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An Effective Bandwidth Selector for Local Least 
Squares Regression 

D. RUPPERT,S. J. SHEATHER,and M. I? WAND 

Local least squares kernel regression provides an appealing solution to the nonparametric regression, or "scatterplot smoothing," 
problem, as demonstrated by Fan, for example. The practical implementation of any scatterplot smoother is greatly enhanced by 
the availability of a reliable rule for automatic selection of the smoothing parameter. In this article we apply the ideas of plug-in 
bandwidth selection to develop strategies for choosing the smoothing parameter of local linear squares kernel estimators. Our 
results are applicable to odd-degree local polynomial fits and can be extended to other settings, such as derivative estimation and 
multiple nonparametric regression. An implementation in the important case of local linear fits with univariate predictors is shown 
to perform well in practice. A by-product of our work is the development of a class of nonparametric variance estimators, based 
on local least squares ideas, and plug-in rules for their implementation. 

KEY WORDS: 	 Boundary effects; Kernel estimator; Local polynomial fitting; Nonparametric regression; Pilot estimation; 
Variance estimation 

1. INTRODUCTION 

Local least squares kernel regression has recently gained 
widespread acceptance as an attractive method for non-
parametric estimation of the mean function from noisy re- 
gression data. The advantages of this approach include 
simplicity in terms of interpretability and mathematical 
analysis, ease of fast computation, and superior boundary 
behavior. (For recent contributions to the theory and com- 
putation of local least squares, kernel regression estimators 
see Fan 1992, 1993; Fan and Marron 1994; and Ruppert 
and Wand 1994.) 

As with any nonparametric regression procedure, an im- 
portant choice to be made is the amount of local averaging 
performed to obtain the regression estimate. For a kernel- 
type estimator, this is controlled by a parameter usually 
referred to as the bandwidth. When a single bandwidth is 
used for the entire range of the data, it is often called a 
global bandwidth. Bias considerations favor the choice of 
a relatively small bandwidth, whereas variance considera- 
tions favor the choice of a larger bandwidth. Pictorially, 
bandwidths that are too small produce estimates that are 
too wiggly, tending toward interpolation of the data, and 
bandwidths that are too large smooth out features in the 
true mean function. It is very useful for the analyst to have 
a data-driven bandwidth selector that estimates the correct 
amount of smoothing. 

The goal of this article is to develop a reliable global 
bandwidth selector rule for local least squares regression. 
In related kernel estimation settings, such as density estima- 
tion, there recently has been considerable research devoted 
to the bandwidth selection problem. One of the main find- 
ings of this research is that traditional smoothing parame- 
ter selection rules, such as those based on cross-validation, 
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exhibit very inferior asymptotic and practical performance 
(e.g. Hardle, Hall, and Marron 1988). On the other hand, 
"plug-in" bandwidth selection rules, which involve estima- 
tion of unknown functionals that appear in formulas for 
the asymptotically optimal bandwidth, have been shown to 
perform more reliably, both theoretically and in practice. 
(Recent references for global plug-in bandwidth selection 
are Chiu 1991, 1992; Gasser, Kneip, and Kohler 199 1; Hall, 
Sheather, Jones, and Marron 1991; Jones, Marron, and Park 
1991; Park and Marron 1990; Sheather 1992; and Sheather 
and Jones 1991 .) Fan and Gijbels (1995) recently proposed 
a bandwidth selector for local least squares regression that 
combines both plug-in and cross-validation notions. These 
authors have also developed another approach to the prob- 
lem based on an estimate of the average mean squared error 
(MSE) (Fan and Gijbels 1993). 

In this article we demonstrate how one can apply the 
plug-in ideas to obtain an effective bandwidth selector for 
local least squares kernel regression. We develop and com- 
pare three plug-in bandwidth selectors for local linear re- 
gression, each of which is an adaptation of an existing 
plug-in bandwidth selector for kernel density estimation. 
The most sophisticated of our proposals is an adaptation of 
the "solve-the-equation" rule of Sheather and Jones (1991), 
which has been seen to perform quite well in simulation 
studies (see, for example, Jones, Marron, and Sheather 1992 
and Park and Turlach 1992). The other two are simple di- 
rect plug-in rules based on zero and one functional esti- 
mation. Initial estimates for our plug-in procedures are a 
variant of the "blocking method" developed by Hardle and 
Marron (1993), with the number of blocks chosen by Mal- 
lows's C, (Mallows 1973). The simplest of our proposals 
is, therefore, a variant of the selectors of Hardle and Mar- 
ron (1993). Each of our proposals is seen to perform well 
in a small simulation study, especially the two more sophis- 
ticated rules. These two rules are also shown to have good 
theoretical properties and are simple to implement using 
fast-binning algorithms. 
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It is straightforward, at least in theory, to extend our ideas 
to more sophisticated settings, such as higher-degree poly- 
nomial fitting, derivative estimation, multiple nonparamet- 
ric regression, and heteroscedastic models, although there 
are still some important practical issues that need to be 
investigated carefully. Another direction in which our pro- 
posals can be extended is toward local bandwidth selection, 
where different bandwidths are used depending on loca- 
tion. Once again this extension is straightforward, at least 
in principle. Further discussion on the extension to het- 
eroscedastic models and local bandwidth selection is given 
in Section 6. 

