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SUMMARY 
A logarithmic assessment of the performance of a predicting density is found to lead 
to asymptotic equivalence of choice of model by cross-validation and Akaike's 
criterion, when maximum likelihood estimation is used within each model. 
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1. INTRODUCTION 
AKAIKE(1973) proposed a criterion for model choice equivalent to the following: If a indexes 
the model, choose a to maximize 

where L(a, 8 3  is the log-likelihood function, 8, is the maximum likelihood estimate of the 
parameter 8, in the model a and p, is the dimensionality of 8,. 

Akaike's derivation of (1.1) was for hierarchical models but, as he finally remarked, this 
restriction is unnecessary. Lo@ng at (1.1), we see p, as a correction term without which 
we would be maximizing L(a, 8J; models with parameters of high dimensionality are given 
a severe handicap by this correction term. 

For normal multiple linear regression models with known variance, a2, Mallows' C, 
(Gorman and Toman, 1966) is given by 

C, = (RSSdo2)-(n -2p3, 	 (1.2) 
where RSS, is the residual sum of squares for model a and n is the sample size. From (1.2) 
we see that maximizing (1.1) is equivalent to minimizing C,. 

Akaike's criterion stemmed from a recognition that unreserved maximization of likelihood 
provides an unsatisfactory method of choice between models that differ appreciably in their 
parametric dimensionality. Since the method of cross-validatory choice (Stone, 1974) is also 
concerned with the latter problem, it is perhaps unsurprising that a relationship can be 
established between the two approaches. 

2. THE CHOICE PROBLEM 

Adopting the notation of Stone (1974), we suppose we have a data-base 


for n items and that our problem is the choice of predicting density for y given x from a 
prescribed class of formal predicting densities 

whose members are indexed by the choice parameter a. All densities for y are with respect to 
a common fixed measure with generic element dy. The operational interpretation of (2.1) is 
that the choice of a specifies a predicting density of y for each x, whose form depends in a 
prescribed way on S. The notation is not intended to carry any other probabilistic interpre- 
tation. 
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It is useful to distinguish two complementary cases of (2.1): 
Case 1. f(y x, a, S )  =f(y 1 x, a) independent of S ;  
Case 2. f (y x, a, S )  properly dependent on S. 

In Case 1, (2.1) becomes formally equivalent to a statistical model with a as conventional 
parameter. In Case 2, our attention will be focused on a general example which we will call 
Example A after Akaike (1973). Its prescription is 

where 

(f'(y 1 x, BJ, 6, E02 
are the densities for a conventional parametric model a and @,(s) is the supposed unique 
maximum likelihood estimator maximizing L(a, 0J = xilogfa& I xi, 03. 

3. LOG-DENSITYASSESSMENT 
Suppose f (i)Q,i = 1, ...,n, were presented as predicting densities for yi, i = 1, ...,n, 

respectively. As a measure of their success, take the log-density assessment 

A = logf ci)(yi). 
i 

Observe that A is the logarithm of nif ci)&) which may be termed the predicting probability 
density evaluated at the observations. 

For Case 1, use off ci)(y) =fO,1 xi, a), i = 1, . . .,n, would have the assessment 

A(a) = x log fO?i Ixi, 4, (3.2)
6 

whence we see that choice of a to maximize A(a) would be equivalent to maximum likelihood 
"estimation" of a for the "log-likelihood" given by the right-hand side of (3.2). Thus Case 1 
introduces no innovations. 

For Case 2, it would be unrealistic to assess the choice of a with f(",Cy =fdyl xi, a, S )  
because Sitself contains yi. It is more realistic to use the cross-validatory 

where = S- (xi, y,). This gives us 

We will show in the next section that for Example A, A(a), given by (3.3), is asymptotically 
equivalent, under weak conditions, to Akaike's criterion (1.1), which, as we have seen, 
"corrects" maximum likelihood as a method of choice of model. 

