systematic and random components of classification error. These
efforts have concentrated on developing an additive decomposition in direct analogy with
the (seductively simple) form for squared estimation error (5.3), (5.4). In this section these
decompositions are reviewed and related to the definitions and concepts derived in this paper.

The formulation of Kohavi and Wolpert (1996) is somewhat different than that of this
paper. Central to their decomposition (for the two-class case) is the probability atx that the
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classification procedure (2.6) predictsŷ(x) = 1

P1(x) = Pr[1( f̂ (x) ≥ 1/2) = 1] = Pr[ f̂ (x) ≥ 1/2] (11.1)

which under the Gaussian assumption (6.4) becomes

P1(x) = 8̃

(
1/2 − E f̂ (x)√

var f̂ (x)

)
. (11.2)

Kohavi and Wolpert (1996) define the classification “bias-squared” atx as

bias2KW(x) = [ f (x) − P1(x)]2, (11.3)

the “variance” as

varKW(x) = P1(x)[1 − P1(x)], (11.4)

the “irreducible error-squared” as

σ 2(x) = f (x)[1 − f (x)], (11.5)

and show that

Pr(ŷ(x) 6= y) = bias2KW(x) + varKW(x) + σ 2(x). (11.6)

The last quantityσ 2(x) is the variance of the error termEε[ε2 | x] in (3.1). The definitions
(11.3), (11.4) each involve both the systematicE f̂ (x) (5.1) and random var̂f (x) (5.2)
components of the estimatêf (x), and the irreducible error is not defined as the Bayes error
rate (2.5). However this decomposition does have the desirable property that varKW(x) ≥ 0
at allx.

The formulations of Dietterich and Kong (1995), Breiman (1996), and Tibshirani (1996)
are more similar to the approach adopted in this paper. Dietterich and Kong (1995) define
the “statistical bias” of a classification procedure as

biasDK(x) = 1[Pr(ŷ(x) 6= y) ≥ 1/2]. (11.7)

With this definition a procedure has unit bias at an input pointx if it makes the wrong
decision there half of the time or more, as averaged over training setsT (1.1), and has zero
bias otherwise. The “statistical variance” is defined as the difference between the error rate
(atx) and the statistical bias

varDK(x) = Pr(ŷ(x) 6= y) − biasDK(x) (11.8)

so that one obtains the decomposition

Pr(ŷ(x) 6= y) = biasDK(x) + varDK(x). (11.9)
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From (6.2), (6.5), (7.1) one sees that biasDK(x) is

biasDK(x) = 1[b( f (x), E f̂ (x)) ≥ 0] (11.10)

so that it is just an indicator of positive boundary bias (7.1) atx. The quantity varDK(x) (11.8)
involves both the systematic and random components (E f̂ (x), var f̂ (x)) of the estimate
f̂ (x), as well as the Bayes error rate Pr(yB(x) 6= y) (2.5), in a fairly complicated way, and
can assume negative values.

Breiman (1996) defines bias and variance in terms of the “reducible” error rate

r (x) = Pr(ŷ(x) 6= y) − Pr(yB(x) 6= y) (11.11)

where Pr(yB(x) 6= y) is the Bayes error rate (2.5), and in terms of an “aggregated” classifier
which in the notation of this paper is

yA(x) = 1(E f̂ (x) ≥ 1/2). (11.12)

(In the casep( f̂ | x) is asymmetric the median replacesE f̂ (x).) The “bias” is defined to be

biasB(x) = 1[yA(x) 6= yB(x)]r (x) (11.13)

and the “variance” as

varB(x) = 1[yA(x) = yB(x)]r (x). (11.14)

Thus at a given pointx the classifier has either bias or variance (but not both) depending
upon whether or not the aggregated classifier (11.12) disagrees with the Bayes rule (2.4)
there. By constructionr (x) = biasB(x) + varB(x) so that the decomposition

Pr(ŷ(x) 6= y) = biasB(x) + varB(x) + r B(x) (11.15)

is produced.
In terms of the concepts developed in this paper one has

1[yA(x) 6= yB(x)] = 1[b( f (x), E f̂ (x)) ≥ 0] (11.16)

so that the reducible error (11.11) is called “bias” in regions of positive boundary bias (7.1),
and “variance” in regions of negative boundary bias.

Tibshirani (1996) also defines “bias” and “variance” in terms of the aggregated classifier
(11.12). From the point of view of this paper these definitions reduce to

biasT (x) = |2 f (x) − 1| 1[b( f (x), E f̂ (x)) ≥ 0] (11.17)

and

varT (x) = |P1(x) − 1/2| (1 − |2P1(x) − 1|) (11.18)
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whereP1(x) (11.1) is the probability that the classifier (2.6) predictsŷ(x) = 1 atx. This
definition of variance has a similar flavor to that of Kohavi and Wolpert (1996) (11.4);
it has zero value whenP1(x) assumes its extreme values (0, 1) and is non-negative over
the entire range. However varT (x) (11.18) achieves its maximum value atP1(x) = 1/4
and P1(x) = 3/4 and has the value zero atP1(x) = 1/2 where varKW(x) (11.4) takes on
its maximum value. Using the definitions (11.17), (11.18) does not lead to an additive
decomposition of classification error in a form similar to that of (11.6), (11.9), or (11.15).