A noteworthy by-product of this research is the develop- 
ment of a local least squares estimate of the variance of the 
errors under the assumption of homoscedasticity. For this 
project, the motivation comes from the fact that the vari- 
ance appears in the optimal bandwidth formulas. Nonethe- 
less, our proposal, which can be viewed as an extension 
of the variance estimator of Hall and Marron (1990), is of 
interest in its own right and worthy of further study. 

In Section 2 we present the relevant theory of local least 
squares kernel estimators, and in Section 3 give theory for 
the estimation of functionals that arise in the formula for 
the asymptotically optimal bandwidth. We present analo- 
gous theory for variance estimation in Section 4. We de- 
scribe plug-in bandwidth selectors that follow from the the- 
ory of these three sections are described in Section 5 and 
discuss their fast computation in Section 6. In Section 7 we 
describe the theoretical performance of our plug-in band- 
width selectors, and in Section 8 present the results of a 
simulation study. We give conclusions in Section 9. 

2. LOCAL LEAST SQUARES KERNEL REGRESSION 

Let (XI ,  Yl), . . . , (X,, Y,) be a set of independent and 
identically distributed random pairs where the x ' s  are 
scalar response variables and the Xi's are predictor vari- 
ables having common density f with support confined to a 
compact set S c R.We wish to estimate the conditional 
mean function m(x) = E ( Y  IX = x) at each x E S.We can 
also express this problem in terms of the model 

Yz = m(Xi) + V ( X ~ ) ' " ~ E ~ ,  i = I , .  . . ,n,  

where v(x) = var(Y1X = x) is finite and the E ~ ' Sare mu- 
tually independent and identically distributed random vari- 
ables having zero mean, unit variance, and finite fourth mo- 
ment. It is also assumed that the E ~ ' Sare independent of 
the Xi's. 

The local degree p least squares kernel estimator of m(x) 
is given by &(x; h, p) = b0,where 

and p = (Po,.. . , Dp)T. Here h > 0 is the bandwidth and 
the kernel K is a symmetric, compactly supported density. 
Standard weighted least squares theory leads to the explicit 

solution of (1) given by 

1 X1 - x . . . (XI - x)P 

where X,,, = 

1 x , - x  . . .  (X,-x)P 

Y = (Yl, . . . ,Y , ) ~ ,  and W,  = diag[K{(X1 - x)/h)/ 
h, . . . ,Kh{(X, - x)/h}/h]. Here and throughout, we let 
ej denote a column vector having 1 as its jth entry and all 
other entries equal to zero. The length of ej will be clear 
from the context. 

To derive an asymptotically optimal bandwidth, we re- 
quire an appropriate global loss criterion. The most con- 
venient one is the conditional weighted mean integrated 
squared error (MISE) of m(.; h, p),  given by 

MISE{m(.; h, p)IX1, . . . ,X,) 

= E [/{&(x; b) -m(x)I2f (x) d x x 1 , .  . . ,x,] . 

Useful notations for a function L are pI(L) 
= J U'L(U) du and R(L) = J L ( u ) ~du, assuming that the 
integrals converge. Also, J will be taken to mean integra- 
tion over the entire real line. It follows from theorem 4.1 
of Ruppert and Wand (1994) that for p odd, 

where Kp is a (p + 1)th-order kernel (defined in the next 
section). The case where p is even leads to a more compli- 
cated approximation for MISE{m(x; h, p)}, so we consider 
only the case where p is odd. Thus the MISE-optimal band- 
width has the asymptotic approximation 

Plug-in bandwidth strategies rely on replacing the unknown 
integrals in this approximation for h  ~ by estimators. ~1 ~ 
The main unknown in this expression is the regression func- 
tional J m(pf l)( x ) ~f (x) dx. The next section is devoted to 
the kernel estimation of functionals of this type. 

3. KERNEL ESTIMATION OF 
REGRESSION FUNCTIONALS 

In this section we investigate kernel estimation of regres- 
sion functionals of the form 

Q,, = Sm(') (x)rn(') (x) f (x) dx r,s 2 0, r +s even, 

because versions of such functionals appear in expressions 
for the optimal bandwidth for local least squares regression 
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(see Sec. 2). In addition, the optimal bandwidths for kernel 
estimation of regression functionals involve other regres- 
sion functionals, which motivates us to study estimation of 
0,, for general r and s. 

The natural kernel-type estimator of 0,, is 

where 

and W x  = diag[K{(X1- x) lg} lg , .. . ,K { ( X n- x)lg}lgl 
is based on the bandwidth g > 0.For simplicity, in this 
section we assume that p is an integer greater than r and s 
such that p - r and p - s are both odd. 

Let K,,,(u) = where N,r!{IM,,,(u) ~ l ~ N , } K ( u ) ,  is 
the (p + 1) x ( p  + 1) matrix having (i,j )  entry equal to 
Ju i+jP2K(u)du and M,,,(u) is the same as N,, except 
that the ( r  + 1)th row is replaced by (1, u ,  . . . ,up). The 
kernel K, is defined to be KO,,. Finally, let (L1* L 2 ) ( x )  
= J L1 ( u )  L2 ( x  -u )  du denote the convolution of two real- 
valued functions L1 and L2. Assuming that m has r + s 
continuous derivatives, and that g + 0 and ngr+"l + cc 
as n +m, we have 

and 

derivation of these results is given in the Appendix. 
We now restrict attention to the important special case 
= s = 2 and p = 3, because it gives rise to bandwidth 

selection rules for the local linear kernel estimator. For 
simplicity, we also focus on the case where the errors are 
homoscedastic, which corresponds to having v ( x )= a2 for 

