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A Brief Survey of Bandwidth Selection 
for Density Estimation 

M. C. JONES,J. S. MARRON,and S. J. SHEATHER 

There has been major progress in recent years in data-based bandwidth selection for kernel density estimation. Some "second 
generation" methods, including plug-in and smoothed bootstrap techniques, have been developed that are far superior to well-known 
"first generation" methods, such as rules of thumb, least squares cross-validation, and biased cross-validation. We recommend a 
"solve-the-equation" plug-in bandwidth selector as being most reliable in terms of overall performance. This article is intended to 
provide easy accessibility to the main ideas for nonexperts. 

KEY WORDS: Bandwidth selection; Kernel density estimation; Nonparametric curve estimation; Smoothing parameter selection. 

1. INTRODUCTION in those important related areas, and also provide some 

Smoothing methods provide a powerful methodology for 
gaining insights into data. Many examples of this may be 
found in the monographs of Eubank (1988), Hirdle (1990), 
Miiller (1988), Scott (1992), Silverman (1986), Wahba 
(1990), and Wand and Jones (1994). But effective use of 
these methods requires choice of a smoothing parameter. 
When insufficient smoothing is done, the resulting density 
or regression estimate is too rough and contains spurious 
features that are artifacts of the sampling process. When 
excessive smoothing is done, important features of the un- 
derlying structure are smoothed away. 

In the hands of an expert, interactive visual choice of 
the smoothing parameter is a very powerful way to analyze 
data. But there are a number of reasons why it is important 
to be able to choose the amount of smoothing automati- 
cally from the data. One is that software packages need a 
default. This is useful in saving the time of experts through 
providing a sensible starting point, but it becomes impera- 
tive when smoothing is used by nonexperts. Another reason 
this is important is that in a number of situations many es- 
timates are required, and it can be impractical to manually 
select smoothing parameters for all (e.g., see the income 
data in Park and Marron 1990). An extreme case of this 
comes in the important field of dimensionality reduction. 
In that context, many methods, such as projection pursuit, 
additive modeling, ACE, MARS, SIR, and so on, are based 
on repeated use of smoothers. Manual choice of smoothing 
parameter at each step is clearly infeasible. 

In this article we focus only on the specific case of one- 
dimensional kernel density estimation. This is done because 
research in data-based bandwidth selection has progressed 
much further there than in other contexts. Perhaps this is be- 
cause of the appealing simplicity of this setting. Of course, 
more general contexts (e.g., higher dimensions and estima- 
tion of other functions, such as regression) are of great in- 
terest. We hope that this summary will help stimulate work 
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guidance. (See Gasser, Kneip, and Kohler 1991 and Rup- 
pert, Sheather, and Wand 1995 for first steps in the direction 
of kernel regression.) 

Many proposals for data-based bandwidth selection 
methods have been made over the years. A few important 
ones are discussed in Section 2. For simple understanding 
of the many proposals, we group them into "first genera- 
tion" and "second generation" methods, because there has 
been a quantum leap in terms of performance (both theoret- 
ical and practical) for a number of more recently developed 
methods as compared to the earlier ones. Most "first genera- 
tion" methods were developed before 1990. This decade has 
seen some major breakthroughs in terms of performance, in 
several directions, and also a large number of relatively mi- 
nor variations. We apply the name "second generation" to 
those with superior performance. Simple access to, and un- 
derstanding of, these techniques is the main point of this 
article. 

Most of the "first generation methods" have been sur- 
veyed by Marron (1989) (see also Scott 1992 and Silverman 
1986). An exhaustive treatment of these methods is not a 
goal of this article (as it would obscure our main points) 
but has been provided by Jones, Marron, and Sheather 
(1992). Hence only some of the best known of these-rules 
of thumb, least squares cross-validation, and biased cross- 
validation-are explicitly considered here. The motivations 
for each of these are discussed in Section 2.2. 