4. ASYMPTOTICEQUIVALENCE 
For simplicity, we treat a as fked and omit it fromJhe notation. Writing I for logf, with 

f given by (%2) a n t  (2.3), A in (3.3) equals Cil&lxi, 9($-,)). W$h L(9) = xjl(yjlxj, O), we 
have that 0(S) [0 for short] maximizes L(9) and O(S4) [0-.I for short] maximizes 
L(0)- l(yi 1 xi, 0). We suppose that 0 = (9, . . .0,)T E O an open region of R p and that f is twice- 
differentiable with respect to 0. Write 
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with similar notation for L. We suppose that 8 and 8-i are unique solutions of L1(0) = 0 and 
L'(6) -ll(yi 1 xi, 8) = 0 respectively. Then by Taylor's theorem 

A 

A = +2 (8-, -8 ) ~  I xi, 8 +ai(Bi -811, (4.1)~ ( 8 )  If{yi 
i 

withIail<l, Ib,I<l, i =  1 ,...,n. Also 
h 

~ ' (8- i )= ll(yi1 xi, 8-i). (4.3) 

From (4.1), (4.2) and (4.3), supposing L" in (4.2) is invertible, 
A 

A =~ ( 8 )+2 If(yiI xi, 8-JT [ ~ " { 8 +bi(8-i- 8))]-1 l1{yi I xi, 8+a i (k i  -Q). (4.4)
i 

Next suppose that S is a random sample from some joint distribution P of (x, y). Let E denote 
expectation with respect to P. With this supposition we can expect: 

(i) $2 maximizing E{l(yl x, 6)); 6' where 8, is the supposed unique value of n-tco8, as 

(ii) 8-i+ P 8, as n- tm for i = 1,2, ...; 
(iii) n-lLU(8+ bkBi-  P))& E{l"(yI x, 8,)) =L2, say; 

A

(iv) n-l zilf{yiI xi, 8 +ai(Bi- 8)>11(yiI xi, Bi)T---% x, 8,) ll(yl x, eo)T) = say.~ { ~ ' ( y l  L ~ ,  

So we have, heuristically, established that A is asymptotically 

~ ( 8 )+trace (L;l L,). (4.5) 

Since 8, maximizes E{l(ylx, O)), it follows that E{l"(yl x, 8,)) is negative-definite. Hence the 
correction term in (4.5), written in the form ~{ l ' (y I  x, 8,)TL;l I1(yI x, 8,)) is seen to be negative. 
However, little more can be said about it without further assumptions of a statistical character. 
The key assumption that gives us our asymptotic equivalence with Akaike's criterion is: The 
conditional distribution of y given x in the distribution P is f (y I x, 8") for some unique B* E0 ,  
that is, the conventional model {f(YI x, 8), 8 EO) is true. In fact, this assumption implies 6* = 6,. 
For 

and 8, is the supposed unique maximizer of E{l(y I x, 8)). Further, differentiating the identity 
jf (y 1 x, 8) l ' ( ~ l  x, 8) dy = 0 with respect to 8, setting 8 = 8, and taking expectations with 
respect to x, we find L, = -L2 (the well-known identity). Hence the correction term in (4.5) 
is trace (- I,,,) = -p and asymptotically 

which is identical to (1.1) once the missing a's are restored. 
While the key assumption italicized above gives us the general equivalence, weaker 

assumptions will suffice for particular choices of {f,(y I x, 8J, 8, E02. 
If we consider two models a,, a, of type (2.3) w ~ t h  

Oar,= @or, 

and suEpose that ^both are true, then it is well known that, under regularity conditions, 
2{L(a,, 8,) -L(q,  8,)) is asymptotically x2 with d =pas -pal degrees of freedom. Hence, by 
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(4.6), A(%)-A(a,) is asymptotically +X$-d. This shows how the simpler model will be 
favoured by the choice criterion A(a). 
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