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SPLINE SMOOTHING: THE EQUIVALENT VARIABLE 

KERNEL METHOD 


University of Bath 

The spline smoothing approach to nonparametric regression and curve 
estimation is considered. I t  is shown that, in a certain sense, spline smoothing 
corresponds approximately to smoothing by a kernel method with bandwidth 
depending on the local density of design points. Some exact calculations 
demonstrate that the approximation is extremely close in practice. Consider- 
ation of kernel smoothing methods demonstrates that the way in which the 
effective local bandwidth behaves in spline smoothing has desirable properties. 
Finally, the main result of the paper is applied to the related topic of penalized 
maximum likelihood probability density estimates; a heuristic discussion 
shows that these estimates should adapt well in the tails of the distribution. 

1. Introduction. Consider the nonparametric regression problem of esti- 
mating a curve g given observations Yi =g(ti) + t i ,  i = 1, . . . ,n. Assume that the 
design points ti are known and not necessarily evenly spaced, and that the ti are 
random errors. The cubic spline estimator 2 of the regression curve is defined to 
be the minimizer over functions g of 

(1.1) J gn( t ) l  dt + n-l E%1 {Y,- g(t.)j2. 

The parameter X > 0 is a smoothing parameter which controls the trade-off 
between smoothness, as measured by J gn2, and goodness of fit to the data, as 
measured by the sum of squares of deviations between g(t,) and Yi. The larger 
the value of A, the more the data will be smoothed to produce the curve estimate. 
This form of the spline smoothing method is due to Schoenberg (1964) and 
Reinsch (1967) but the basic underlying idea, of penalizing a measure of goodness 
of fit by one of roughness, was described by Whittaker (1923). For more recent 
work and bibliography on cubic smoothing splines see, for example, De Boor 
(1978, Chapter 14), Craven and Wahba (1979), Rice and Rosenblatt (1983), and 
Silverman (1984b, 1985). These last two papers include discussion of some of the 
ramifications of the work developed below. 

It is well known (cf. equation (2.2) of Wahba, 1975) and easily shown from 
the quadratic nature of (1.1) that the spline smoother 2 is linear in the observa- 
tions Y,, in the sense that there exists a'weight function G(s, t )  such that 

(1.2) Z(S) = n-I E?='=lG(s, ti) Yi. 

The weight function G(s, t )  depends on the design points tl ,  . . . , t, and on the 
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899 SPLINES AND VARIABLE KERNELS 

smoothing parameter A, but these dependences will not be expressed explicitly. 
The main object of this paper is to investigate the form of G in order to establish 
connections between spline smoothing and kernel (or convolution or moving 
average) smoothing. These connections give insight into the behaviour of the 
spline smoother and also show that splines should provide good results whether 
or not the design points are uniformly spaced. For the special case of regularly 
spaced design points, connections between spline and kernel smoothing have 
been obtained by Cox (1983) and, under the additional assumption of periodicity, 
by Cogburn and Davies (1974). 

Our study of G will show that, under suitable conditions, the weight function 
will be approximately of a form corresponding to smoothing by a kernel function 
K with bandwidth varying according to the local density f of design points. The 
kernel K is given by 

A graph of K is given in Figure 1. The effective local bandwidth demonstrated 
below is ~ l ' ~ f ( t ) - ' ' ~  asymptotically; thus the smoothing spline's behaviour is 
intermediate between fixed kernel smoothing (no dependence on f )  and smooth- 
ing based on an  average of a fixed number of neighbouring values (effective local 
bandwidth proportional to l l f ) .  The desirability of this dependence on a low 
power of f  will be discussed in Section 3. 

The paper is organized as follows. In Section 2 the main theorem is stated and 
discussed. In addition, some graphs of actual weight functions are presented and 
compared with their asymptotic forms. These show that the kernel approximation 
of the weight function is excellent in practice. Section 3 contains some discussion 

FIG.1. The effectiue kernel K .  
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of variable bandwidth kernel smoothing methods and their relation to spline 
smoothers. The proof of the main theorem is given in Section 4. The approxi- 
mation of G(s, t )  by a kernel function deteriorates somewhat near the boundary 
of the design set, and a modification to correct for boundary effects is developed 
in Section 5 . The case where the data points are weighted is considered in Section 
6; the main theory of the paper easily generalizes to this case. Also in Section 6, 
the results are applied to give an approximation to the diagonal values of the 
influence matrix (or hat matrix) for spline regression. Finally, in Section 7 we 
discuss applications to the related subject of penalized maximum likelihood 
probability density estimation, and demonstrate heuristically that penalized 
maximum likelihood density estimators should adapt well in the tails of the 
distribution. 

