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.OPTIMAL RATES OF CONVERGENCE FOR NONPARAMETRIC 
ESTIMATORS' 

University of Calfornia, Los Angeles 

Let d denote a positive integer, 111 11 = (x: + . .. + x:/)'/' the Euclidean 
norm of x = ( X I ,. .., x,,) E k?", k a nonnegative integer, %,: the collection of k 
tlmes continuously differentiable functions on R", and g,, the Taylor polynomial 
of degree k about the origin correspond~ng to g E HI,. Let M and p > k denote 
positive constants and let U be an open neighborhood of the origln of R". Let 
??denote the collection of functions g E %I<such that I g(x) - gl?(x)I5M 11 x 11" for 
x E U .  Let m 5 k be a nonnegative integer, let 0,) E H,,, and set O = {80 + g : g  
E V ] .Let L be a linear differential operator of order m on %,,, and set T(0) = 

LO(0) for 0 E O. Let (X, Y) be a pair of random variables such that X is R" 
valued and Y is real valued. It is assumed that the d~stribution of X 1s absolutely 
continuous and that its density is bounded away from zero and infin~ty on U .  
The conditional distr~bution of Y glven X is assumed to be (say) normal, with a 
conditional variance which is bounded away from zero and infinlty on U . The 
regresson function of Y on X is assumed to belong to O .  It is shown that r = 

( p  - m)/(2p + d )  is the optimal (un~form) rate of convergence for a sequence 
(T,,) of estimators of T(0) such that T , ~is based on a random sample of slze n 
from the distribution of (X, Y). An analogous result is obtained for nonparametric 
estimators of a dens~ty funct~on. 

1. Introduction. Let O denote a collection of functions on a fixed subset of @". Let T(B), 
8 E O, be a real valued functional on O. Consider an unknown distribution which depends on 
8 E O. Let ( T ~ )denote a sequence of estimators of T(8) such that j;, is based on a random 
sample of size n from the unknown distribution. Let r denote a positive number. Then r is 
called an upper bound to the rate of convergence if for every sequence ( T ~ )of estimators 

lim inf, SUPHEOPO(J T(8)l > cn-') for all c > 0T n  - > 0 

and 

(1.2) lim,," lim inf, supHEePH(1 T n- T(8)I > cn-') = 1 

Also r is called an achievable rate of convergence if there is a sequence ( T ~ )of estimators such 
that 

(1.3) lim,.,, lim sup, SUPH~BPH(I - T(8)l > cn-') =T n  0; 

r is called the optimal rate of convergence if it is both an upper bound to the rate of convergence 
and an achievable rate of convergence. (Note that if r is an upper bound to the rate of 
convergence and s is an achievable rate of convergence, then s Ir.) If O is a collection of 
functions on a finite subset of Rd,then under appropriate regularity conditions, r = V z  is the 
well-known optimal rate of convergence. From now on O will denote a collection of functions 
on all of Rd. 

Let (Y = (at ,  . . ., a,,) denote a d-tuple of nonnegative integers and set 1 a ( = a,  + . . + 
a d a n d a ! = a i ! .  ... . a d ! . F o r x = ( x l ,  ...,x d ) € R " s e t x " = x f "  . .xX'. LetD0denote 
the differential operator defined by 
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where ' and " denote differentiation with respect to t. Set l ( y I x ,  t )  = logf(y I x ,  t ) .  It is finally 
assumed that there are positive constants EO and C and there is a measurable function M ( y  I x ,  
t )  such that on the indicated domain 

I l w ( y l x , t + ~ ) I 5 M ( y I x , t ) ,  E 5 EO, 

and IM ( y l x .  t ) f ( p l x ,  t R ( d y ) S  C. 

These conditions on f ( y  I x ,  t )  are satisfied in each of the following five examples. In the last 
four examples f ( y  I t )  = f ( y l  x ,  t )  is independent of x, but the conditional distribution 
f ( y  I B(x))cp(dy)of Y given X = x still depends on x.  

Example 1 (Normal).Let 

where p, is Lebesgue measure on @ and o is positive and bounded away from zero and infinity 
on U. 

Example 2 (Exponential).Let 

where p, is Lebesgue measure on [0, m) and t ranges over a relatively compact open subinterval 
of (0, m)  (i.e., an open interval I whose closure is a compact subset of (0, m), {8(x) :8  E O and 
x E U )  being required to be contained in I.) 

Example 3 (Poisson).Let 

where p, is counting measure on the set Z+ of nonnegative integers and t ranges over a 
relatively compact open subinterval of (0, m). 

