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SUMMARY 

Ways of obtaining approximate Bayes factors for generalised linear models are 
described, based on the Laplace method for integrals. We propose a new approximation 
which uses only the output of standard computer programs for estimating generalised 
linear models; this appears to be quite accurate. A reference set of proper priors is sug- 
gested, both to represent the situation where there is not much prior information, and to 
assess the sensitivity of the results to the prior distribution. The methods can be used 
when the dispersion parameter is unknown, when there is overdispersion, to compare link 
functions, and to compare error distributions and variance functions. The methods can 
be used to implement the Bayesian approach to accounting for model uncertainty. We 
describe an application to inference about relative risks in the presence of control factors 
where model uncertainty is large and important. Software to implement the methods is 
available at no cost from StatLib. 

So~izekey words: Bayesian model averaging; Laplace method; Logistic regression; Log-linear model; Odds ratio; 
Overdispersion; Reference prior; Relative risk. 

Model-building for generalised linear models involves choosing the independent vari- 
ables, the link function, and the variance function (McCullagh & Nelder, 1989). Each 
possible combination of choices defines a different model, so that the model-building 
process consists of comparing many competing models. Strategies for doing this are com- 
monly guided by a series of significance tests, often based on the approximate asymptotic 
distribution of the deviance. 

There are several problems with this. The sampling properties of the overall strategy, 
as distinct from those of the individual tests, are not well understood. The models being 
compared are often not nested. Power considerations are usually not taken into account 
when setting significance levels; indeed, the power characteristics of deviance-based tests 
are often unknown. Perhaps most important, any approach that selects a single model 
and then makes inference conditionally on that model ignores model uncertainty, which 
'can be a major part of overall uncertainty about quantities of interest. 

All of these difficulties can be avoided, at least in principle, if one adopts the Bayesian 
approach of calculating the posterior distribution of a quantity of interest as a weighted 
average of its posterior distributions under the individual models, weighted by the pos- 
terior model probabilities (Learner, 1978, Ch. 4). However, this solution has not yet been 
widely adopted in practice. This is in part because posterior probabilities for generalised 
linear models are, in general, unknown and are analytically intractable, although progress 



has been made in Bayesian estimation for these models, e.g. West (1985). The basic ideas 
of Bayes factors, posterior model probabilities and accounting for inodel uncertainty are 
briefly reviewed in 5 2.1. 

Here we propose an approximate solution based on the Laplace method for integrals. 
Tierney & Kadane (1986) showed that this yields fast and accurate approximations for 
posterior moments and marginal densities. In § 2.2 it is used to obtain a general approxi- 
mation for Bayes factors. A new approximation is proposed which seems very accurate 
and uses only the maximum likelihood estimator of the parameters, the deviance and the 
information matrix, and can therefore be directly calculated from the output of standard 
software for estimating generalised linear models. This reduces to previous approximations 
of Jeffreys (1961, Ch. 5), Chow (1981) and Schwarz (1978) as the degree of approximation 
decreases. The Laplace method has been used for approximating Bayes factors for general- 
ised linear models in the 1988 Technical Report 121 of the University of Washington 
Statistics Department, of which the present paper is a revised version and, in special cases, 
by Kass & Vaidyanathan (1992). 

In § 3, the new approximation introduced here is applied to generalised linear models. 
We propose a reference set of proper priors to represent the situation where there is little 
prior information, and the method is evaluated using several simple data sets. In # 4, the 
approach is extended to situations where the dispersion parameter is unknown or where 
there is overdispersion, and to the comparison of different link functions and of different 
error distributions and variance functions. In 5 5 we discuss an application where there is 
real model uncertainty and classical methods have problems. 

2. BAYESFACTORS AND MODEL UNCERTAINTY 

2.1. Basic ideas 
The Bayes factor Blo for model MI against another model Mo given data D is the ratio 

of posterior to prior odds, namely 

the ratio of the marginal likelihoods. In equation ( I ) ,  
r 

where 0, is the parameter of M,, which may be a vector, and pr(O, I M,) is its prior density 
(k = 0, 1). 

The Bayes factor is a summary of the evidence for M1 against Mo provided by the data. 
It can be useful to consider twice the logarithm of the Bayes factor, which is on the same 
scale as the familiar deviance and likelihood ratio test statistics. We use the rounded scale 
for interpreting Blo shown in Table 1, which is based on that of Jeffreys (1961), but is 

Table 1. Scale f o ~  interpreting the Bayes factor 

BIO 2 1% BIO Evidence for MI 

< 1  <O Negative (supports M,) 
1-3 0-2.2 Not worth more than a bare mention 

3-20 2.2-6 Positive 
20- 150 6-10 Strong 
>150 > 10 Very strong 
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more granular and slightly more conservative than his. We have found that on this latter 
scale Blo rarely crosses more than one boundary over a range of reasonable priors, while 
on Jeffreys's original scale it often crosses two boundaries, making interpretation harder. 