It is the hope that this paper will achieve two main objects. First, the 
connections demonstrated should help statisticians gain intuition about the way 
that splines smooth data. Although the implicit definition of the smoothing spline 
as the solution of a minimization problem is appealing, there are occasions when 
an explicitly defined estimator is easier to understand fully. Second, the discus- 
sion shows that the spline smoother is an excellent choice for nonuniform design 
points. It provides a single stage procedure which adapts to the nonuniformity 
in a highly desirable way in balancing the amount of smoothing applied to 
different parts of the sample. 

2. The effective weight function: assumptions and results. It is con- 
venient first to establish some notation and to state the assumptions under which 
the main result will be proved. Suppose throughout that (a, b) is a fixed finite 
real interval. Let Fnbe a sequence of probability distribution functions with 
F,(a) = 0 and Fn(b) = 1, for all n. In the application to the spline smoothing 
problem, the function Fnwill be the empirical distribution function of the design 
points, given by 

(2.1) F, (s) = n-' x (number of tl, . . . , t, Is) .  

However it is convenient (see Sections 6 and 7) not to restrict attention to this 
case. 

Let H2[a, b] be the space of functions g on [a, b] for which g and g f  are 
absolutely continuous and Jb, g"(s)' ds < 03. For t in (a, b), define a functional 
Adg) by 

It can be shown that At has a unique minimizer in H2[a, b] provided the support 
of the probability measure defined by Fnhas more than one point. (See Lemma 
3 below for a proof of a slightly weaker existence result). Let gt be this minimizer, 
and set 

(2.3) G(s, t )  = g,(s) for all s and t in [a, b]. 

To see that the definition (2.3) accords with the implicit definition of G given 
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in (1.2) above, suppose that all the design points lie in (a, b) and that F, is 
defined as in (2.1). Then, by an easy calculation 

By definition (2.3), the minimizer of (2.4) is G( . ,  ti). However (2.4) is, up to a 
constant, the functional in (1.1) with Yi = n, Y, = 0 otherwise. Substituting into 
(1.2) shows that G as defined by (2.3) is indeed the required weight function. 
(The minimizer of (1.1) is the same whatever range of integration is taken in 
(1.1), provided this range is an interval containing all the design points; this is 
an easy consequence of the boundary conditions (see Reinsch, 1967) satisfied by 
smoothing splines.) 

The main assumptions of this paper are the following: 

(2.5) 	 There exists an absolutely continuous distribution function F on 
[a, b] such that F,, -,F uniformly as n + m. 

(2.6) 	 Setting f = F ' ,  

0 < infia,b]f5 ~up[a,b]f< a. 

(2.7) 	 The density f has bounded first derivative on [a, b]. 

(2.8) 	 Setting a (n )  = sup[,,b]I F, -F I, the smoothing parameter X depends 
on n in such a way that X -,0 and A-'I4a(n) + 0 as n + m. 

The last assumption in (2.8) ensures that the smoothing parameter does not tend 
to zero too rapidly. In order to explain and illuminate the assumptions in the 
spline smoothing context we consider two cases of obvious interest, though the 
applicability of the results is by no means restricted to these: 

(i) Design points "regularly distributed with density f "; i.e. 

In this case sup I F, - F I = lhn-', so that we require n4X + and X -,0 for 
(2.8) to hold. 

(ii) Design points randomly and independently distributed with density f. By 
Serfling (1980) Theorem 2.1.4b for example, we have sup 1 F, - FI = 
O(n-'/2(log log n)'l2) almost surely. Thus the assumptions will hold with 
probability 1if X + 0 and n2-'A -,m for some e > 0. 

The main theorem of the paper can now be stated. The idea is to blow up the 
scale of the s-axis near t and to renormalize to keep the integral of G( . ,  t )  
constant. Doing this in such a way as to obtain a nondegenerate limit displays 
the asymptotic form of the weight function. 

THEOREMA. Choose any fixed t such that a < t < b. Under assumptions 
(2.5)-(2.8), defining K as in (1.3) above, 

(2.9) X1l4f (t)-1/4G(t + t )  + K ( x ) / ~~ ' / ~ f ( t ) - ' / ~ x ,  ( t )  

as n + m, uniformly over all x for which t + X1/4f ( t ) - 1 / 4 ~  lies in [a, b]. 
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The uniformity over t of the convergence in (2.9) is discussed in Section 4 
below. Together with the remarks made there, Theorem A says that for large n 
and small A, and ti not too close to the boundary, the weight function correspond- 
ing to the observation a t  ti looks approximately like a kernel function K centered 
a t  t, with bandwidth X1I4f the explicit approximation is 

To obtain (2.10), set s = t + xh(t)  in (2.9). The reason for the quotient f ( t )  in 
(2.10) is discussed in Section 3 below. The proof of Theorem A will be given in 
Section 4. 