This article is intended to provide quick access to the 
main ideas behind "second generation methods." Again for 
the sake of clarity, because there are many variations that 
can obscure the main ideas, we focus only on two represen- 
tative methods: a "solve-the-equation plug-in" method and a 
"smoothed bootstrap," described in Section 2.3. We avoid a 
historical treatment, and give only partial references. (For a 
more complete treatment, from a historical viewpoint, with 
complete references, and detailed discussion of variations 
that have been suggested, see Jones et al. 1992.) Quick ac- 
cess to implementation of most of the methods discussed 
here has been provided by park and ~  ~(1992).~ l ~ 
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Various ways of comparing bandwidth selectors are con- 
sidered in Section 3. These include real data examples, with 
a new one shown in Section 3.1; asymptotic analysis, with 
major ideas surveyed in Section 3.2; and a simulation study, 
whose main lessons are summarized in Section 3.3. 

Taken together, these comparisons provide a preponder- 
ance of evidence for the three main points of this article. 

1. Second generation methods are far superior to the 
better-known first generation methods. 

2. Second generation methods are ready for widespread 
use as defaults in software packages. 

3. The solve-the-equation plug-in method is the best of 
the second generation methods in terms of overall perfor- 
mance. We suggest that this should become a benchmark 
for good performance. 

2. METHODS AND MOTIVATIONS 

Here we discuss the main ideas behind some impor- 
tant bandwidth selection methods. (See Jones et al. 1992 
and Marron 1989 for a comprehensive introduction.) Some 
background material and notation, common to many meth- 
ods, is discussed first. 

2.1 Background 

Interesting structure in a set of data, X I , . . . ,X,, is often 
revealed through plotting the kernel density estimator, 

where Kh(. )  = ( l / h ) K ( . / h )for a "kernel function" K 
(often taken to be a symmetric probability density) and a 
"bandwidth" h (the smoothing parameter). (See Scott 1992 
and Silverman 1986 for many interesting examples, and a 
good introduction to important ideas.) 

The behavior of f may be useful mathematically ana-
lyzed by assuming that the data are independent realiza- 
tions from a probability density f (z) and by viewing f as 
an estimator of f .  A common way of measuring the error 
in this estimation process is the mean integrated squared 
error (MISE), 

where J denotes definite integration over the real line and 
dependence on h is made explicit because of the important 
effect of this smoothing parameter. There has been much 
discussion of the appropriateness of MISE as a measure of 
error (see Grund, Hall, and Marron 1994 and Jones et al. 
1992, sec. 2, for details). Here we use MISE because it is 
simple and allows very deep analysis, as was shown by Mar- 
ron and Wand (1992). Park and Turlach (1992) considered 
number of modes as a criterion for performance and arrived 
at similar conclusions to those given here. (See Marron and 
Tsybakov 1995 for a useful alternative measure of error.) 

Asymptotic analysis provides a simple way of quantify- 
ing how the bandwidth h works as a smoothing parameter. 
In particular, under standard technical assumptions (see, for 
example, Silverman 1986, sec. 3.3), MISE is asymptotically 
(as n -t oo) approximated by the asymptotic mean inte- 
grated squared error (AMISE), 

where here and in the following the functional notation 
R(p) = Jp2(2)dx is used and Jx2K = J x2 K ( x )  dx. This 
quantifies the effect of the smoothing parameter h. In par- 
ticular, note that the first term (integrated variance) is large 
when h is too small, and the second term (integrated squared 
bias) is large when h is too large. 

Another useful feature of AMISE(h) is that its minimizer 
is simply calculated: 

This provides simple insight into "good" bandwidths. For 
example, smaller bandwidths are better for larger n (sensi-
ble, because the estimator should be "more local" when 
more information is present) and when the density is 
rougher (because the bias effect is stronger). In many cir- 
cumstances h A ~ ~ s ~  theis a good approximation to h I V I I S ~ ,  
minimizer of MISE (with ties broken arbitrarily in the case 
of multiple minimizers), but sometimes it is not, as indi- 
cated by Marron and Wand (1992). 

Note that the estimator discussed here uses the same 
amount of smoothing at all locations. As noted by Scott 
(1992, sec. 6.6) and Silverman (1986, sec. 5.1), in some con- 
texts large improvements can be made with local bandwidth 
methods. But these require an even more difficult bandwidth 
choice (a whole function, not just a number) and hence are 
not discussed in this article. 