When more than two models are being considered, the Bayes factors yield posterior 
probabilities of all the models, as follows. Suppose that (K + 1) models, Mo, MI,  . . . , MK, 
are being considered. Each Ad,,. . . , MK is compared in turn with M,, yielding Bayes 
factors B,,, . . . , BKo. Then the posterior probability of M, is 

where a , = pr(M,)/pr(M,) is the prior odds for Mk against Mo ( k  = 0, . . . , K); here Boo = 

a, = 1. In the examples, we take all the prior odds to be equal to one, corresponding to 
prior information that is 'objective' or 'neutral' between competing models, e.g. Berger 
(1985, p. 151), but other prior information about the relative plausibility of competing 
models can easily be taken into account. 

The posterior model probabilities given by equation (3) lead directly to solutions of the 
prediction, decision-making and inference problems that take account of model uncer- 
tainty. The posterior distribution of a quantity of interest A, such as a structural parameter, 
a future observation or the utility of a course of action, is 

K 

~ ~ ( ~ 1 ~ ) =1~ ~ Mk)~r(MkID),( ~ l ~ > (4) 
k = 0 

where 

(Learner, 1978, p. 117). For a review of Bayes factors and accounting for model uncertainty, 
see Kass & Raftery (1995). 

2.2. Approximating Bayes factors with the Laplace method for integrals 
The Laplace method for integrals is based on a Taylor series expansion of the real- 

valued function f(u) of the p-dimensional vector u, and yields the approximation 

S ef(') du+(2z)~!~I exp { f (u*)),A I *  

where u* is the value of u at which f attains its maximum, and A is minus the inverse 
Hessian off evaluated at u*. When applied to equation (2) it yields 

where p, is the dimension of Q,,8, is the posterior mode of 0,, and Y, is minus the inverse 
Hessian of h(%,):=log {pr(D 1 0,', M,) pr(0, I M,)), evaluated at 0, = 8,. Arguments similar 
to those in the Appendix of Tierney & Kadane (1986) show that in regular statistical 
models the relative error in equation (6), and hence in the resulting approximation to 
Bl0, is O ( n l ) .  

One can approximate the marginal likelihood pr(D 1 M,) in any regular statistical model 
using equation (6). However, standard software, such as GLIM, does not usually produce 



the posterior mode 8, and the negative inverse Hessian Y,, but it does often calculate the 
maximum liltelihood estimator 8,, the deviance or the likelihood ratio test statistic, and 
the observed or expected Fisher information matrix, F,, or its inverse, I/,.Here we consider 
approximations based on equation (6) which use only these widely available quantities. 

Suppose that the prior distribution of 8, is such that E(0, I M,) = co, and var(0, I M,) = 

W,.Approximating 8, by a single Newton step starting from 8, and substituting the 
result into equation (6) yields the first approximation 

2 log Blo z x2 + (El -E,). (7) 

In equation (7), x2 = 2{11(81)- l0(8,)), where 1,(0,):=log {pr(D 1 0,, M,) is the log-likeli- 
hood; x2 is the standard likelihood-ratio test statistic when Mo is nested within MI. Also, 

where G, = W ,  l, ?L,(Ok):=log pr(0, I M,) is the log-prior density, and lb;(8,) is the p,-vector 
of derivatives of Iu,(O,) with respect to the elements of 0, (k  = 0, 1). 

This approximation is closer to the basic Laplace approximation (6) when F, is the 
observed than when it is the expected Fisher information, and so one would expect it also 
to be generally more accurate in this case; see also Efron & Hinkley (1978). Arguments 
similar to those of Kass & Vaidyanathan (1992) show that, when F, is the observed Fisher 
information, the relative error is O(nP1), while, when F, is the expected Fisher information, 
the relative error increases to O(nP3). When the prior is normal, equation (8) becomes 

E ~ = ~ o ~ ~ G ~ I- ( 8 k - ~ k ) T ~ k ( 8 k - ~ k ) - l ~ g ~ ~ k + ~ k ~ . (9)  

In equation (9), C, = G, {I-Hk(2-FkHk)Gk),where H, = (F, + G,)-l. A fuller justifi- 
cation of the approximations given by equations (7), (8) and (9) is given in the Appendix. 

A second approximation, simpler but usually less accurate, is obtained by assuming 
equality in the approximate relations 8, z 8, and Yk z F, l ,  so that 

2 log B,, z x2 + (ET -Eg), (10) 

where 

When the priors are normal, equation (11) becomes 

E: = -logI~,I - ( 8 k - c o k ) T ~ , ( 8 , - c o k ) + l o g ~ ~ k ~ .  (12) 

Equations ( lo)and (11) were derived by Jeffreys (1961,G 5.31) for the nested one-parameter 
case, and generalised by Chow (1981) to higher dimensions. While this approximation is 
not quite as good as that given by equations (7) and (S), we consider it here because it 
does perform relatively well and it has the advantage for analytic work that the contri- 
butions of the prior and the likelihood are in separate terms. 