In order to illustrate how well the approximation (2.10) works out in practice, 
some explicit calculations were carried out. The density f was taken to be the 
normal density with mean lh and standard deviation 'A, truncated a t  k1.96 
standard deviations away from the mean. This gives a highly nonuniform density. 
A hundred design points ti were placed regularly with density f. The value 
X = was used for the smoothing parameter since this was found in other 
studies (to be reported elsewhere) to be a useful value for spline smoothing with 
these design points. The weight functions G(s, ti) for various values of i are 
shown in Figure 2 together with the approximation (2.10) in terms of K .  (Outside 
the range displayed, the curves are effectively zero within the range of the design 
points). It  can be seen that the closeness of the approximation is remarkable for 
points ti away from the boundary. Even for i = 99(ti = 0.94) the approximation 

FIG. 2. Comparison between the exact weight function (solid curves) and its asymptotic form (dashed 
curves), 100 design points regularly spaced with truncated N ( % ,  '/ls) density, X = lo-'. Top left: 
i = 50, t ,  = 0.497; top right: i = 80, t ,  = 0.693; bottom left: i = 99, t ,  = 0.940; bottom right: i = 100, 
t,  = 0.971. (Note  that i n  the top two figures the curves almost coincide). 
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is excellent. The approximation is not so good for the very last design point of 
all, i = 100, but even then the discrepancy is only serious in the part of the range 
near the boundary; this is precisely where the boundary difficulties discussed by 
Rice and Rosenblatt (1983) will occur. In addition the approximation may be 
breaking down because the local bandwidth is too small relative to the local 
spacing between the design points, and the relative value off  is changing rapidly 
in this region. Further remarks about boundary effects are made in Section 5 
below. 

3. How would an ideal variable kernel smoother behave? Consider 
the estimation of the curve g using a kernel estimate with kernel function K. 
This problem has been considered by Priestley and Chao (1972) and many other 
authors. Concentrate attention on the case where the t, are regularly distributed 
with density f, i.e. F(ti) = (i - lh)/n. The Priestley-Chao estimate of g(s)  is then 
essentially of the form 

In the original formulation, the factor (nf (ti)]-' is replaced by ti - t,-', but the 
difference between the two is of negligible magnitude and it is clearer and more 
convenient to assume that f ( t i )  is known. The weight function associated with 
the Priestley-Chao estimator is thus 

W ~ C ( S ,  ti) = f (ti)-'h-'K((s - ti)/h) 

in the sense that the estimator is then given by 

Comparison of this weight function with (2.10) demonstrates the sense in which 
spline smoothing corresponds asymptotically with kernel smoothing with local 
bandwidth ~ ' / ~ f ( t ) - ' / ~  and accounts for the quotient f ( t )  on the and kernel K ,  

right hand side in (2.10). 
Suppose that the density f and the curve g have bounded derivatives up to 

second order on [a, b], and that f is bounded below away from zero on [a, b]. 
Suppose that the kernel K has two bounded continuous derivatives, and that the 
conditions of Section 5 of Benedetti (1977) are satisfied with r = 2. Assume that 
the ti are uncorrected with mean 0 and variance u2. Assume also that h +0 and 
n2h5+m as n +m. Then, by routine a'nalysis it may be shown that 

and 

var gn(t)  = -u2 (SK2(u) du + o(1) + O ( r ~ - ~ h - ~ )
nhf ( t )  

The usual manipulations (see Benedetti, 1977, and Parzen, 1962, Lemma 4a) 
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give the optimum value of h (in the sense of minimizing mean square error a t  t )  
as 

(3.2) hOpt(t) ( K ) I g N ( t ) -2/5f ( t)-1/5= r ~ - ' / ~ a * / ~ A  I 
where A ( K )  is a functional of the kernel only. 

Now suppose that we wanted to choose h optimally for each value of t. The 
values of g" are unknown and difficult to estimate. In the absence of knowledge 
about g", equation (3.2)demonstrates that the local bandwidth should be chosen 
proportional to f (t)-1'5.In other words, speaking qualitatively, the bandwidth 
should be smaller where the design points are more thickly spread, but the 
variability in bandwidth should be much slower than that in local density. It  
should perhaps be pointed out that in (3.2) the bandwidth depends on the point 
at which g is being estimated while the variable bandwidth Priestley-Chao 
estimator will have bandwidth depending on the design points. Asymptotically, 
there is no difference since only design points near t will contribute to the 
estimate a t  t. 