Table 1. Kernel-Dependent Constants 

Kernel Epanechnikov Biweigh t Normal 

all x.  Also, for simplicity, we take S = [a,b] .  Finally, we 
assume that K is a kernel for which p4(K2,3)> 0.This con- 
dition is satisfied by virtually all kernels used in practice. 
Combining the foregoing bias and variance expressions, we 
obtain the conditional MSE approximation, 

The MSE-optimal bandwidth is found by minimizing the 
squared bias term to obtain 

where 

and 

The optimal bandwidth for estimation of 022is, therefore, 
of order nP1I7.The corresponding minimum MSE is of 
order nP5l7when 1924 < 0and n-4/7 when 024 > 0. 

4. LOCAL LEAST SQUARES VARIANCE ESTIMATION 

The other unknown in the optimal bandwidth formula (2) 
(under homoscedasticity) is the variance a2.There is 

a relatively extensive literature devoted to estimation of 
a2 in the homoscedastic nonparametric regression context. 
For local least squares kernel regression, a natural approach 
is to extend the variance estimator of Hall and Marron 
(1990), which is based on a zero-degree least squares fit, 
to the general pth degree setting. The motivation of such 
estimators comes from the fact that the residual sum of 
squares satisfies 

whenever m is a polynomial of degree less than or equal to 
p. Here u = n - 2 Ciwii + C Cij w : ~ ,where 
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Figure 1. Graphical Sflmmary of Simulation Results for Function 1 With n = loo.* (a) Kernel density estimates based on log(jl) - l0g(hAMlsE) 
values. Solid curve is for hROT, dashed curve is for hDpl, and dot-dashed curve is for hSTE (b)-(d) Regression estimates for (b) ROT (c) DPI, and 
(d) STE, based on bandwidth and sample near the median of the h's (solid curve), 10th percentile (dot-dashed curve), and 90th percentile (dashed 
curve). The dotted curve is the true regression function. 

and W, is based on the bandwidth X > 0.This leads to the where 
pth degree variance estimator, 

{(p + l ) ! }4R(Kpi,Kp- 2Kp) 1/(4p+5)  

2 ( p + l ) ~ p + l ( K , ) ~  I 
i=l If K ( z )= ( 2 ~ ) - ~ / ~ e - " ' / ~is the normal kernel, then it can 

This estimator is similar in nature to the local variance es- be shown that 

timator proposed by Fan and Gijbels (1993, 1995). 1 / 9  
Use of &;(A) in practice requires selection of A. To ob- C3(K)= 2 ~ 5$A)/G}(4  (i+ -

tain a rule for the choice of A, we appeal to results for the 
conditional MSE of 8;(X) when p is odd. Assume that m We believe that this is the first theoretical investigation 
has p continuous derivatives and that f is compactly sup- 	 into the properties of local polynomial variance estima- 
ported on [a,b]. Then, if X + 0 and nX -, m as n -, m, 	 tors, apart from the zero-degree results of Hall and Marron 
we have (1990). Those authors showed that &:(A) has certain min- 

imax optimality properties. We speculate that in light of 
this finding and the optimality results for local polynomial 
fitting derived by Fan (1992, 1993) for estimation of the 
mean, higher-degree versions of &;(A) can also be shown 

and 	 to possess optimality properties. Furthermore, preliminary 
investigations have lead us to believe that higher-degree ver- 
sions of 8;(X) have substantial practical potential. 

5. PLUG-IN BANDWIDTH SELECTION STRATEGIES 
The derivation of these results is outlined in the Appendix. 

In this article our main goal is to obtain a ready-to-use 
It follows that the asymptotically MSE (AMSE)-optimal 	

plug-in bandwidth selector for local linear kernel estima- 
choice of X is 

tion, under the assumption of homoscedastic errors. Ex-

~ A M S E= 4 ( K )[ 2 ] 
1/(4~+5) 

(9) 

tension to more complicated settings is possible using the 
a4(b- a )  theory of the previous three sections, but the practicalities 

e ~ + l , ~ + ~ n 2  are not addressed here. 
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Figure 2. Graphical Summary of simulation Results for Function 2 with n = 1 0 0 . ~  	 /Og(hAMISE)(a) Kernel density estimates based on /og(A) -
values. Solid curve is for ~ R ~ T ,dashed curve is for h~p l ,  and dot-dashed curve is for hsrE (b)-(d) Regression estimates for (b) R07; (c) DPl, and 
(d) STE, based on bandwidth and sample near the median of the h's (solid curve), 10th percentile (dot-dashed curve), and 90th percentile (dashed 
curve). The dotted curve is the true regression function. 