In equation ( l l ) ,  each element of the matrix F, is O(N) where N is the total sample 
size; typically N is the sum of the counts in the Poisson case, the sum of the denominators 
in the binomial case, and the number of units in the normal case. Thus I FkI= O(NPk), so 
that log I F, I = p, log N + O(1). This yields the third approximation 

a result derived by Schwarz (1978) in another way. Here we use the notation a, z b, if 
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limn,, I a, - b, 1 =0, and a, -b, if lim,,, (a,/b,) = 1. Equation (13) is the simplest but 
also the least accurate approximation that we will consider; the error in equation (13) is 
O(1). However, practical experience suggests that this approximation performs surpris- 
ingly well given its asymptotic error, and Kass & Wasserman (1995) have suggested a 
theoretical reason for this. They have shown that, in comparing nested models when the 
amount of information in the prior is equal to that in one observation and the alternative 
hypothesis is 'close' to the null, then under certain conditions the error in equation (13) 
is only O(nP*). 

2.3. Evaluation in a simple case 
We first study the performance of the proposed approximations in a very simple case 

for which analytic results are available. Suppose that yi -N(0, 1) independently, and we 
wish to compare the models M,: O = 0 and M, : 0 + 0, with prior distribution 
(0 I MI)-N(0, d2), based on data D = (y,, . . . ,y,). Exact and approximate Bayes factors 
and their errors are shown in Table 2. Numerical results are given in University of 
Washington Statistics Department Technical Report 255, available at the URL 
http://www.stat.washington.edu/tech.reports. 


The first approximation is very good and the second approximation is also good but 
somewhat less so; both have errors that are O(nP1). The first approximation is generally 
better than the second unless It 1 is large, roughly It1 > (no2/2)3; in that case the evidence 
for M, is strong and evaluating it precisely does not matter so much. 

The third approximation is much worse than the other two, with its error of O(1). It 
is best for individual data sets when 4 is close to j, or on average when 4 is close to 1, 
as the result of Kass & Wasserman (1995) would lead us to expect. It quickly gets worse 
as 4 increases, and when 4 = 5 it is poor. However, in only about one-tenth of the numerical 
examples did the third approximation lead to a qualitative change in the evidence when 
this is assessed on the granular positive-strong-decisive scale. Thus, while crude, the third 
approximation is not grossly misleading and may be used with caution as a rough guide 
in this example. 

3.1. Cornparing sets of covariates 
Suppose that yi is a dependent variable, and that xi =(xi,, . . . ,xi,) is a corresponding 

vector of independent variables, for i = 1, . . . ,n. The model M, is defined by specify- 
ing pr(yi 1 xi,P) with E(yi1 xi)=pi, var(yi 1 xi)= 02v(pi), and g(pi)= xiP, where P = 

(PI , .. . ,flp)T; here g is the link function. The n x p matrix with elements xij is denoted 
by X, and it is assumed that xi, = 1 (i = 1, .  . . ,n). We assume that g2 is known; the case 
where g2 is unknown is considered in 5 4. 

Table 2. Exact and approximate Bayes factors in the sir?zple Norr?zal exar?zple 

Approximation Equations 2 log BIO Error 

Exact t"1 + ( n d 2 ) ' }' - log(1 + nd2) 0 

First (7 ) ,(9)  t2{1- (nd2+ 2)(nd2+ I)-'} - log(1 + nd2) -j/(nd4) + O ( n 2 )  

Second ( lo ) ,  (12) t2{l - (114~))-')- log(nd2) -j2/(12b4) + ( 1 1 4 ~ ) '+ O ( n 2 )  

Third (13) t2- log n y2/d2+ 1og(d2)+ O(12-') 


t =1237 and Error =Approximation -Exact value of 2 log Blo. 

http://www.stat.washington.edu/tech.reports


The null model, M,, is defined by setting Pj =0 ( j  = 2, . . . ,p). The likelihoods for M, 
and M, can be written down explicitly, and so, once the prior has been fully specified, the 
approximation (6) can be computed. However, this approximation is not easy to compute 
for generalised linear models using readily available software. 

By contrast, the other approximations are analytic noniterative functions of the maxi- 
mum likelihood estimator, the deviance and the Fisher information matrix, and so can 
be calculated directly from GLIM output or equivalent. If D V ,  is the deviance for M,, 
then X2 = ( D V ~-D V ~ ) / G ~ .The expected Fisher information matrix is F, = oP2XTWX, 
where W = diag{w,, . . . ,?,,>,and =g'(/ii1))2v(fij1))(McCullagh & Welder, 1989). Here 
/i j l )  =g-l(xij i l)) ,  where P(') is the maximum likelihood estimator of Is' conditional on M,. 
Similarly, Fo = where PI0)= being the maximum likeli- ~ - ~ n g ' ( / i j ~ ) ) ~ v ( / i j ~ ) ) ,  g- '(j(O)), 1'0) 
hood estimator of P, conditional on Mo. The observed and expected Fisher information 
matrices are equal when g is the canonical link function, and so the approximations are 
more accurate in this case. These values of x2, J(o), j( l) ,  Fo and Fl can be substituted 
directly into the approximations in 5 2.2. These approxjmations were applied to several 
simple examples in Technical Report 255 mentioned in 5 2.3, and found to be of good 
quality. 