The effective local bandwidth of spline smoothing is shown in Theorem A 
above to be proportional to f (t)-1/4.This is not quite the same as the rate given 
in the last paragraph, but the difference in practical terms between one quarter 
and one fifth power dependence is so slight as to be of little importance. 

It must be noted that the kernel K ,  unfortunately, does not itself satisfy the 
conditions of the above discussion, since it has 

(3.3) SU ~ K ( U )du = 0 and SU ~ K ( U )du = -1. 

For such a kernel, the optimum asymptotic dependence of the bandwidth on f 
would in fact be proportional to f ( t ) - ' I 9 .  However the sample sizes required for 
these higher order asymptotics actually to operate are astronomical; see the 
remarks of Bartlett (1963).We should conclude that the effective local bandwidth 
of the spline smoother varies in approximately the same way as that of the ideal 
variable kernel estimator with nonnegative kernel. The spirit in which this 
discussion should be taken is summarized by Rosenblatt (1971)page 1818. "The 
arguments . . . have been of an asymptotic character and it  is a mistake to take 
them too literally from a finite sample point of view. But even asymptotic 
arguments if used and interpreted with care can yield meaningful ideas." 

4. Proof and discussion of the main theorem. The main part of this 
section is concerned with the proof of Theorem A, using ideas from fairly 
elementary functional analysis. Readers who are prepared to take the proof on 
trust should jump to the remarks a t  the end of this section, which they may find 
of some interest. 

In the proof, it will be assumed without loss of generality that t = 0 and hence 
that a < 0 < b. We first define some additional notation. Write 

bx ( 0 )  ' /4b a;,= X- ' / 4 f  ( 0 )  1/4a, = ~ - ' / ~ f  

c;,= X-' l4f  (0)1/4 and c i  = c,/&. 
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The notation JAand sup(x) will denote integral and supremum over the interval 
[ax, bx]. The space of functions g which have g and g' absolutely continuous on 
[ax, bA] and for which JXgM2 < CQ will be called HA. 

We shall define, for x in [aA, bA] 

and 

Define norms II g II A and I1g I1.,A on HAby I1g II := $A (gM2+ g "+ g2) and 

(Except where explicitly stated otherwise, integrals are taken with respect to 
Lebesgue measure.) The norm 11 g 11 A is well known as the Sobolev norm on HA; 
see Adams (1975) for a treatment of such norms. 

Define, for g in HA, 

and let 

y (x) = cxlf (0)G(cxlx, 0). 

Both A and y depend on n and A, but this dependence will not be expressed 
explicitly. Note that the definition of y makes it possible to rewrite the result 
(2.9) in the much simpler form 

In the proofs of the various lemmas below, cl, c2, ... denote strictly positive 
constants which may depend on f. The proof of Theorem A now proceeds in 
several stages. The first lemma uses properties of Sobolev norms to give important 
properties of 11 g 11 

LEMMA1. Under assumptions 1 and 2 above, there exist positive constants 
cl (f )  and c2 (f )  such that, for all sufficiently large n, and all g in HA, 

PROOF. Once (4.1) has been proved, the last two statements follows from the 
Sobolev embedding theorem (Theorem 5.4C of Adams, 1975). The fact that the 
same constant c2 works for all sufficiently large n follows from the remarks about 
the universality of the embedding constant made at  the top of page 97 of Adams 
(1975). (The property X -+ 0 ensures that in Adams's notation, the same cone C 
can be used for all the intervals (aA, bA).) 



906 B. W. SILVERMAN 

Define 

Il g 11 ;2 = Sgff2+ JCg 2  dFX for all g in HA. 

Then 

I I1 g ll :,A - I1 g 11 T2 1 

= J g 2  d ( F n , ~  F A )1 1x -

5 [g2(Fn,A- FA)]? + 2 1Iggf I su~(X)lFn,A- FA1 
(4.2) 

5 SUP I Fn , ,  - FA1 

for all n, by using the Sobolev embedding theorem. The fact that h -,0, so that 
I bA- axI is bounded away from zero, ensures that the constant c3 can be chosen 
independently of n. Now notice that, by straightforward calculus, making use of 
Assumption (2.6) above and Lemma 4.10 of Adams (1975), 

(4.3) c4 ll g ll :5 ll g 11 f 2  r c5 ll g ll : for all h s A,,,. 

