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Non-parametric Function Fitting 
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SUMMARY 
In this note we consider the problem of fitting a general functional relation- 
ship between two variables. We require only that the function to be fitted 
is, in some sense, "smooth", and do not assume that it has a known 
mathematical form involving only a finite number of unknown parameters. 

Kej~~vords:	CURVE FITTING ; REGRESSION ; DENSITY FUNCTION ESTIMATION ; SMOOTHING 

WINDOWS ; MEAN-SQUARE ERRORS 

1. INTRODUCTION 
IN a recent paper Tischendorf and Chao (1970) discussed the problem of estimating 
the indefinite integral of an arbitrary function, given only observations on the function 
at a discrete set of points. This problem arose in connection with a method of 
estimating a phase spectrum, +(w), given m observations on the derivative, +'(w), at 
a discrete set of frequencies, w,, ..., w,. Here, the points (w,) are equally spaced, 
and since the frequency bandwidth may be assumed to be finite it is convenient to 
take the domain of the function + to be the interval (0,l). 

Let ri denote the observed value of +'(wi). The above authors note that a crude 
estimate of +(a)  is simply 

but they suggest that an improved estimate of 4(w) may be obtained by first construct- 
ing an estimate of +'(w) for all w in (0, l), using a suitable weighting scheme on the 
observations {ri) Specifically, they propose the estimate 

(corresponding to binomial weights) 
in which case 4(w) is then estimated by 

&w) = d*.I;$.(*) 

Thus, the problem reduces essentially to that of estimating a function (which may 
be assumed to be in some sense "smooth" but is otherwise quite arbitrary), given only 
observations at  a discrete set of points. The conventional approach to this problem 
via regression analysis assumes that the required function has a known mathematical 
form which involves only a finite number of unknown parameters. We now describe 
below an alternative approach which is "non-parametric" in the sense that it requires 
only that the function be "smoothH-in a sense to be made more precise in Section 6. 

iPresent address: Bell Telephone Laboratories, Holmdel, New Jersey, U.S.A. 
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2. STATEMENT PROBLEMOF THE GENERAL 
We now restate the problem in more general terms, and accordingly change the 

notation somewhat from that used in Section 1. 
Suppose that we are given m observations, y,, y,, ...,y,, which are described by 

the model, 

where the {xi} have known values, f (x) is an unknown function defined for 0 <x < 1 
and the (ci) are uncorrelated random variables with zero mean and constant variance 
of,i.e. 

Initially, we will assume further that the observations are taken at equally spaced 
intervals, so that 

xi+, -xi = 6, say, i = I, . . ., (m- 1). 

(Later, we remove this restriction.) We require estimates off (x) and F(x) = j$f(u) du, 
for all x E(0, 1). 

We may start by considering the simple "step-f~~nction" type estimate of f(x), 
namely, 

y,, O<x<xl ,  

J;(x)= Iyi, xi-,<x<xi, i = l ,  ...,(m-11, (2.2) 

y,, x ,<x< l .  

Alternatively, we may consider a "piece-wise linear" estimate obtained simply by 
joining the points (xi, yi) by straight lines, namely, 

Of course, neither &(x) norf,(x) would, in general be a satisfactory estimate off (x) 
since, for example, &(x) is discontinuous at x = xi, while f2(x) has a discontinuous 
derivative at x = xi (i = 1, ...,m). We note, however, that &(x) and f,(x) may be 
re-written in the forms : 
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where 

1, - l < x < O ,
W'l)(x) = 

0, otherwise 

and 

where 

W(~'(X)= 
0, otherwise. 

Equations (2.4) and (2.6) suggest that we may now consider a general class of 
estimates off (x), of the form, 

where, for each k, 

W,(x) = k-l Wo(x/k) (2.9) 

and Wo(x) is a general type of "weight function" defined for -so <x <so, and satisfying 

Wo(x)30, all x, 

j:m~o(x) dx = l and 

Note that the quantity k plays the role of a "bandwidth" parameter, i.e. by varying 
the value of k we may vary the "width" of the function Wk(x). Note further that 
both fl(x) and J',(x) are special cases of the general form (2.8) in which 

Wo(x) = W(l)(x) and k = 6, forf?,(x) 

and 

Wo(x) = W ( 2 ) ( ~ )  and k = 6, forf2(x). 