For the local linear kernel estimator, the MISE-optimal degree polynomial that admits nonzero estimates of 024. 
bandwidth is asymptotic to 	 But this proved to be inadequate for regression functions 

having many oscillations so, following Hirdle and Marron 
(1993), we instead partitioned the range of the X data into 
N blocks and fit a quartic for each block. The partition 
can be formed by either dividing the range into equally- 

where C1 ( K )  = 	 whereas the MSE- [ R ( K ) / ~ ~ ( K ) ~ ] ~ / ~ ,  sized blocks or by dividing the data into equal-sized sub- 
optimal bandwidth for estimation of OZ2 is asymptotic to samples. The second option, which we use in our simula- 

tions, has the advantage of adapting better to nonuniform 
designs and decreasing the chance of overfitting. Let N be 
the number of subsamples and let X j  denote the jth sub- 

There are a number of ways for using the h A M 1 s ~and sample of the ordered Xi's. If N divides n and t = n / N ,  
~ A M S Eexpressions to derive bandwidth selection strategies. then X j  = { X ( ( j - l ) t + l ) ,. . . ,X ( j t ) } .(If N does not divide 
The simplest is that where the 622 in h A M 1 s E  is simply re- n, then allocations to subsamples need to be slightly ad- 
placed by a "rule-of-thumb" estimate of m, such as one justed.) Let &,"(z) be the least squares quartic fit obtained 
based on a parametric fit. Such a rule would work rea- from data having X i  values in X j .  For max(r,s) 5 4, the 
sonably well when the true regression function is close "blocked quartic estimator" for 0,, is 
to the parametric fit, but it has no consistency properties 
and can perform poorly away from the parametric model. 
More sophisticated selectors with good consistency prop- 
erties can be obtained by replacing OZ2 with the kernel es- 
timator e22(g) .Of course, this leads to a new bandwidth 
selection problem, because the optimal bandwidth ~ A M S E  

Similarly, the blocked quartic estimator for u 2 is 

depends on 024. This functional could also be estimated by n N 

another kernel estimation step and this process continued 8 $ ( ~ )= (n- 5 ~ ) - '  C {Y, lii,Q ( ~ , ) } 2 1 { ~ , ~ ~ , ~ . 
)-I -
indefinitely, but at some stage a rule-of-thumb estimate of i=l j=1 
m will be needed. 

We experimented with several strategies for obtaining an These estimators require a rule for choosing N .  We found 
initial estimate of m. Our first suggestion was using an or- that Mallows's C, (Mallows 1973) was a reasonable solu- 
dinary least squares quartic fit, because this is the lowest- tion to this problem. For blocked quartic fits, this involves 
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Figure 3. Graphical Summary of Simulation Results for Function 3 With n = (a) Kernel density estimates based on log(h) - log(hAMISE) 
values. Solid curve is for hROr,dashed curve is for hDPI,and dot-dashed curve is for hSTE.(b,&(d) Regression estimates for (b) R07; (c) DPI, and 
(d) STE, based on bandwidth and sample near the median of the h's (solid curve), 10thpercentile (dot-dashed curve), and 90th percentile (dashed 
curve). The dotted curve is the true regression function. 

choosing N from the set {1,2,. . . , N,,,} to minimize 

cp (N)= RSS(N)/{RSS(Nm,x)/(n- 5Nmax)) 
- ( n  - ION), 

where RSS(N) is the residual sum of squares based on a 
blocked quartic fit over N blocks. This leaves us with the 
choice of N,,,. To reduce the chance of overfitting, it is 
sensible to take N,,, to be of the form 

N,,, = max{min(Ln/20],N * ) ,1)  (10) 

for some positive integer N*.For regression functions with 
few features, the choice of N* is not very critical, and in 
this study we took N* = 5. But if one feels that there are 
many oscillations in the regression function, then higher 
values of N* could be considered. 

Though the combination of blocked quartic fits and Mal-
lows's C, offers one simple and effective way of obtaining 
an initial estimate for m, many other possibilities could be 
used instead. 

An optional adjustment to the kernel functional estimates 
is the truncation of data within 100a% of the boundaries, 
for some small value of a. The reason for this is that local 
polynomial kernel estimates of higher derivatives can be 
extremely variable near the boundary. This type of adjust-
ment was also recommended by Gasser et al. (1991). In 
the case where the Xi's are supported on [a,b] , this involves 
replacement of g,, ( g )  by 

Our experience has shown that taking a = .05,say, tends to 
dramatically decrease the variability of the resulting band-
width selector but can increase its bias when the true re-
gression curve has many features near the boundary. For 
our rule h ~ p ~ ,given in the following paragraph, we use 
a = .05. But for hSTE1we found that truncation led to se-
vere bias problems, so we took a = 0 for this rule. We 
are now in a position to give algorithms for three plug-in 
bandwidth selection strategies, in order of increasing level 
of sophistication: 

The rule-of-thumb bandwidth selector hROT 
1. Find %$(N)and 8 : ( ~ )based on a blocked quartic 

fit with N chosen by Mallows's C, and N,,, given 
by (10) with N* = 5. 

2. The selected bandwidth is 

The direct plug-in bandwidth selector hDpI 
1. Find 62( N )and 86 ( N )based on a blocked quartic 

fit with N chosen by Mallows's C, and N,,, given 
by (10) with N* = 5 .  

2. Estimate 022 using ig5(eAMsE),where 
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Figure 4. Graphical Summary of Simulation Results for Function 1 With n = 500.- (a) Kernel density estimates based on log(h) - log(hAMISE) 
values. Solid curve is for hROT,dashed curve is for hDPI,and dot-dashed curve is for hSTE(bk(d) Regression estimates for (b) R07; (c) DPl, and 
(d) STE, based on bandwidth and sample near the median of the h's (solid curve), 10thpercentile (dot-dashed curve), and 90th percentile (dashed 
curve). The dotted curve is the true regression function. 

and estimate e2using 6: ( iAMS~),where and C2(K)is taken to be one of the values in (6) 
according to the sign of 8 , & , ( ~ ) .  