2.2 First Generation Methods 

First generation methods for bandwidth selection were 
mostly proposed before 1990. Three of the best known of 
these are discussed here (see Scott 1992 and Silverman 1986 
for detailed discussion of some of their properties). Many 
others have been surveyed by Jones, Marron, and Sheather 
(1992) and by Marron (1989). 

2.2.1 Rules of Thumb. This idea goes back at least to 
Deheuvels (1977) and was popularized by Silverman (1986). 
It involves replacing the unknown part of hAMISE,R ( f f f ) ,  
by an estimated value based on a parametric family. Be- 
cause scale is very important for bandwidth choice but 
location is not, a natural choice for parametric family is 
N(0 ,a2) . (See Janssen, Marron, Veraverbeke, and Sarle 
1995 and Silverman 1986, sec. 3.4.2, for discussion of scale 
estimates.). In this article we use h R o ~to denote this band- 
width based on standard deviation, as in (3.28) of Silver- 
man (1986). In our simulations this was somewhat worse 
than the best scale measure of Janssen et al. (1995) but was 
close enough to be reasonably representative. 
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An interesting variation of this idea is "oversmoothing," 
proposed by Terrell and Scott (1985) and Terrell (1990). 
They solved the variational problem of minimizing R(f ' I )  

subject to various types of scale constraints. This solution, 
together with a scale estimate, results in a "maximal pos- 
sible amount of smoothing," and an "oversmoothed band- 
width" that comes from using this in h A ~ l s E .Upper bounds 
on a "reasonable amount of smoothing" are quite useful in 
certain contexts; for example, determination of a grid for 
searching by more sophisticated methods. But we do not 
view the oversmoothed bandwidth as suitable for general 
use, because it is larger than hROT,which already suffers 
from being unacceptably large in that it often smooths out 
important features such as major modes. 

2.2.2 Least Squares Cross-Validation. This idea was 
first published by Bowman (1984) and Rudemo (1982). A 
simple motivation comes from representing the integrated 
squared error (ISE) as 

Note that the minimizer of the ISE is the same as the min- 
imizer of the first two terms of the final form. The first 
term is entirely known, and the second term can essentially 
be estimated by the method of moments. For technical rea- 
sons not discussed here, the second term is estimated by 
-2n-I Cy=lf , ( ~ , ) ,where f ,  is the "leave-one-out" kernel 
density estimator defined using the data with X, removed. 
The largest local minimizer (which gives better empirical 
performance than the global minimizer) is denoted by hcv. 
The function being minimized has fairly frequent local min- 
ima, as quantified by Hall and Marron (1991a). 

2.2.3 Biased Cross-Validation. The biased cross-
validation (BCV) method, proposed by Scott and Terrell 
(1987), attempts to directly minimize the AMISE. This re- 
quires estimation of the unknown R(f  " ) ,  which requires 
selecting another bandwidth. This difficulty is addressed by 
taking the bandwidth to be the dummy variable of mini- 
mization. The smallest local minimizer (which gives better 
empirical performance than the global minimizer) of 

is denoted by hBcv 

2.3 Second Generation Methods. 

None of the second generation bandwidth selection meth- 
ods have been carefully assessed in monographs other than 
that by Wand and Jones (1994). Many reasonably effective 
selectors have been proposed. Here we represent the col- 
lection by two different approaches. 

2.3.1 Solve-the-Equation Plug-In Approach. Many au- 
thors have written on plug in ideas, going back at least to 
Woodroofe (1970). The main idea is to plug an estimate of 
the unknown R ( f' I )  into the representation for hAMISE.A 
practical difficulty is the choice of the bandwidth of the pi- 

lot estimate. The "solve-the-equation" approach to this was 
proposed by Hall (1980) and Sheather (1983, 1986) and re- 
fined in a series of papers, with the version presented here 
developed by Sheather and Jones (1991). The idea is to take 
hsJpIto be the solution of the fixed-point equation 

In addition to the different form of the quantity being op- 
timized, a very important difference between this approach 
and BCV is that the pilot bandwidth here is written in the 
form g(h).This is because bandwidths that are appropri- 
ate for curve estimation are quite different from those that 
are right for estimation of R(f t ' ) .In fact when using the 
optimal bandwidth for estimation of f ,  the estimate f" is 
asymptotically inconsistent for f I f ,  and R(f^lf)is only barely 
consistent for R(f "), with much better performance avail- 
able from better bandwidths (see Hall and Marron 1987a 
and Jones and Sheather 1991). We believe this is the main 
reason that h~~~gives performance only in the "first gen- 
eration" class. 