Thus, &(x) corresponds to the rectangular weight function given by (2.5), and f2(x) 
corresponds to the triangular weight function given by (2.7). In each case, the band- 
width of the weight function is exactly equal to the interval spacing of the points {xi}. 

Using (2.8) to estimate f(x), we may then estimate F(x) by 

3. ANALOGYWITH DENSITYFUNCTIONESTIMATION 
The use of weight functions of the form (2.9) is well known in the context of 

estimating both probability and spectral density functions (see, e.g. Parzen, 1961, 
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1962). There is, in fact, a superficial resemblance between the present problem and 
that of probability density function estimation which may be observed by writing 
the general estimate (2.8) in the form 

where g0(x) is the crude step-function estimate of F(x) analogous to (1.1). Specifically, 

(Note that, with equal spacing, 6 -nz-l.) Thus, we may regard,f(x) as a "smoothed" 
version of "{dfo(x)}/dx". However, we would point out that the coyection between 
the two problems is only superficial, and the sampling properties off (x) are certainly 
not the same as those of a probability density function estimate. (Recall, in particular, 
that the observations yi are not frequency counts.) 

4. APPROXIMATE OF f(x)MEANAND VARIANCE 
We now derive approximate expressions for the asymptotic mean and variance 

of f(x) as In (the number of observations)+x. The approach presented* here is 
heuristic, but illustrates the essential features of the sampling properties off (x). (A 
more rigorous derivation of these results is presented in Section 6.) 

We have, from (2.1) and (2.8), 

(recall that, with equal spacing, 6 -111-I i0 as nl iK )  

"s,k 
= )  f (x -k~)W~(u)dv  

" -(l-x)/k 

=f(x), by condition (a) on W,(x). 
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Also, from (2.8), 
m 

var {f(x)] = s2U: C W ~ ( X-xi) 
i=l 

-80:jo1 w:(x- y) dy, as 8+0, 

= O(8/k), since W:(v) dv <x by condition (b). (4.2) 

Thus, provided that, as m +a,8+0 and k +0 in such a way that (6/k) +0, then f (x) 
will be asymptotically unbiased and var {f (x)) +0. We may expect, therefore, that in 
this casef(x) will be a consistent estimate of f(x). 

Note that the condition 6 = O(k)(as m+co) implies that, for consistency, the 
"bandwidth" of the weight function Wk(x) must extend over more than one interval. 
If k = 6 then, essentially, the "smoothing effects" of Wk(x) covers only one interval 
andf(x) is no longer a consistent estimate off (x). 

Example 
Take 6 = m-l and choose k = m-", a < 1. Then, as m +a ,  6 +0, k +0, 6/k +0, 

so that 

var {f(x)} +0, as m +co. 

The above results show that as we decrease the value of k the bias off(x) decreases 
but the variance increases. Conversely, as we increase k the bias increases but the 
variance decreases. In practice, the "optimum" value of k will depend on which 
criterion we use to measure the overall precision off (x). For example, if we use the 
mean-square error criterion then, in principle, we could choose k so as to minimize 

This is similar to the problem of choosing the optimum bandwidth of a spectral 
window when estimating power spectra (see, e.g., Priestley, 1965), and presents the 
same difficulty, namely, that the magnitude of the bias term in the above expression 
depends on the "smoothness' 'of f(x) relative to Wk(x), and cannot be evaluated 
explicitly unless we have a priori information on the behaviour of the derivatives of 
f (x). More specifically, consider the case where f (x) is a polynomial of degree K (say), 
and Wo(x) is an even function of x whose moments up to order K are all finite. Then, 
expanding f (x- kv) in (4.1) we obtain, for small k, 
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Thus, we find from (4.2) to (4.4) that 

where 

and 

Minimizing (4.5) with respect to k gives 

and substituting (4.6) in (4.5) gives 

Equation (4.6) indicates that the optimum value of k is 0(6+), i.e. O(m-+),but the 
precise value of (4.6) depends, of course, on the value off "(x). 