Since, by assumption (2.8) above 

sup I - FA I = f (0)-3/4h-1/4s~p F I -,0 as n -,mFn,A I Fn-

for sufficiently large n, we will have 

c3sup I F,,A- FA1 5 min(l/z c4, c5) 

and hence, combining (4.2) and (4.3) will ensure that 

lh C4 ll g I1 2X 5 Il g I1 :,A 5 2c5 ll g 11 2X 
completing the proof of Lemma 1.0. 

The next lemma gives a technical result which will be required later. 

LEMMA2. Given any u in HA, 

U N K n  = [UfKfl- UK"f]%- + u(0).JC UK 

PROOF.It is easily verified by fairly tedious calculus that 

K i u  = 6 - K 

where 6 is the Dirac delta function. Integrating by parts twice and substituting 
this result completes the proof of the Lemma. 0 
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Notice that, again by easy but long-winded calculus we have, for all x, 

(4.4) K(~) (x )I'hexp(- 1 x I/&) for i = 2, 3 

and hence, for all u in HA, 

(4.5) 1 [u'K" - UK "'12 I I(sup, I u 1 + sup, 1 u '  I )exp(-cimin( 1 a 1 ,  I b I )). 
Combining (4.5) with Lemma 1then gives the following corollary. 

COROLLARY. Under the assumptions of Lemma 1, there exists a constant c~ 
such that, for all sufficiently large n, 

The final lemma is a consequence of the connection between the functionals A 
and Ao. 

LEMMA3. For all sufficiently large n, A has a unique minimizer over HAand 
this minimizer is y. 

PROOF. The existence and uniqueness of the minimizer of A follows from 
Lemma 1by applying Theorem 1.7 of Tapia and Thompson (1978). It  is easy to 
see that, letting Tg(x) = c:'f(O)g(c:'x) for all g in H2[a, b], c:'f(O)A,(g) = 
A(Tg). Hence A. will indeed have a unique minimizer. By the definition (2.3), 
this minimizer is G( .,0); thus the minimizer of A will be TG(. ,0), which is equal 
to y as required. 0 

We can now state and prove the key result of this section. 

PROPOSITION1. Define y and K as above. Under assumptions (2.5)-(2.8), 
there exists a constant cg(f) such that, for all sufficiently large n, 

11 y - Icg[A1l4+ ~ - l / ~ c u ( n )  I b I)]]. K I I ~ , ,  + exp(- cirnin((a1,  

PROOF. The functional calculus used in this proof is nicely explained in 
Appendix 1of Tapia and Thompson (1978). Since y is the minimizer of A(g)  
over g in HA,and since the functional derivative A " is constant over HA,it follows 
that, for all u in HA 

Setting u = K - y gives 

A '(K)(K- 7 )  = I I  K - Y l l  2 
n,, 

since (see Example 6, page 155 of Tapia and Thompson, 1978), 

A"(y )(u, u )  = l l  u l l  K,, for all u in HA. 

Thus, if it  can be shown that, for all u in HA 



908 B. W. SILVERMAN 

for some c(n), it will follow that 

and hence that 

This is the essence of the remainder of the proof. For any u in HA,  applying 
Lemma 2 gives 

The first part of this expression is dealt with in (4.6) above. To cope with the 
second part, set, for all t, 

Now 

On the other hand, the smoothness properties assumed for f ensure that Taylor's 
theorem can be used to write 

s J I XK(X)dx. h 1 1 4 f  sup I f '. (I 
-m 

Substituting the bounds (4.12) and (4.13) into (4.11) gives 

(4.14) sup(x,( G,,x ( IC ~ ( X ' / ~+ y-1'4a(n)). 
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Now, for all t in (ax, b ~ )  

I3cz 11 u 11 ,,xsup G,,A for sufficiently large n, 

by Lemma 1. Substitute (4.14) into (4.15) and combine the result with (4.6) to 
give, as a consequence of (4.10), 

for all sufficiently large n. Inequality (4.16) is precisely (4.7) with t ( n )  
equal to c9 x the quantity in [I .  The proof of the proposition follows from (4.9) 
a t  once. 0 

We can now derive, very easily, a proposition from which Theorem A fol-
lows a t  once. Drop the restriction t = 0 and define, for each t in (a, b) and 
t + ~ ' / ~ f ( t ) - ' / ~ x  + ~ ' / ~ f ( t ) - ' / ~ x ,in [a, b], yt(x)  = ~ ' / ~ f ( t ) ~ / ~ G ( t  t). Combining 
Lemma 1and Proposition 1then gives the following result. 