3.2. Choice of prior form 
Here we consider the situation where there is little prior information, and suggest a 

reasonable set of prior distributions for this situation. 
Consider first the case g(p) = p and v(p) = 1, where the variables have been standardised 

to have mean 0 and variance 1. Denote the corresponding parameters by y = (y,, . . . ,y,), 
where y, is the intercept. Assume that the prior distribution of (y liWl) is normal; in fact 
the results depend rather little on the precise functional form. Also assume that (.I,, . . . ,y,) 
are independent a priori; this corresponds to the situation where the individual variables 
are of interest in their own right, which is often implicit in the testing situation. We further 
assume that the prior is objective for the testing situation in the sense of Berger & Sellke 
(1987), that is, symmetric about the null value of y, namely (.I,, 0, . . . ,O)T, and nonincreas- 
ing as one moves away from the null value. These assumptions are further discussed in 5 6. 

These assumptions lead to the prior (.J I M,) -N(v, U), where v = (vl, 0, . . . , 0 )  and U = 
diag {$', 42,. . . ,4,).The prior for y under M, is just the conditional prior distribution 
of y under M, given that y, = . . . = y, =0, namely (yl I M,) -N(v,, tj2). 

To turn this into a prior on the original parameters P, note that P = v + Qy, where 
v = (y, 0, . . . ,O)T and 

where Zj is the sample mean of xj, sj2 is the sample variance of xj, and si  is the sample 
variance of y. Thus 

(PI MI)-N(v + v, QUQT). (15) 

The prior distribution under M ,  is again the conditional distribution given that 
p2= . . . =j, =0, namely (PI I Mo)-N(vl +y, $,s;). 
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This is extended to generalised linear models with other link and variance functions by 
noting that then estimation is equivalent to weighted least squares with the adjusted 
dependent variable zi =g(&)+ (yi-Pi)gl(fii) and weights wi (McCullagh & Nelder, 1989, 
p. 40). The same reasoning leads us again to the prior (15), but with y replaced by z and 
all the summary statistics weighted. Thus, in equation (15), v = (z;0, . . . ,O)T, where 
3= Cwizi/C \vi, while, in equation (14), 

When several models are considered, it is desirable that the priors be consistent with 
each other in the sense that if M2 is defined by setting restrictions p ( j )  = 0 on the param- 
eters of M,, then p r ( j  I MI)=p r ( j I M,, p ( j )  =0). A reasonable way to ensure this is to 
obtain a prior for the largest model as above, and then derive the priors for other models 
by conditioning on the constraints that define them. Suppose that the prior (15) corre- 
sponds to the largest model M, and that M, is defined by setting several of the jj in M, 
to zero. Then ( j (M, )  -N(vrkl+ vrkl, Q[klU[klQrklT), where the superscript [k] indicates that 
elements of vectors and rows of columns of matrices corresponding to parameters of M, 
that are zero in M, have been removed. 

3.3. Choice of prior parameters 
The prior distribution (15) has three user-specified parameters, v,, $ and 4. We now 

co~lsider what values of these parameters would reasonably represent the situation where 
there is little prior information. 

The approximation given by equations (10) and (11) can be written 

This has the advantage that the prior distribution appears only in the last factor, which 
is the ratio of prior ordinates at the maximum likelihood estimator. It shows that what 
count are the prior ordinates where the likelihood is large rather than the prior probabilit- 
ies of particular sets. 

For simplicity, we couch the discussion in terms of the canonical situation of 5 3.2 where 
g(p)= p, v(p) = 1, the variables have been normalised to have mean 0 and variance 1, and 
M, involves a single independent variable. Then 

since /3, = 0 under both models. Thus to this level of approximation, v, and $ have no 
effect on B,,, and numerical experiments, not reported here, indicate the exact Bayes 
factor to be very insensitive, although not completely so, to the precise values of v1 and 
I). It is enough to fix v1 and I) so that the prior for j, is well spread out relative to the 
likelihood, but in the right general range, and here we take v1 =0 and $ = 1. There seems 
to be little need to consider a range of values of v, and $. 

Consider now the choice of 4. By the Cauchy-Schwarz inequality, 1/3,l < 1, and so as 
a first desideratum we would like 4 to be such that R P O ~ ~ ( ~ ;  j2)is as close as possible 
to 1 over the range of possible values of I,, so as to minimise the effect of the prior on 
the Bayes factor. For all positive values of 4, R P O , ~ ( ~ ;  is minimised with respect to 1,12) 



when 1],1 = 1, at which point it is always less than 1. We therefore concentrate on ensuring 
that R P O ~ ~ ( ~ ;  1) is not too small. 