[ 
8 $ ( ~ ) ( b- a) 

AAMSE = C3(K) 8,05 ( A I1/9 The first two bandwidth selectors, hROTand hDpI,are 
22 ~ A M S E ) ~ ~ ~  based on straightforward plug-in ideas, using zero and one 

kernel functional estimation stage. The third selector, hSTE,
3. The selected bandwidth is is analogous to the solve-the-equation bandwidth selectors 

I 115 proposed by Park and Marron (1990) and Sheather and 
Jones (1991) in kernel density estimation and is based on 
the observation that 

The solve-the-equation bandwidth selector hsTE 
1. Find 8% ( N ) ,8% ( N ) ,and 66 ( N )based on a blocked 

quartic fit with N chosen by Mallows's C, and 
N,,, given by (10) with N* = 5. 

2. Estimate a2 using 8?(iAMSE),where i A ~ S ~is de-
fined in Step 2 of jZDP1. The value of C 2 ( K )is taken 
to be one of the values in (6) according to the sign 
of 8 , & , ( ~ ) .  

3. The selected bandwidth is hSTE,the solution to the 
equation 

where 

Table 1 gives values of the kernel-dependent constants 
required for the foregoing rules for some common ker-
nels. Additional notation is c,'(K) = c , ' ( K ) c ~ ( K ) - ~ / ~  
and C,"(K) = c , " ( K ) c ~ ( K ) - ~ / ~ .The Epanechnikov and 
Biweight kernels are given by (3/4)(1- x2)  and (15116) 
x ( 1  - x2)2for 1x1 5 1 and zero otherwise. The normal 
kernel is the standard normal density. 

There are several directions in which the methodology 
presented in this section can be extended. Two worth fur-
ther discussion are heteroscedastic models and local band-
width selection. 

If the homoscedasticity assumption seems inappropriate, 
then the a2(b- a) appearing in the asymptotic formulas 
should be replaced by ~ : v ( x )dx. In practice we would 
need to estimate this integral, the most obvious estimate 
being Jab 0(2;A), where 0(.;A)  is the "method-of-moments" 
estimator for v based on local linear kernel estimators with 
bandwidth A. Theory for the optimal choice of A, analogous 
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Figure 5. Graphical Summary of Simulation Results for Function 2 With n = 500.- (a) Kernel density estimates based on log(h) - log(hAMISE) 
values. Solid curve is for hROT, dashed curve is for h~p , ,  and dot-dashed curve is for hSTE. (b)-(d) Regression estimates for (b) ROT, (c) DPI, and 
(d) STE, based on bandwidth and sample near the median of the h's (solid curve), 10th percentile (dot-dashed curve), and 90th percentile (dashed 
curve). The dotted curve is the true regression function. 

to (9), would need to be developed for this extension to be 
accomplished. This remains an open problem. 

Local bandwidth selection rules can be derived by 
straightforward extension of the plug-in ideas described ear- 
lier. The simplest way is to partition the X space and apply 
the methodology to each subset of the scatterplot. In many 
cases, simple quartic fits should suffice as initial estimates 
rather than blocked quartic fits. This procedure gives a 
bandwidth for each partition, but the change in bandwidth 
between partitions can lead to roughness of the regression 
estimate. To overcome this problem, Fan and Gijbels (1995) 
suggested presmoothing the "bandwidth step-function" to 
give a smoothly changing set of local bandwidths. But 
choice of the most appropriate partition is a new problem 
introduced by this extension. 

6. COMPUTATIONAL ISSUES 

The local linear kernel estimator admits the explicit ex- 
pression 

& ( x ;  h ) io (x ;  h )- Sl (x;  h ) i l ( x ;  h )  
m ( x ;  h ,  1) = 

i O ( x ;h)d2(x; h )  - h)2 ' 

where n 


and 

Let [a,b] be an interval containing each of the Xi.Fan 
and Marron (1994) described fast computation of m ( x ;  h ,  1) 
over an equally spaced grid a = g l  < 92 < . . . < g~ = b. 
The essential idea involves binning the ( X i ,  X) ' s  to obtain 
grid counts (c l ,  d l ) ,  . . . , ( c M ,  d M )  that represent the contri- 
butions of the data at each grid point. There are several 
strategies for obtaining grid counts. One that has particu- 
larly good properties is "linear binning" (see Hall and Wand 
1993), for which 

CL = WL(xi) and dl = WI(x,)Y,. 
i= 1 i=l 

Here W l ( x )= (1- 1x - g11/6)+ and 6 = ( g ~- g l ) / ( M  
- 1). The approximation to .Gk ( g j;h )  is 

where 6;') = The formula for the & ( g j ;  h )(16)k ~ ~ ( 1 6 ) .  
values is analogous. Binned computation of the ikand ik 
has the advantage of requiring only O ( M ) kernel evalua- 
tions, as well as being the discrete convolution of the count 
vectors with the r;lk).This allows very fast computation of 
m over the grid points. 