A drawback to using a better bandwidth for estima- 
tion of R ( f f f )is that then this better bandwidth must be 
chosen. This is done by finding an analog of hAMIsEfor the 
problem of estimating R( f t ' )by ~ ( f : ) .In particular, and 
minimizer of the asymptotic mean squared error (AMSE) 
for this problem has the form 

for suitable functionals C1 and C2. An expression for "g 
in terms of h" comes from solving the representation of 
hAMIsEfor n and substituting to get 

for appropriate functionals C3 and Cq. The unknowns 
R(f I f )  and R(f "') are estimated by R(f") and ~ ( f " ' ) ,with 
bandwidths chosen by reference to a parametric family, as 
for hROT. 

Again, many variations have been proposed and studied. 
One of these is to try to reduce the influence of the normal 
parametric family even further by using pilot kernel esti- 
mates instead of the normal reference (with the higher-stage 
pilot bandwidths chosen by the normal reference method). 
The obvious hierarchy of such methods has been consid- 
ered by Park and Marron (1992), who showed that there 
are gains, in terms of asymptotic rate of convergence, up 
to the point described explicitly earlier, but no gains for 
higher-order versions. Simulations confirm this and show 
that higher-order pilot estimation entails some cost in terms 
of more variability. Jones, Marron and Sheather (1992) have 
discussed some other variations, and Chiu (1992) and En- 
gel, Herrmann, and Gasser (1994) have given other plug-in 
ideas that are very successful. 

2.3.2 Smoothed Bootstrap. One approach to this 
method is to consider the bandwidth that is a minimizer 
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of a smoothed bootstrap approximation to the MISE. Early 
versions of this were proposed by Faraway and Jhun (1990) 
and by Taylor (1989). An interesting feature of this ap- 
proach is that unlike most bootstrap applications, the MISE 
in the "bootstrap world can be calculated exactly, instead 
of requiring the usual simulation step, which makes it as 
computationally fast as other methods discussed here. In 
particular, following straightforward calculations (e.g., as 
in Manon 1992), the smoothed bootstrap estimate of the 
MISE (BMISE) has the form 

where * denotes convolution. This is seen as a simple and 
appealing estimate of the MISE by rewriting the latter in 
the form 

MISE(h) = n - l { h - l R ( ~ )+ R(Kh* f ) )+R(Kh * f - f ) .  

An attractive feature of this approach is that it does not 
work through the asymptotic AMISE but rather more di- 
rectly targets MISE itself. For choice of the pilot band- 
width g, a number of approaches have been proposed, most 
involving stages of pilot estimation and use of reference dis- 
tributions at some point, in the same spirit as in the previous 
sections (see Jones et al. 1992 for details and references). 

With some algebra (see Marron 1992), the smoothed 
bootstrap approach can be seen to be nearly equivalent 
to some other approaches that have different motivations. 
These include the "double smoothing" idea that goes back at 
least to Miiller (1985), and also "smoothed cross-validation" 

as proposed by Hall, Marron, and Park (1992). Successful 
variations of this idea were discussed by Chiu (1992). 

3. COMPARISONS 

In this section we compare the various bandwidth selectors 
in three different ways: through applying them to real data 
sets, through asymptotic analysis, and through simulation. 
Each of these has its obvious drawbacks and limitations, 
which is why it is imperative to study all three. 

3.1 Real Data Examples 

An important measure of the performance of any statis- 
tical method is how well it performs in practice. A num- 
ber of interesting examples were presented by Sheather 
(1992). The main lessons from these examples are reason- 
ably well represented in a new example presented here. Fig- 
ure 1 shows kernel density estimates constructed using sev- 
eral methods discussed earlier, for the variable "Lean Body 
Mass" in the Australian Institute of Sports data set in exer- 
cise 2.4 of Cook and Weisberg (1994). 