PROPOSITION2. Under assumptions (2.5)-(2.8) the supremum of both 
I yt(x) K(X)  - I- I and I y;(x) ~ ' ( x )over 

are bounded by a constant multiple of 

(4.17) X'I4 + X-'/'Isup I F, - F I - a, b - t)).+ e~p(-X- ' /~f(t) ' /~2- ' /~min(t  

The constant depends only on f. 

1. Theorem A is an immediate consequence, because the quantity (4.17) 
converges to zero for each t in (a, b). In addition the theorem remains true if 
both sides of (2.9) are differentiated with respect to x. 

2. The form of the exponential term in (4.17) ties in closely with the 
discussion of boundary effects given by Rice and Rosenblatt (1983). The distor- 
tion of the effective smoothing kernel near the boundaries a and b dies away a t  
an exponential rate in just the same way as the bias effect discussed by Rice and 
Rosenblatt. Furthermore we can use the bound (4.17) to show that the conver- 
gence in Theorem A is uniform over all t in (a + t,, b - t,), where t, is any 
sequence for which 

X-'/~.C, +~o as n + UJ. 

3. The assumption (2.7) that f has bounded first derivative can in fact 
be weakened somewhat. This assumption is used to get the bound (4.13). 



910 B. W. SILVERMAN 

FIG.3. T h e  effective kernel for a roughness penalty involving third deriuatiues. 

If the assumption (2.7) is replaced by a Lipshitz condition of the form 
sup I f ( x )  - f (y )  I = O ( ( x - y I ') then a bound like (4.13) can easily be obtained 
with the power l/4 replaced by l/4 e .  This will have corresponding repercussions on 
the i l l 4term in Propositions 1 and 2, but the basic conclusions will remain the 
same. 

4. In order to make the argument reasonably clear, and because of the interest 
in cubic spline smoothing, we have concentrated attention on the roughness 
penalty J gU2.Similar techniques can be used to deal with other roughness 
penalties. If the roughness penalty is of the form 

(4.18) S(g"' + terms in lower derivatives of g ) 2  

then the '/4 powers will be replaced by 1/2r powers throughout the argument. 
The effective asymptotic kernel will be given by the solution vanishing a t  frn of 

where 6 is the Dirac delta function. It follows from (4.19) that the kernel will 
have Fourier transform ( 1  + s")-'. For r = 1 the asymptotic effective kernel is 
the Laplace density lhexp(- I u I ) with local bandwidth X1/'f (t)-'I? For r = 3 the 
kernel becomes 

with local bandwidth X116f ( t)- ' I6.The plot of the kernel (4.20) given in Figure 3 
shows it to be very similar in appearance to K as defined in (1.3). 
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5. The equivalent kernel near a boundary. One of the uncomfortable 
features of the development so far is that the approximation of the weight 
function G(s, t )  deteriorates when t is near the boundary of the design set. In 
this section we fill this gap by exploring how the equivalent kernel is distorted 
when t is close to the boundary. 

Suppose that all the assumptions of Section 2 still hold. Given any point t in 
[a, b], define 

6 = min(t - a, b - t),  

the distance from t to the nearest boundary. In order to state what will be the 
equivalent kernel when 6 is small, it is first necessary to define some additional 
notation. Let h ( t )  = A1/4f(t)-'/4 as before, and define r and a, both of which 
depend on t and A, by 

r cos a = 1 - 2 sin(2'/'6/h), r sin a = 1+ 2 cos(2l/'6/h). 

Define a kernel K*(u), again depending implicitly on t and A, by 

K*(u)= -2-3/2r exp(- I u (/&)sin([ u (/h- a ) .  

The definition of K *  is similar to that of K given in (1.3) except for a change of 
amplitude and phase in the trigonometric term. 

Let t* be the reflection o f t  in the nearest boundary, that is 

- 26 if t < %(a + b)
t* = {t 

t + 26 if t > %(a + b). 

It  can then be shown, in a sense to be made clear below, that, for s and t in 
[a, bl, 

and that the approximation is uniformly good for all s and t. 
John Rice (personal communication) has pointed out that, if the design points 

are regularly spaced, plots of the weight function G give a local bandwidth 
appearing to get smaller near the boundary. Since h ( t )  is constant for all t, this 
at first sight does not seem to accord with (5.1). A similar phenomenon appears 
in Figure 2, where the exact weight function appears to have narrower bandwidth 
than that predicted by the approximation (2.10) when t is near the boundary. 