For kernel estimation of 822, a cubic polynomial fit is 
used to estimate mll.This estimate of ml' can be written 
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Figure 6. Graphical Spmmary of Simulation Results for Function 3 With n = 500.A (a) Kernel density estimates based on log(h) - log(hAMISE) 
values. Solid curve is for ROT, dashed curve is for h~p , ,  and dot-dashed curve is for hSTE (b)-(d) Regression estimates for (b) ROT, (c) DPI, and 
(d) STE, based on bandwidth and sample near the median of the h's (solid curve), 10th percentile (dot-dashed curve), and 90th percentile (dashed 
curve). The dotted curve is the true regression function. 

as the solution to a 4 x 4 linear system involving Sk's and 
ik9s. Let m2(g,;g , 3)  be the estimate of ml ' (g j )obtained 
from binned approximations S ( g j ;g )  and t " ( g j ; g). Then the 
appropriate binned estimate of 022is 

M 

j22(9, 111) = n-I zm2(g1;g , 312c1. 
1=1 

Similar ideas can be used for fast implementation of 8;(A).  
For example, the residual sum of squares can be approxi- 
mated by 

n M M z - 2 zm(gi;A, p)di + m(g1; ~ , p ) ~ c i ,  
i=l 1=1 1=1 

The accuracy of the binned approximation increases as 
M is increased. Following the advice of Fan and Marron 
(1994), we use M = 400 in our examples. Theoretical 
support for this choice was provided by work of Hall and 
Wand (1993). 

7. THEORETICAL PERFORMANCE 

The rule-of-thumb bandwidth selector is based on an 
inconsistent estimator of 022and thus has no consistency 
properties itself. On the other hand, the kernel estimation 
of in hDpIand hsTE implies that these selectors con- 

verge to the MISE-optimal bandwidth at a rate determined 
by the quality of the functional estimation. (The closeness 
of hAMIsEand hMIsEcan also have an effect.) 

To obtain the asymptotic behavior of the h D P I ,first note 
that hMIsE= + ~ p ( n - ~ / ~ ) .hAMISE This can be derived by a 
straightforward extension of the results of Fan (1992) and 
Ruppert and Wand (1994). Also, noting that 6 y ( I A M S E )  
-a2 ~ P ( n - l / ~ )= and the formal approximation 

o~~( g )- -~i: /~1 
5 Q , - , " / ~ { & ,(9)- 022), 

it follows that the relative error of hDpIis dominated by 

1 
( ~ D P I- ~ M I S E ) / ~ M I S E-- d~ l (022(9 )- 022).5 

Let g = for some constant G > 0. Then (5)entails 
that, conditional on X I , .. . ,Xn,  

n2I7(hDPI- ~ M I S E ) / ~ M I S E - P D ,  (1 1) 

where 

D = P ~ ( K z , ~ ) Q ~ ~ G ~  -+ a2(b a ) ~ ( ~ 2 , 3 ) G - ~  

A rigorous proof of (1 1) can be obtained using techniques 
similar to those used in the proof of theorem 1 of Park 
and Marron (1992). In terms of relative rate of conver-
gence to ~ M I S E ,(11) shows that h D p Iis an ~ p ( n - ~ / ~ )  
bandwidth selector for any choice of G.  Observe that our 
choice of G is an attempt to make D equal to zero, although 
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Table 2. Numerical Summary of Simulation Study for n = 100 

Function 1 	 2 3 

~ A M I S E  4.01e - 2 2.97e - 2 1.71e - 2 
ROT 3.89e - 2a(5.48e - 3b) 2.34e - 2(3.52e - 3) 1.34e - 2(1.30e - 3) 

3.96e - 2C 2.42e - 2 1.36e - 2 
~ D P I  4.33e - 2(6.29e - 3) 3.05e - 2(3.93e - 3) 1.87e - 2(1.85e - 3) 

4.36e - 2 3.10e - 2 1.88e - 2 

~ S T E  3.49e - 2(8.87e - 3) 2.57e - 2(6.38e - 3) 1.60e - 3(3.61 e - 3) 
3.56e - 2 2.66e - 2 1.66e - 2 

~SEROT 1.14e - l(1.53e - 1) 5.93e - 2(1.60e - 1) 6.05e - 1 (1 0.9) 
8.70e - 2 [2] 4.22e - 2 [2.5] 8.46e - 2 [3] 

~SEDPI 1.18e - l(3.12e - 1) 4.85e - 2(8.63e - 2) 1.67e - l(1.50) 
8.40e - 2 [ I ]  3.78e - 2 [ I ]  6.98e - 2 [ I ]  

~SESTE 1.52e - 1 (4.27e - 1) 7.52e - 2(4.06e - 1) 1.17e - l(0.25) 
9.83e - 2 [3] 4.27e - 2 [2.5] 7.68e - 2 [2] 

NOTE Average a (standard dev~at~onb ) , and med~an of selected bandwidths and ISE for each strategy The ISE rank~ngof each selector IS shown In square brackets 

this goal is not achieved asymptotically, because h ~ p 1  uses But we feel that our results are very useful for gauging the 
rule-of-thumb estimates of cr2 and 624. If 024 is negative practical performance of the, proposed bandwidth selectors. 
and is estimated by an op(n-'/I4) consistent estimator For our study, the standard deviation of the errors was 
(Park and Marron 1992; Sheather and Jones 1991), then set to be cr = (max m -min m). The Xi's were generated 
an ~ p ( n - ~ / l ~ )  rule can be ob- from the uniform distribution on [O, 11. Normal errors were rule results. An ~ p ( n - ' / ~ )  
tained by extending the h  b ~ ~ ~ ~ used throughout. The example regression functions were approximation to two terms 
and using higher-degree fits to estimate unknown regres- 
sion functionals, analogous to work of Hall et al. (1991), 
or by using bandwidth factorization as suggested by Jones 
et al. (1991). But simulation studies in the density estima- 
tion context have indicated that these adjustments do not 
markedly improve the practical performance of the selector, We used sample sizes n = 100 and n = 500. The number 