The density estimate using hRoT is somewhat over-
smoothed. There is some suggestion of bimodality, but it is 
weakened by this bandwidth being too large. This problem 
is common and is often much worse than this. The density 
estimate based on the bandwidth hLscv is severely under- 
smoothed. There are many spurious bumps, which make it 
hard to understand the structure of the data. The bandwidth 
~ B C Vis more oversmoothed than hROT,and the suggestion 
of bimodality is even weaker. The density estimate based 
on hsJPI shows a stronger indication of bimodal structure. 

An important issue is whether or not two modes are "re- 
ally present,'' or are they just artifacts of undersmoothing 

LBM LBM 

(a) (b) 

LBM LBM 

(c) (d) 

Figure 1. Gaussian Kernel Density Estimates Showing the Distribution of n = 202 Measurements of Lean Body Mass From the Australian 
Institute of Sport Data, Using Various Data-Driven Bandwidths: (a) hROT;(b) hLSCv; (c) hBcv; (d) hsJp,. The strongest suggestion of bimodality is 
given by hsJp,. 
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LBM 

Figure 2. Density Estimates, Using hsJp, (for Full Population), Based on Subpopulations of n = 102 Females (Dashed Line) and n = 100 Males 
(Dotted Line). The solid line represents the combined data set. This verifies that the bimodal structure in Figure 1(d) was an important feature of 
the data worth deeper investigation. 

by hSJPI .An answer is available in the present case by 
stratifying the population according to sex. Figure 2 shows 
kernel density estimation for the subpopulations (vertically 
scaled according to sample size, so the sum of the two is 
the density estimate for the whole population), using the 
same bandwidth. This makes it clear that the two modes 
are important features of the population. 

The examples of Jones et al. (1992) and Sheather (1992) 
similarly reveal that hRoT is too often seriously over- 
smoothed (missing important features), hLscv is too vari- 
able (especially in the direction of undersmoothing) and 
hence unreliable, and hBCValso has a tendency to over- 
smooth (and has some instability problems as well). These 
examples make it clear that first generation methods are 
not appropriate for widespread use. On the other hand, 
hsJpl is a consistent and stable performer that is ready 
for use as the default in software packages. (The smoothed 
bootstrap is not considered here because in the simulations 
that follow it had similar, but slightly worse, performance 
than hsJPI .) 

3.2 Asymptotic Analysis 

Asymptotic analysis, as the sample size n -. m, has 
proved to be a useful tool in understanding the performance 
of data-based bandwidth selectors. Often it is useful in dis- 
tinguishing between "first generation" and "second genera- 
tion" bandwidth selectors. This is not always true, and in- 
deed some selectors (e.g., those proposed in Hall, Sheather, 
Jones and Marron 199 1 and in Park, Kim, and Marron 1994) 
have excellent asymptotics but very poor performance for 
real data sets and in simulation studies. The problem ap- 
pears to be that for some methods, the asymptotics do not 
"come into effect" for reasonable sample sizes. This is why 

it is so important to look more deeply in comparing band- 
width selectors. 

Nonetheless, for many bandwidth selectors of both gener- 
ations, the asymptotic lessons do kick in at moderate sam- 
ple sizes and complement the lessons learned from other 
viewpoints quite well. In particular, for a data-driven band- 
width selector h, it is often useful to study the asymptotic 
behavior of the random variable 

(relative error is appropriate, because reasonable band- 
widths tend to zero as the sample size grows) under ap- 
propriate technical assumptions. This quantity is not of a 
priori interest for bandwidth selection, but as discussed, for 
example, by Park and Marron (1990), this measure of per- 
formance is the driving force behind more interesting mea- 
sures of error, such as 

Another alternative would be to study asymptotics based on 
the ISE = S ( f h  - f ) 2 ,  but as noted by Grund et al. (1994), 
there is no important practical difference between this and 
MISE in assessing the performance of bandwidth selectors. 

Following the classical notion of "consistency," one 
might first ask that data-driven bandwidth satisfies 

This is true for most bandwidth selectors of both genera- 
tions, with the important exception that it does not hold (in 
general) for h R o ~or for the oversmoothed bandwidths. 