Now R P O ~ , ( ~ ;  maximised with respect to 4 when 4 = 1, at which point1) is 
R P O ~ , ( ~ ;= 0.24; that this value is less than 1 reflects the 'penalty' for lack of 1) (2ne)-3 = 

parsimony which the Bayesian procedure automatically imposes on MI.  To measure the 
extent to which a given 4 is worse than 4 = 1 in terms of this first desideratum, we define 
the quantity 

we will want to exclude values of 4 for which R(4) is too large. Since R(4) measures the 
maximum effect of the prior on B,, beyond what is unavoidable, we would like to have 
R(4)< c, where c represents little evidence. Here, in the spirit of Jeffreys (1961), we take 
c = 410  = 3.16, corresponding to evidence 'not worth more than a bare mention'; see 6 2.1. 
This criterion will exclude values of 4 both much larger than and much smaller than 1. 

The second desideratum relates to the comparison of nonnested models M, and M,. 
Consider the situation where MI and M, each has one independent variable. Then 

whereA%,= (PI,P2) and 8, = (PI,P,). AS before, the Cauchy-Schwarz inequality ensures 
that IP21< 1 and 11~1 p2,p3) isd 1, and we would like 4 to be such that R P O ~ ~ ( ( ~ ;  as 
close as possible to 1 over the range of possible values of and 1,. 

Now R P O ~ ~ ( ~ ;  0 and P, 1. Define I,, 1,)is farthest from 1 when 1,= = 

Once again we require S(4) < c. Note that S(4)J 1 as 4 -+ m and so this criterion will 
exclude small values of 4 but not large values. To see why, consider Fig. 1. There 4 = 0.25, 
j2= 0.1 and 1,= 0.9; both 1,and 8, are well determined by the data. However, the prior 
provides odds of about 600 in favour of MI,  even though the maximum likelihoods are 
the same and any moderately flat prior would lead to MI and M, being about equally 

Fig. 1. Comparison of nonnested models when 4 is too small: IM, 
is g ( ~ )= PI  + Pz+, 1% is g(1.1)= PI  + P3x3, and P, and P,  each 
has a N(0 , 4') prior distribution where d, = 0.25. The prior leads 

to IM, being greatly preferred; here B,, z 600. 



259 Approximate Bayes factors 

supported. Figure 1 therefore indicates that 4 is too small, and the requirement that 
S(4)< c excludes it automatically. 

The trade-off between the two criteria R(4) and S(4) is shown in Fig. 2. If a single value 
of 4 is to be chosen, one could argue for the value that balances the two desiderata exactly 
so that R(4) =S(4), namely 4 = e3 = 1.65, for which R(4) = S(4)= 1.20. However, it is 
usually better to report, or at least to consider, the results from a range of reasonable 
values of 4. Figure 2 shows that R(4) < c and S(4) < c for 0.67 <4 < 5.10 when c = 410. 
However, both R(4) and S(4) are increasing for 4 < 1 as 4 decreases, so that things get 
worse in terms of both criteria as 4 decreases from 1; values of 4 less than 1 therefore 
need not be considered. 

These arguments carry over to other link and variance functions. In what follows, we 
report results for 1 <4 <5, with 4 = 1.65 as a 'central' value. Typically, the log-Bayes 
factor changes rapidly as a function of 4 for 4 < 1, and then changes much more slowly 
over this preferred range of values of 4. 

4. EXTENSIONS 
4.1. Unknown dispersion parameter and overdispersion 

If g2 is unknown, an obvious solution is to proceed as before with g2 replaced by an 
estimate 8', as McCullagh & Nelder (1989) do for estimation. A reasonable estimate 
would be 82=P/(n -p), where P is Pearson's goodness-of-fit statistic for the most complex 
model considered, as advocated by McCullagh & Nelder (1989, pp. 91, 127). 

A more accurate and fully Bayesian approach would be to treat 0'
 as a parameter in 
the same way as the pj's by giving it a prior distribution and integrating it out. Approaches 
along these lines have been outlined for estimation, but not for testing or model compari- 
son, by Sweeting (1981), West (1985) and P. McCullagh in the 1990 University of Chicago 
Statistics Department Technical Report 284. In Poisson and binomial models where over- 
dispersion is modelled by a scale parameter, however, the likelihood may not be explicitly 
defined and the straightforward Bayesian approach would then not apply directly. 
Nevertheless, it may be possible to proceed by replacing the likelihood by a quasi-
likelihood function (McCullagh, 1983; McCullagh & Nelder, 1989, Ch. 9) in § 3. 