All of these additive decompositions are quite useful in providing insight into the nature
of classification error. The bias definitions (11.10), (11.13), (11.16), and (11.17) all suggest
(from different perspectives) the importance of the concept of boundary bias (7.1) developed
in this paper. All emphasize the contribution of variability to the error rate of a classifier.
This latter contribution especially (as noted by the authors) has often been overlooked in
the development of machine learning procedures. To the extent that the development in
this paper makes an additional contribution, it is that for classification error (unlike squared
estimation error) the systematic and random componentsinteract in a multiplicative and
highly nonlinear way, and this interaction effect can sometimes be exploited to reduce error.

12. “Aggregated” classifiers

A principal motivation for proposing the additive decompositions discussed in Section 11
was to explain the apparent success of variance reduction techniques based on aggregation
methods. From the perspective developed in this paper these methods can be viewed as
obtaining an estimate ofE f̂ (x)

f̂ A(x) = Ê f̂ (x) (12.1)

and using it in place off̂ (x) (3.3) for function estimation (3.2) and classification (11.12).
Examples of (12.1) are “bagging” (Breiman, 1995) which uses the “bootstrap smoothed”
estimate of Efron and Tibshirani (1995) and “arcing” (Breiman, 1996) which includes other
alternatives based on “boosting”.

In the ideal limit

f̂ A(x) → fA(x)
.= E f̂ (x) (12.2)

this aggregation approach will reduce estimation error (5.4) since the bias (5.5) offA(x)

(12.2) is the same as that off̂ (x) but varfA(x) = 0. The degree of this reduction will depend
on the relative importance of varf̂ (x) (5.2) as compared to bias2 f̂ (x) (5.5). For classification
also, the (boundary) biases (7.1) are the sameb( f (x), fA(x)) = b( f (x), E f̂ (x)), but in
this case there is a multiplicativeinteractioneffect with variance (6.5) and varfA(x) = 0.
Therefore, usingfA(x) in place of f̂ (x) in (2.6) will produce zero boundary error (6.2),
(6.5), and the minimal Bayes error rate (2.5), atx providedb( f (x), E f̂ (x)) < 0. On
the other hand, ifb( f (x), E f̂ (x)) > 0 this approach will produce certain boundary error
Pr(yA(x) 6= yB(x)) = 1 andincreasederror rate over usinĝf (x). As noted by Breiman
(1996) and observed by Tibshirani (1996), aggregation can make a good classifier better
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but can make a bad classifier worse. Clearly, this effect occurs separately at each individual
prediction pointx, so success of aggregation for classification depends on the relative size
of the portion of the input space with negative boundary bias.

As discussed in Section 10 the success of variance reduction techniques for classification
can be enhanced by the use of a bias adjustment (10.1) tof̂ (x). This is a consequence of the
(boundary) bias-variance multiplicative interaction effect at eachx. For the same reason it
seems likely that such an adjustment

f̃ A(x) = f̂ A(x) + t (12.3)

will be beneficial in the context of aggregated classification as well. Bias adjustment (10.1),
(12.3) can (sometimes dramatically) reduce the proportion of the input space with positive
boundary bias. As with other methods of variance reduction a good adjustment valuet is
not likely to be known in any particular situation, and therefore it will have to be estimated
through some model selection technique such as cross-validation.

13. Limitations and future work

The most serious limitation of the work presented here is the restriction to the two-class
problem. Intuition suggests that many of the concepts developed in this context may have
analogs in theL ≥ 3 class case, but the detailed development will be more complicated.
In particular, there will likely be analogs to the notion of boundary bias and its interaction
with the variances of the estimates of theL target probability functions{ fl (x)}L

1 . Also the
concept of bias adjustment(s) may also be helpful in the multi-class problem. This is left
for future work.

Another limitation is the use of the Gaussian approximation (6.4). This is clearly not cru-
cial to the qualitative results obtained. For example, the distribution ofK -nearest neighbor
estimates is not strictly Gaussian but, as seen in Section 9, its behavior closely follows that
suggested by (6.5). As noted, the median ofp( f̂ | x) should replace the meanE f̂ (x) in the
definition of boundary bias (7.1) in the case of asymmetry, and an appropriate measure of
its spread (variability off̂ (x)) would substitute for

√
var f̂ (x) in deriving a boundary error

analog to (6.5). Clearly, these two quantities would strongly interact in whatever detailed
form emerged from the derivation.

The illustrative examples presented were intensionally chosen to be quite simple so that
one could easily understand the geometry of the decision boundaries, and thus the nature
of the boundary bias (7.1) associated with the classification methods studied here. Actual
decision boundaries for specific problems encountered in practice may of course be quite
different, as could the nature of the boundary bias associated with other classification
methods. Thus the gains associated with bias adjustment (10.1) may not be the same in
other situations. All of this is problem dependent and can only be determined through
experimentation in each specific case.

The goal of the work presented here is to illustrate that classification error responds to
error in the target probability estimates in a much different (and perhaps less intuitive)
way than squared estimation error. This helps explain why improvements to the latter do
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not necessarily lead to improved classification performance, and why simple methods such
as naive Bayes,K -nearest neighbors, and others remain competitive, even though they
usually provide very poor estimates of the true underlying probabilities. Good probability
estimates are not necessary for good classification; similarly, low classification error does
not imply that the corresponding class probabilities are being estimated (even remotely)
accurately. An understanding of these issues may help improve the chance of success of
future methodological developments.
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