The main distinction between first generation and sec- 
ond generation bandwidths is in the rate of convergence. 
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For most methods (see Jones et al. 1992 for references and 
detailed discussion), 

for some power p, in the sense that when multiplied by n p ,  

the ratio has a limiting Normal distribution. Most first gen- 
eration methods, including h~~~~and hBcv,suffer from the 
excruciatingly slow rate of p = A.To dramatize how slow 
this is, it is interesting to ask how large n should be to give 
n-'/1° = .1; note that this requires n = 10,000,000,000. 
On the other hand, second generation methods enjoy much 
faster rates of convergence. For example, for both hsJpI 
and analogous versions of the smoothed bootstrap, p = & 
x .36. 

Various other rates are available for various second gen- 
eration bandwidth selectors, with some as fast as p = &. 
This rate is known to be the best possible, and even the best 
constant is known as well. Interested readers are referred 
to work of Jones et al. (1992), but these points are not dis- 
cussed in detail here, because many of these asymptotics 
do not have an important practical effect in the simulations 
for reasonable sample sizes. 

3.3 Simulations 

A major simulation study has been performed, using the 
15 normal mixture densities of Marron and Wand (1992), 
for sample sizes n = 100,1,000. Again, to avoid confusing 
the main issues, we give here only a summary of the results, 
and the interested reader is referred to work of Jones et al. 
(1992). 

A concept important to our results is that some of the 
target densities are "easy to estimate," meaning that enough 
information is present in the data to recover most of the 
features of the target. Other densities in this set are "hard 
to estimate" in the sense that they contain features (e.g., 
thin spikes) that cannot be recovered from the sample sizes 
considered. 

The shape of the distribution of the random bandwidths 
was important in determining performance-in particular, 
the mean and the variance. The main results were as fol- 
lows. 

I .  The distribution for hRoT had a mean that was usually 
unacceptably large (because this method is not unlike the 
oversmoother, which is usually too large). But its variance 
was usually much smaller than for the other methods (not 
surprising, because its randomness comes only from the 
scale estimate). 

2. The distribution for hLscv was "centered correctly" 
(i.e., had a mean near hMIsE)but was unacceptably spread 
out (i.e., had too large a variance relative to other meth- 
ods). This spreading was particularly bad in the direction 
of undersmoothing. 

3. The distribution for hBcv is harder to characterize 
because of erratic performance. It generally suffers from 
being quite variable, although usually not so variable as 
h ~ s c v .For n = 100, its mean is consistently unacceptably 
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large. For n = 1,000, its mean behavior is less predictable, 
sometimes being way too large and sometimes being quite 
close to hMISE .  

4. The behavior of hsJ P I  can be viewed as a useful com- 
promise between that of h ~ o ~and hLscv. For easy-to- 
estimate densities, its distribution tends to be centered near 
hMISE,but it has much less spread than hLscv For harder- 
to-estimate densities, the hsJPIdistribution is centered at 
larger values but still much smaller than hROT.But despite 
this "bias," it is still usually superior to hLscv because its 
distribution is much less variable. 

5. The behavior of the smoothed bootstrap bandwidths 
was typically fairly close to that of hSJPI .A consistent dif- 
ference was that the smoothed bootstrap values tended to 
be consistently slightly bigger. This indicates that while the 
nonasymptotic goal implicit in the smoothed bootstrap ap- 
proach may be more appealing, better practical performance 
seems to come from attempting to estimate the AMISE than 
the MISE. 

These same general lessons agree with the simulation 
studies of Cao, Cuevas, and GonzAles-Mantiega (1994) and 
Park and Turlach (1992) although those studies consider 
only "easy-to-estimate" densities. 

The trade-off between "bias" and "variance" in the band- 
width distributions seems to be an intrinsic part of the 
performance of data-based bandwidth selectors. Less bias 
seems to entail more variance (hLscv is an extreme case 
of this), and at some cost in bias, much less variance can 
be obtained (hROTis the extreme here). We believe that 
a theory may be available to the effect that for a given 
amount of bias, a minimal variance is possible. Most of the 
methods discussed here are likely to be close to optimal in 
their ranges (and a number of methods not discussed here 
are clearly not). What seems to make the second genera- 
tion bandwidth selectors so effective is that they provide a 
sensible trade off of this bias and variance. 

[Received June 1992. Revised March 1995.1 
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