Fig. 2. R ( 4 ) and S(4)as functions of 4. The solid horizontal lines 
are at 1, which is the greatest lower bound for both R ( 4 )  and 
S(d) , and at c = 410 =3.16, taken as the largest tolerable value 
of either R ( 4 ) or S(4) .The solid vertical lines show the adopted 

range of values of 4. 



4.2. Comparing link functions 
Suppose that we are comparing two models M ,  and M,, which have the same indepen- 

dent variable X and variance function v, but different link functions g, and g,. Then the 
parameters P(l)and /I(') under the two models are on different scales and so should have 
different prior distributions. Thus, for given values of v,, 51/ and 4, we calculate 2 log Blo 
and 2 log B,, as before, but with different priors obtained separately for each link 
function as in 5 3.2. We then compare M1 and M, using the relation 2 log B,, = 

2 log B,, -2 log B,,. This approach allows us to compare different link functions directly 
and thus seems complementary to exploratory methods such as those of Pregibon (1980). 

4.3. Comparing error distributions and variance functions 
Consider the comparison of two models, M, and M, which have the same independent 

variables X but different variance functions and/or different error distributions; they may 
also have different link functions. We can continue to use the same general framework 
because equation (6) still gives the marginal likelihood for each model, and Bayes factors 
and posterior model probabilities are then available from equations (1) and (3) as before. 

As in 8 4.2, the parameters P(') and /3(') of the two models are on different scales and 
so should have different prior distributions. The first step is to obtain the prior distribution 
of /I for each model, as in 8 3.2. We may then use the same approximations as before. 
Equation (7)  becomes 

2 log B,, % x$T + ( E ,-El). 

In equation (IS), 

where lrtis the maximal log-likelihood achievable with the link function and error distri- 
bution of model M, (k = 1,2); this will typically be the log-likelihood under the saturated 
model. In equation (19), 0;is the dispersion parameter for M,, which is either known or 
estimated as in 5 4.1. In equation (IS), E, is given as before by equation (8). The other 
approximations, (10) and (13), can be similarly modified for the comparison of variance 
functions and error distributions. 

5. 	APPLICATION:MODELUNCERTAINTY IN LOG-LINEAR MODELS AND INFERENCE 

ABOUT RELATIVE RISKS W I T H  CONTROL FACTORS 

The relative risk or odds ratio is a much used measure of association between a disease 
and a risk factor. There are often also control factors such as age which may be associated 
with the disease, the risk factor or both. One then has to decide whether to estimate a 
separate relative risk for each age group, a single but age-adjusted relative risk, a single 
non-age-adjusted relative risk, or a single relative risk equal to 1. These four options 
correspond to different statistical models which say respectively that the association of 
disease and risk factor varies by age group, in which case age is said to be a modifier 
(Schlesselman, 1982); that the association of disease and risk factor is the same for all age 
groups but that age is also a risk factor, in which case age is a confounder; that age is 
not a risk factor; and finally that the risk factor and the disease are independent. 

Table 3(a) shows the data from a case-control study of the relation between myorcardial 
infarction and recent oral contraceptive use (Shapiro et al., 1979). Each of the four models 



Approximate Bayes factors 

Table 3. 1976 women cross-classified by recent oral contraceptive 
use (C), myorcardial infarction (M),and age (years). Ctl indicates 

the control group. Source: Shapiro et al. (1979) 

(a) Data from case-control study 
Age Age Age Age Age 

25-29 30-34 35-39 40-44 45-49 
Ctl M Ctl M Ctl M Ctl M Ctl M 

C: No 224 2 390 12 330 33 362 65 301 93 
C: Yes 62 4 33 9 26 4 9 6 5 6 

(b) Standard GLIM analysis 

Model Definition Deviance d.f. 

1. No effect of C on M [MI [CAI 158.0 9 
2. No effect of age on M [CAI 152.8 8 
3. Age a confounder [CAI [MA] 6.5 4 
4. Age a modifier [MCAl 0.0 0 
5. Dichotomised age a modifier [MCAzI 1.8 3 

Standard Goodman notation is used to define the models (Bishop, Fienberg 
& Holland, 1975), so that, for example, [MC] means that the terms corre- 
sponding to the interaction between M and C are present in equation (20), 
as well as their lower-order relatives, in this case the main effects of M and 
C. Model 5 is defined by equation (21). 

corresponds to a particular log-linear model for the cell counts (Bishop, Fienberg & 
Holland, 1975, Ch. 2). The most complex model, in which age is a modifier, is 

where mijk is the expected number of women in contraceptive category i, infarction cate- 
gory j and age group k (i, j = 1,2; k = 1, . . . ,5).  