of replications in the simulation was 500. so our current preference is to use the simple ~ p ( n - ~ / ~ )  

version of hDPI. Similar arguments can be used to establish Figures 1-6 give a graphical summary of the results. In 


that hSTE is also an ~ ~ ( n - ~ / ~ )  Ob-	 each case the plot (a) shows kernel density estimates based 
bandwidth selector. 
serve that the ~ p ( n - ~ / ~ )  	 on log(h) - log(hAMISE)values for each rule. It would be relative rate is a big improvement 

more appropriate to replace ~ A M I S Eby ~ M I S E ,but this is on cross-validation selectors that have an 0p(n-'/ lo) rate 	
not easily computable in random design regression contexts 

(Hardle et al. 1988). 	 and depends on the particular realization of the design vari- 
ables. The remaining plots show regression estimatis based 
on h values that are near the loth, 50th, and 90th percentiles 

8. PRACTICAL PERFORMANCE of the h sample for each strategy-(b) ROT, (c) ~ D P I ,  
We conducted a simulation study to evaluate and com- and (d) hSTE. 

pare each of the bandwidth selectors described in Section Taking the sample sizes and noise levels into account, all 
5. Such a study is necessarily restrictive, because there three rules appear to perform very well for the test functions 
are many possibilities for the choice of regression function, considered in this study. But h R o ~  tends to undersmooth 
design density, error density, sample size, and noise level. somewhat for the more wiggly functions, due to its heavier 

Table 3. Numerical Summary of Simulation Study for n = 500 

Function 1 	 2 3 

~ A M I S E  2.91e - 2 2.15e - 2 1.24e - 2 
ROT 2.89e - 2a(1 .68e - 3b) 1.86e - 2(1.47e - 3) 1.06e - 2(3.61 e - 4) 

2.90e - 2C 1.88e - 2 1.06e - 2 
~ D P I  3.22e - 2(2.18e - 3) 2.30e - 2(1.18e - 3) 1.44e - 2(1.00e - 3) 

3.22e - 2 2.31e - 2 1.42e - 2 

~ S T E  2.75e - 2(4.01 e - 3) 2.12e - 2(2.63e - 3) 1.37e - 2(1.70e - 3) 
2.75e - 2 2.19e - 2 1.38e - 2 

~SEROT 2.40e - 2(9.50e - 3) 1 .O1 e - 2(2.52e - 3) 1.71e - 2(4.19e - 3) 
2.24 [2] 9.68e - 3 [3] 1.62e - 2 [3] 

~SEDPI 2.34e - 2(9.36e - 3) 9.60e - 3(2.60e - 3) 1.64e - 2(4.48e - 3) 
2.17 [ I ]  9.14e - 3 [ I ]  1.57e - 2 [2] 

~SESTE 2.53e - 2(9.95e - 3) 9.95e - 3(2.68e - 3) 1.66e - 2(6.91 e - 3) 
2.40 [3] 	 9.50e - 3 [2] 1.57e - 2 [ I ]  

NOTE:Averagea (standard deviation b) ,  and medianC of selected bandwidths and ISE for each strategy The ISE ranking of each selector is shown in square brackets. 
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dependence on the blocked quartic fits. We also observed 
a problem with hsTE in that it very occasionally selects a 
bandwidth that is much larger than the optimum. In our 
study this occurred twice in the 3,000 cases. 

Tables 2 and 3 summarize the results numerically. Av- 
erages, medians, and standard deviations of each of the 
three data-based bandwidths and their corresponding inte- 
grated squared errors (ISE) are given. Because of occa-
sional boundary variance problems, the ISE values were 
computed over [.I, .9]. 

To test for differences between the ISE's of the three 
bandwidth selectors, realizations of ISEROT, ISEDPI, and 
ISEsTE were retained for each sample from the three 
curves. Paired Wilcoxon tests were performed to deter- 
mine whether the median ISE's were significantly different. 
Bandwidth selectors shared the same ISE ranking when the 
paired Wilcoxon test showed no difference at the (5/3)% 
level. Otherwise, separate rankings were assigned with "1" 
signifying the best performer and "3" the worst. Overall, 
hDPI performed best, ranking first in all settings but one. 

9. CONCLUSION 

We have proposed three plug-in bandwidth selection 
strategies for local linear regression, by adapting ideas 
used in kernel density estimation. Our comparison through 
Monte Carlo suggests that ADPI and LSTE perform very 
well in practice-although a more comprehensive simula- 
tion study would be required to confirm this and to compare 

which immediately leads to (3). 
For the conditional variance, note that 

(A.1) 

it with other proposals. Moreover, the fast and simple hRoT 
seems to perform adequately for a wide range of situations. 
The good performance of LDPI is particularly appealing, be- 
cause it is based on very simple ideas; is relatively straight- 
forward to implement, requiring no minimization or root- 
finding; and has good, well-understood theoretical proper- 
ties. On the other hand, hSTE seems to perform about as 
well as hDPI, but has the extra complication of requiring a 
root-finding step. We speculate that the improved perfor- 
mance of solve-the-equation approaches over direct plug-in 
approaches in density estimation settings is due to the in- 
adequacy of the normal scale initial estimate, which does 
not apply here. On balance, we thus recommend LDPI as an 
effective bandwidth selector for local linear regression and 
anticipate that its analogs in more complex settings, such 
as local bandwidth choice, higher-degree fitting, derivative 
estimation and multivariate designs, will also prove effec- 
tive. 