Some intuition may be gained by considering the limiting case where t is 
actually on the boundary. Suppose that the boundary is a t  0; in the limiting case 
t and t* will coincide. Since 6 = 0 we have r cos a = 1and r sin a = 3. After some 
calculation this yields, for x r 0, 

Although K + K *  will die away a t  the same exponential ra teas  the uncorrected 
kernel K ,  there are two respects in which it appears to have narrower bandwidth. 
First, it is the case that ~ ( 0 )  + K*(O) = 4 ~ ( 0 ) ,SO the central value is considerably 
larger. Second, the first zero-crossing of K + K *  is a t  l /27~& while that of K is a t  
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3/4~&,SO that the distance from t to the first zero-crossing of the weight function 
is multiplied by 2/3 near the boundary. 

We close this section with a theorem, corresponding to Theorem A, which 
justifies the approximation (5.1). 

THEOREMB. For each t in [a, b] and for X > 0, define 

where K ,  K *, t* and h ( t )  are as defined above. Then, provided the assumptions of 
Section 2 are satisfied, for all sufficiently large n, 

uniformly over all t in [a, b] and all x for which t + xh(t)  lies in [a, b]. 

REMARK. Substituting s = t + xh(t)  yields the approximation (5.1) for 
G(s, t )  given above. The difference between Theorem B and Theorem A is that 
in Theorem B the approximation holds uniformly over all t as well as over x ,  
thus eliminating boundary problems a t  the cost of introducing an equivalent 
kernel K, whose form depends on t and A. 

PROOF. The proof closely parallels that of Proposition 2, replacing K by K, 

throughout. Using the same notation as in Section 4, assume without loss of 
generality that t = 0. The key property of KC, which may be checked by rather 
tedious calculus, is that its second and third derivatives both vanish a t  the nearer 
of ax and bA to zero. This makes it possible to replace min( I a I, I b I ) by max( I a I, 
I b I ), and hence by l/z(b - a) ,  in the inequalities corresponding to (4.5) and (4.6). 
The exponential term exp(- l/zcA(b - a ) )  is then uniformly dominated, for all 
sufficiently large n, by All4, and hence the exponential term can be omitted from 
the result corresponding to Proposition 1. Theorem B then follows by exactly 
the argument leading to Proposition 2. 

6. Weighted spline smoothing and the hat matrix. The results already 
obtained can be applied very easily to give the equivalent kernel for weighted 
spline smoothing, where the objective function (1.1) is replaced by 

X S gV(t) '  dt + wi(Yi - g(t,)I2; 

here wl, . . . ,w, are positive weights. Note that all the weights will depend on n, 
but this dependence is not expressed explicitly. Let W = wl + + w,. To 
simplify the notation we shall assume that W = 1; if it is not, X should be replaced 
by A/ W and wi by wi/ W for the remainder of this section. 

Now replace the distribution function F, of (2.1) by the weighted version 

Suppose F,Wconverges uniformly to a continuous distribution function F as in 
Section 2. 



SPLINES AND VARIABLE KERNELS 

It is now the case that the smoothing spline is of the form 

(6.1) i ( s ) = C G(s,  ti)wiYi 

where G ( ., t i ) is the minimizer of 

To justify this assertion, the argument following (2.4) is used, except that Y ,  is 
set to w;'. Since A $  is of exactly the same form as A ,  in (2.2),all the approxi- 
mation arguments follow through, and the limiting form for G(s , t ) is exactly as 
before. The only difference is that the density f is the limiting density of the 
appropriately weighted design points. 

A natural application of the results of the paper is to find an approximation 
to the so-called hat matrix A which maps the vector Y; of observed values into 
the vector i ( t i )  of predicted values. The hat matrix is of great importance in 
constructing diagnostic checks for regression (see Cook and Weisberg, 1982). 
The special case of spline regression is discussed by Silverman (1985);there the 
hat matrix is used both in diagnostic checks and to give posterior confidence 
intervals for the curve 2. It follows a t  once from (6.1) that the hat matrix will be 
given by 

A,, = G(ti ,  t;)wj; 

the unweighted spline discussed before this section of course corresponds to the 
case w, = n-'. Of particular interest are the diagonal entries of the hat matrix. 
The work of Section 5 can be used to give, setting 6 ,  = min(ti - a, b - t i)  

Aii = wiG(ti ,  t i )  

= wif ( t i ) - ' h ( t i ) - ' [ ~  ( 0 )  + K *(26ih(ti)-'I] 

(6.3) = 2 - 3 / 2 ~ i ~ 1 / 4 f ( t i ) - 3 / 4 [ 1  sin ui)exp(-ul)]+ ( 2  + cos ui  -

where 

ui = 2 1 / 2 ~ - 1 / 4f ( t i )' I 4&.  