In practice, one might possibly obtain a numerical value for k by replacing f "(x) 
in (4.6) by max,{f "(x)) (assumed >O)-in cases where this quantity is known, a 
priori. The reasoning underlying this approach is based on the observation that the 
magnitude of the bias term will be largest in the region where f (x )  has its "sharpest" 
peak. However, it may be noted that, in contrast with the case of density function 
estimation, the prior information required for the evaluation of the bias term cannot 
be expressed physically purely in terms of a "bandwidth" parameter. In the problem 
of density function estimation the variance term is proportional to  f2(x) and the 
natural criterion to minimize is the relative mean-square error. The corresponding 
quantity which then arises in evaluating the "bias" term is min,{f(x)/f 
latter quantity being related to the width of the narrowest peak in f (x)-see 
(1965). 

"(x)); this 
Priestley 

5. CHOICEOF WEIGHTFUNCTION 
As in the case of density function estimation the choice of Wo(x) is, to a large 

extent, arbitrary, and one may expect that the properties off(x) will depend more 
critically on the chosen value of the parameter k rather than on the mathematical 
form of Wo(x). In fact, the simple weight functions W(l)(x) and W(')(X) (as given by 
(2.5) and (2.7)) would be suitable choices for Wo(x). [The unsatisfactory nature of 
fl(x) and &x) is due to the fact that, for these estimates, k = 6.1 However, it is 
interesting to note that W(2)(x) corresponds to the convolution of W(l)(x) with 
itself, so that W(')(X) corresponds to the probability density function of the sum of 
two independent rectangular variables. We may now consider a third weight function, 
W(3 ) (~ )which corresponds to the probability density function of the sum of three 
independent rectangular variables, and so on. In the limit we are led to considering 
a Gaussian weight function of the form 
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A rough comparison of different weight functions may be made on the basis of 
the approximate expression for ~ $ , ~ ~ ( f ( x ) ) ,  We note that the as given by (4.7). 
dependence of the right-hand side of (4.7) on the form of the function Wo(x) arises 
only in terms of the product, (o,lm,). In Table I we tabulate the values of (ovlv) 

TABLE1 

Values of (ow I,) 

Rectangular Triangular Gaussian Quadratic 

for the rectangular, triangular and Gaussian weight functions (corresponding to 
W'l'(x), W@)(x) and W(")(x), respectively), and also for the quadratic weight function, 

(The rectangular weight function, W(l)(x), as defined by (2.5), is not of course, an 
even function, but can be replaced by 

1, - . i < x < + ,
W'l)(x) = 

0, otherwise, 

by a trivial modification toL(x).) 
Thus, it would appear that the quadratic weight function is to be preferred to, the 

Gaussian form, but it should be remembered that the expression (4.7) for M%,[ f(x)] 
is only an approximation, and was obtained by neglecting in particular, terms of 
o(k2) in expression (4.4) for the bias term. Previous studies of the density function 
estimation problem (Priestley, 1962; Bartlett, 1963) have indicated that, with the 
above approximation, the quadratic weight function produces the smallest relative 
mean-square error, and Table 1, while not conclusive, is certainly consistent with 
this assertion. However, perhaps the more important feature of the above calculations 
is the fact that there is relatively little variation between the values of (owlv) for the 
four weight functions considered. This would tend toA confirm that, as previously 
remarked, one would expect the sampling properties off (x) to depend more critically 
on the value of the parameter k rather than on the mathematical form of Wo(x). 

6. CONVERGENCEOF f (x) 
As noted in Section 4, one would expect f(x) to be a consistent estimate of f(x) 

provided f (x) satisfies certain "smoothness" conditions, and 6/k+ 0 as nz +a.We 
now state this result in a more precise form in the following theorem in which we 
remove the restriction that the {xi) are equally spaced over (0, I), and consider a 
slightly more general form of (2.8), namely, 
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(The proof of the theorem is straightforward and is omitted; details may be found in 
Priestley and Chao, 1971.) 

Theorem. Let f(x), Wo(x) satisfy Lipschitz conditions of orders a, 6,respectively. 
Let 6, = maxi(xi-xi-,) = O(m-l) and k = m-Y. If 

then the estimate 

converges to f (x), in probability, for all X E  (0,l). 
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