APPENDIX: DERIVATION OF CONDITIONAL 

MEAN SQUARED ERROR RESULTS 


Derivation of (3) and (4) 

To keep the notation less cumbersome, we suppress the p in 
X,,,. Let M = [m(Xl),. . . ,m(xn)IT and V = diag{v(Xl), 
. . . , v(Xn)}. Noting that ~ ( ~ ~ ~ 1 x 1 , .. . ,X,) = MMT + V, 
and using the approximations of the proof of theorem 4.1 of Rup- 
pert and Wand (1994) and the law of large numbers, we have 

where 
n 

L ~ S ( X i ,  = x{r!e,T,l(x:, w ~ , x ~ , ) - ~ x $ ,xj) wx ,e i )  
Ic= 1 

x {~!ef+l  w x k e j )( x T X ~ W X , X X , ) - ~ X : ~  
and L,, (Xi, Xj) = [L:, (Xi, X,) + L:, (X, ,Xi)]/2. We intro- 
duce L,, because it is symmetric. L:, is not symmetric, but can 
be seen to be "asymptotically symmetric." 
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We seek an approximation to L:, ( X i ,  X j ) .  In the proof of 
theorem 4.2 of Ruppert and Wand (1994), it is shown that for 
p - r odd, 

T
r!eT+'(nP1x$, 2i g-T f ( X ~ ) - ' ~ ; + ~ N , ~ A - ' ,W X , X X , ) - '  

where N p  is the ( p + 1) x ( p + 1) matrix having (1,l') entry 
equal to Ju ~ + " - ~( ) du and A =K u diag(1, g, . . . , gp) .From this 
approximation and a cofactor argument analogous to that used in 
the proof of theorem 4.1 of Ruppert and Wand (1994), we obtain 

T

r!e,+ 1 (x;,wx,x x , ) - ' ~ ; ~ ~ x , e i  

-1 -r-1 
7% 9 - X k ) / g ) .f ( x k ) - ' ~ ~ , ~ { ( x i  

n n n n 

Let 

+ v ( ~ j ) m ( X i ) ~  

and T,, = KT,, * K,,,. Also, note that KT,,  and K,,, are either 
both symmetric or both skew-symmetric when r + s is even. 
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This leads to 

n 
-2 -r-5-2

L:,(x~, n C f ( ~ x ) - ~ ~ ~ , p { ( ~ ix k ) / g )xj) 2 g -
k= 1 

K * , P { ( ~ J- X k ) / g )  

- - 1  -7 -3-2
- n 9  1f ( z ) - ' ~ r , P { ( x i- z ) / g }  

x K*,p{(Xj- z ) / s )  dz. (A.2) 

From (A. 1) and the symmetry of L,, , we have 

The second term of (A.3) equals 

+ Lra ( X j  ,X i ) ]  

x var(YiYjJX1, .. . ,X,) = B1 + B2 + Bs ,  say. 

Using (A.2), B I  can be approximated by 
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By a similar argument, each of Bz and B3 can be approximated 
by the same quantity. 

Now we consider the fourth term of (A.3). Note that 

LT,(xi, x j ) L ~ s ( x i ,  x k )  

= [L:,(Xz ,  X j ) G 3  ( X i ,  X k )  

+ L f 3  ( X j ,  xi)L:,(Xi,  X k )  

The last step follows from Taylor expansion and the result 

This result can be easily derived by noting the moment properties 
of KT,, given by Ruppert and Wand (1994). Similar arguments 
can be used to show that the first and third terms of (A.3) lead 
to terms of lower order, so the stated result for the conditional 
variance of BT3( g ) follows immediately. 

Derivation of (7) and (8) 

Results (7) and (8) can be easily derived by extending the proof 
of Hall and Marron (1990) to the case of general odd p, using the 
approximations of Ruppert and Wand (1994). First, note that 

From Hall and Marron (1 990), E{bi(A) - u 2  IX1, . . . ,X n )  
= Y-' 6: andcy=l 
V ~ { ~ ~ ( A ) ~ X I ,. . . ,Xn}  

I n 

+ L f 3  ( X i ,  X j ) L f 3  ( X k ,  X i )  

+ L:, ( X j ,  Xi)LT3 ( X k ,  X i ) ] .  

Substituting this into the fourth term of (A.3), the fourth term 
can be written as C1 + C2 + C3 + C4, say. Each of Ci's can 
be approximated by the same quantity. We demonstrate this ap- 
proximation for C1. Observing that cov(Y,Y, ,Y , Y k  1x1,. . . ,X n )  
= v ( X i ) m ( X j ) m ( X k ) ,C1 is approximately 

where 
n 


and 

Arguments analogous to those used to prove (A.2) lead to the 
approximations 

and 

Thus, noting that Y z n and appealing to theorem 4.1 of Ruppert 
and Wand (1994), we obtain 
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Also, 

which leads to 

v a r { + i 1 ~ 1 , .  E n - ' u 4 v a r ( ~ ' ). . , X , )  

+ 2nP2A-l  ( b  - a ) u 4R(K, * Kp - 2 K p )  

[Received July 1993. Revised July 1994.1 
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