We use the CLIM parametrisation in which a term on the right-hand side of equa- 
tion (20) is zero if any of the subscripts in parentheses is l (Payne, 1986). This is a 
generalised linear model with Poisson error, variance function v(p) =p, link function 
g ( ~ )= log p and parameters Pl = P 2  = al(2),P3 = a2(2),P 4  = P5 = a3(3),P6 = a3(4), 
/I7= a3(5), /I8 = alzcz2),. . . , /Izo=a123(225).The matrix X is a 20 x 20 matrix of ones and 
zeros with rows corresponding to cells of the table and columns to parameters. We have 
x,, = 1 if the parameter p, appears in the expression (20) for cell r, and 0 otherwise. The 
relative risk for age group k is exp(al2(,,, + a123(22k))exp(P8+ P15+k).= 

The other models correspond to cumulatively setting a123(ijk) 0, =0 and= u ~ ~ ( ~ ~ )  

=0 in equation (20). Based on the data and its inherent plausibility, we also con- 
sider the model in which the relative risk is constant up to age 34 and again constant 
beyond age 35, so that 

in equation (20). 
A standard GLIM analysis is shown in Table 3(b). Models 3 and 5 seem to be the best, 

but choosing between them is not easy. The deviance difference is 4.7 on 1 degree of 
freedom, yielding an approximate P-value of 0.03. Using the standard 5% significance 
level, standard practice would be to reject the confounder model 3 in favour of the modifier 



model 5. However, with the large sample size of about 2000, it is often recommended that 
a more stringent significance level such as 0.01 be used; this would lead to a different 
conclusion, and to the adoption of the confounder model 3. 

One might hope that, with such a large sample size, two models between which the 
data do not clearly distinguish would give similar results about quantities of interest. 
However, that is not the case here. The estimated relative risk in the youngest age group 
is 4.0 under model 3, and 8.5 under model 5; the corresponding approximate 95% 
confidence intervals are r2.4, 6.51 and C3.7, 19.41. 

The present approach provides a way of taking account explicitly of this model uncer- 
tainty, which is important for the quantity of interest. With 4 = (1.0,1.65, 5.0) we have 
2 log B,, = (-2.0, -2.5, -4.4), so that the evidence is not strong; it slightly favours the 
confounder model 3 over the modifier model 5. Approximate combined posterior distri- 
butions of the relative risk in the youngest age group are shown in Fig. 3. The combined 
posterior distribution has a peak at the posterior mode under the confounder model, but 
inherits the much longer tail from the modifier model. The shape of the combined posterior 
distribution is fairly insensitive to the precise value of 4: see Fig. 3(b). 

Modifier 
Bayesian mixture 

0 5 10 15 20 

Relative risk 

(b) 

Relative risk 

Fig. 3. Posterior distributions of the relative risk for the youngest 
age group in the pilllheart attack data of Table 3: (a) for each of 
the 'confounder' and 'modifier' models, and for the Bayesian 
mixture, with 4 = 1.65; (b) from mixing over the models, for three 

values of 4. 

http:(1.0,1.65
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Table 4. Posterior quantiles of the relative risk of myor- 
cardial infarction associated with oral contraceptive use 
for the younger age group (25-34 years) under each model 
individually and with the Bayesian mixture, for different 

values of 4. 
Quantile 

4 0.025 0.5 0.975 

Confounder 1.65 2.4 4.0 6.5 
Dichotomised age a modifier 1.65 3.7 8.5 19.4 

Mixture 1.65 2.5 4.4 17.1 
Mixture 1 2.5 4.5 17.9 
Mixture 5 2.5 4.1 13.7 

Approximate posterior quantiles are shown in Table 4. A simple and conservative infor- 
mal way of taking account of model uncertainty in this situation might be to take the 
union of the two confidence intervals, but this is clearly too wide. Table 4 shows how the 
present approach produces intervals that are, in effect, shortened versions of the union of 
the two intervals, in a formally justified way. 

Schall & Zucchini (1990) analysed the same data set using the model selection method- 
ology of Linhart & Zucchini (1986). Like classical significance testing and the present 
Bayesian approach, their methodology did not clearly favour one of the confounder and 
modifier models over the other. They recommended that 

"it should be reported that two competing models exist (which itself may be interesting), 
and summary statistics like the estimated odds ratio for all competing models, not just 
the selected 'best' model, should be presented". 

The problem with this is that the user ends up with two different, and possibly conflicting, 
inferences and no clear guidance on what to do with them. The present approach provides 
just one inference which takes account of the uncertainty about model structure. 

6. DISCUSSION 
An accurate, easily implemented and computationally efficient way of calculating Bayes 

factors and accounting for model uncertainty in generalised linear models has been 
developed. An S-PLUS function called 'glib' to implement the methodology is available at 
no cost by electronic mail from StatLib. To obtain the software, send the message 'send 
glib from S' to statlibestat .cmu.edu. 

In the examples, we have used normal priors. The literature suggests that the exact 
prior form is not very important except in extreme cases (Berger, 1985, p. 151), and this 
is confirmed in the case of generalised linear models by numerical experiments not reported 
here in detail. This reflects the fact that the prior ordinates in the region where the 
likelihood is high are more important than the prior probabilities of sets. Thus, with the 
approach of 5 3, the tails of the prior density usually have little effect. 