The result of Theorem B shows that this approximation for Aii will be uniformly 
good for all i, provided the conditions of Section 2 hold. Notice that the factor 
[ ] in (6.3)approaches 4 as u ,+0;this accords with the discussion just preceding 
the statement of Theorem B and demonstrates that observations near the 
boundary have, as may be expected, a considerably larger local effect. 

7. Probability density estimation. Suppose we are estimating a proba- 
bility density function fo on a finite interval (a ,  b ) ,  given independent observations 
X,,  . . . ,X,, from f .  This problem is distinct from, but related to, the nonpara- 
metric regression problem considered up to now in this paper. An approach 
closely related to the spline smoothing regression method is penalized maximum 
likelihood, suggested for density estimation by Good and Gaskins (1971). A 
general discussion of penalized maximum likelihood estimation is given by 
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Silverman (1984a). The basic idea is to choose a roughness penalty functional @ 
and then to maximize 

n-' C logf(X,)  + X@(f) 

subject to f being a probability density function with @ (  f )  <m. Silverman (1982) 
considered the case where a(f )  is of the form (4.18) withg = log f ;  this formulation 
has various advantages discussed in that paper. 

Set g = log f from now on and concentrate attention on the roughness penalty 
J gM2discussed above. (The extension to other penalties of the form (4.18) works 
in the same way as in the discussion following (4.18).) The estimator 2 of g is 
then the unconstrained minimizer over u in Hya ,  b] of 

An approximation g1 to 2 is obtained by minimizing 

over u in H2[a, b]; for details of the derivation of (7.1) and (7.2) and the accuracy 
of the approximation see Silverman (1982). In the remainder of this section a 
partly heuristic argument is given to show that exp(gl) is approximately a 
variable bandwidth kernel estimator, and to investigate the way in which the 
local bandwidth behaves. Assume that f obeys (2.6) and (2.7), and let F be JLf. 
Set F,, = F for all n in (2.2) and define G accordingly in (2.3). Assume that 
X + 0 as n -+ a,and that X obeys enough conditions (see Silverman, 1982) to 
ensure that gl is a good estimate of g. 

The expression (7.2) is of the form of the quadratic part of (2.2) plus a linear 
term in u. By standard minimization arguments, and the definition of G, it follows 
that 

(7.3) g1(s) = J ~ ( s ,t )g ( t ) f ( t )  dt - J' G(s, t ) f ( t )  dt + n-1 2 G(s, Xi). 

Fix s and let K X  be the kernel K of (1.3) rescaled to have bandwidth 

f (s)-"~. Appealing to Theorem A, 


S G(s, t ) f ( t )g( t )  dt + S K A ( S  - t )g( t )  dt 

since most of the weight of the integral is near s, making use of a linear expansion 
of logy near y = f (s). The expression (7.4) is equal to 

(7.5) g(s)  + f (s)-' S K,(S - t )  f ( t )  dt - 1= g(s)  -1 + S G(s, t )  f ( t )  dt 
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appealing to Theorem A again. Substitute (7.5) into (7.3) to give 

(7.6) gl(s) = g(s)  -1 + n-' C G(s, Xi). 


Now use the consistency results of Silverman (1982) to ensure that g1 - g is 

small and that 2 - gl is relatively negligible. Setting fl = exp(gl), and f = 


exp(2), 


by substituting (5.6). Appealing to Theorem A again gives 

Thus the roughness penalty density estimator f = exp(2) constructed by 
minimizing (5.1) is approximately equal to an adaptive kernel estimator with 
kernel K and local bandwidth ~ l / ~ f ( s ) - " ~ .  Adaptive kernel estimators of this 
general kind were discussed by Breiman et al. (1977) and Abramson (1982). 

It follows from (4.14) of Parzen (1962) that, if a nonnegative symmetric kernel 
K is used, then the optimum choice of an adaptive bandwidth would be, for a 
constant c (K) depending on the kernel, 

This formula depends both on f and on f". If we presume that the likely values 
off" are proportional to those o f f  (i.e. lower values off"  in the tails) then (7.8) 
gives the ideal local bandwidth proportional to f-'I5. If we use the appropriate 
formula corresponding to (7.8) for the kernel K, which satisfies (3.3), then the 
ideal local bandwidth comes out proportional to (f/ 1 f'" 1 2)'/9- f-'/' if a similar 
argument concerning the likely values off'" is used. Another approach entirely is 
given by Abramson (1982) who recommends use of a local bandwidth proportional 
to f-'I2. As a compromise between -lh, -'/5 and -l/9 as the power dependence 
on f, the f-'/4dependence given asymptotically by the roughness penalty estimate 
is certainly appealing. 
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