In the examples, we have assumed the regression parameters P,, . . . ,P, to be indepen- 
dent a priori. The fact that setting some of them equal to zero is envisaged may indicate 
that the problem has been parametrised in such a way that the individual parameters 
have substantive meaning, in which case prior independence may be justified. The Bayes 
factors presented here using the priors given in 5 3.2 are invariant to scale transformations 

http:.cmu.edu


of the individual independent variables, but not to more general linear transformations. 
In numerical experiments we have found the overall results to be insensitive to such 
transformations in the examples studied here, but this is not guaranteed in general. 

The priors derived in 5 3.3 depend on the data and involve the values of both the 
dependent and independent variables. At first sight this seems to be in conflict with the 
idea of a prior. However, the aim has been to develop priors that resemble the carefully 
assessed priors of a person with relatively little prior information. It seems that any 
automatic procedure for doing this will involve the data, or at least, as here, the broad 
possible range of the variables, which is likely to be available in advance. The examples 
suggest that the aim has been achieved, yielding priors that are broadly on the right 
general scale for the problem, well spread out without being ridiculously so, and leading 
to conclusions that are relatively insensitive to the prior scale parameter, in a qualitative 
sense. The fact that they are slightly data-dependent seems not to be a disadvantage in 
any practical sense. Also, one fact which can be useful in summarising the evidence is that 
B,, is bounded above as a function of 4 and the bound can easily be calculated, as shown 
in the Technical Report 121 mentioned in 5 1. 

The use of Bayes factors when prior information is vague has been criticised on the 
basis of 'Bartlett's paradox', namely that B,, -0 as 4 + m, regardless of the data (Bartlett, 
1957; Gelfand, Dey & Chang, 1992). The arguments in 5 3.3 suggest that this is not a 
strong objection because 4 -+ cc is not a reasonable representation of vague prior infor- 
mation for Bayes factors. Rather, a set of proper priors is compatible with the idea of 
vague prior information, and the appropriate action is to report the range of conclusions 
resulting from this set. Since the upper bound on 4 for this set is of moderate size, Bartlett's 
paradox seems to have little practical relevance for generalised linear models. In the 
examples considered, the conclusions reached changed rather little over this set of priors. 
This suggests that, in the context of model comparison, the idea of a single 'noninformative9 
or 'reference' prior be replaced by that of a reference set of proper priors. 

Akaike (1983), summarising several earlier publications, wrote that model selection 
using the Akaike Information Criterion, AIC, is asymptotically equivalent to choosing the 
model with the highest posterior probability, based on the statement that 

This is true, however, only in the rather special situation where prior information increases 
as more data are acquired, at the same rate as the information in the likelihood. For the 
examples in this paper, the approximation (22) was poor. 

We have assumed that the number of models considered, (K + I) ,  is small enough that 
it is feasible to evaluate equation (4) directly. This is often not the case, however, as in 
regression with many candidate independent variables or in graphical models of multivari- 
ate structure (Whittaker, 1990), when the number of models can be extremely large. Two 
algorithmic approaches to evaluating equation (4) in such cases are as follows. One, 
known as M C ~ ,is to design a Markov chain Monte Carlo algorithm that moves through 
the entire model space, but not the parameter space, eventually sampling each model with 
a frequency proportional to its posterior probability (Madigan & York, 1995; Madigan 
et al., 1994). The other approach excludes from the sum in equation (4) models that are 
far less likely than the best model, as well as any model that contains effects for which 
there is no positive evidence, i.e. that has a clearly more likely model nested within it. The 
remaining models, which are typically few in number, are said to belong to 'Occam's 
window' (Madigan & Raftery, 1994). 
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APPENDIX 

Justzjication for the approximation (7) 


The Laplace approximation (6) implies that 


From now on we drop the model subscripts 0 and 1 for clarity. One step of Newton's method 
yields the approximation 

Now h(0) = l(0) + A(0) and so h"(8) % - (F  + G) (Berger, 1985, p. 224), and h'(8) = lt(8)+ ~ ( 8 )  
= ~ ' ( 8 ) .Thus equation (A2) becomes 

& e + ( F +  ~)-~/1 , ' (8) .  (A3 

Also, by Taylor's theorem, 

l ( ~ ) ,  l(e) + +(e- e)Tlft(e)(Q- e) 

using (A3) and the fact that l"(8) % -F; this is exact if F is observed Fisher information and 
approximate if F is expected Fisher information. Similarly, 

A(Q)% A(e) + nl(e) ' (~+ G)- lA'(8). (A5 

Further, 'I!z ( F  + G)-l (Berger, 1985, p. 224), and substituting this, (A4) and (A5) into (Al )  
yields (8). 

When the prior is normal, 0 -N ( w ,  W), then 

~ ' ( 0 )= -G(O -w). (A71 

Substituting (A6) and (A7) into (8) yields (9). 
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