Example 4 (Geometric).Let 

where p, is counting measure on Z' and t ranges over a relatively compact open subinterval of 
(0, m).  

Example 5 (Bernoulli). Let 

where p, is counting measure on (0,  1) and t ranges over a relatively compact open subinterval 
of (0, 1). 

In the context of Model 1 .  k is an estimator of T(8)based on ( X I ,  Y I ) ,  . . , (X,, Y,), where 
( X I ,  Y1 ) ,  ( X 2 ,  Y2) ,  . . . are independent pairs of random variables each having the same 
distribution as (X ,  Y ) .  

Model 2 (Unknown densityfunction). Let 8" be a fixed probability density function in %,,, 
such that 80(0)> 0. Set O = { B O ( l  + g ) : gE 3, I g I 5 1 on @ a n d  J 8"g dx = 0 ) . Let X be an 
R" valued random variable having unknown density 8 E O. In the context of this model, f i 
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is an estimator of T(8) based on XI ,  ., X,. where XI ,  X', ... are independent random 
variables each having the same distribution as X. 

THEOREM.Let Model 1 or Model 2 hold. Then r = ( p  - m)/(2p + d )  is the optimal rate of 
convergence. 

A number of observations concerning this theorem are in order, starting with Model 1. The 
proof is given in Section 2. The estimator that is used to show that the indicated rate r is 
achievable will now be described. Set y = 1/(2p + d).  Let { E , )  be a sequence of positive 
numbers satisfying either of the following two conditions: 

(i) E, is nonrandom and 0 < limn nYe, < m; 

(ii) E, is the N,th smallest value among 11 XI 1 1 ,  . . ., 11 X, 1 1 .  where {N,) is a sequence of 
nonrandom positive integers such that 0 < limn n - " p ~ n  < m. 

Set In = { i : I 5 i 5 n and 11 X, 11 5 E,). Let 8,,, denote the polynomial on @ o f  degree k which 
minimizes 

and set f i = L~A,(o). Estimators of this type have been considered by Stone (1975), (1977) 
and Cleveland (1979). The proof that this estimator has rate of convergence r does not depend 
on the assumptions stated above on the conditional distribution of Y given X. It does not 
depend on the assumption that a' is bounded away from zero on U.  It does depend on the 
assumption that 0 9 s  bounded on U, but if a' approaches infinity at the origin, r is probably 
not achievable. The proof depends on the assumption that the marginal density f of X is 
bounded away from zero and infinity on U. but iff approaches zero at the origin r is probably 
not achievable. (Iff approaches infinity at the origin, r is probably not an upper bound to the 
rate of convergence.) 

The proof that r is an upper bound to the rate of convergence does not depend on the 
assumption that a' is bounded on U .  It does depend on the assumption that a' is bounded 
away from zero on U .but if o' approaches zero at the origin, r is probably not an upper bound 
to the rate of convergence. The proof does not depend on the assumption that f is bounded 
away from zero on U. It does depend on the (apparently necessary as noted above) assumption 
that f is bounded on U .  The proof depends on the assumptions regarding the conditional 
distribution of Y given X. These assumptions can obviously be dropped, however, if the 
conditional distribution of Y given X is regarded as unknown but possibly. say, normal and 
(1.1) and (1.2) are only required to hold for some choice of the unknown conditional 
distribution. Alternatively the consequence 

of (I.  I) holds without any assumption on the conditional distribution of Y given X if f i is 
required to be linear in Y 1 ,. . Y,. For then 

depends on the conditional distribution of Y given X only through the conditional mean and 
variance. Thus E H ( k  - T(8))' is unaltered if this conditional distribution is replaced by the 
normal distribution with the same mean and variance. Consequently (1.5) remains valid as 
desired. (It is not hard to give a direct proof of this result.) 

The theorem is proven for Model 2 in Section 3. Previous results on upper bounds to local 
and global rates of convergence for nonparametric estimators of a density function have been 
obtained by Farre11 (1972), Chentsov (1972), Wahba (1975), Samarov (1976), Meyer (1977). 
Khasminskii (1978). Boyd and Steele (1978) and Bretagnolle and Huber (1979). 

The literature on asymptotic properties of various estimators of regression functions, density 
functions and their derivatives is too numerous to list here. Some of these results show that r 
is achievable in various contexts. The asymptotic results on estimating regression functions 
and their derivatives typically assume as much smoothness on the marginal density f of X as 
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on the regression function. The above theorem shows that such smoothness assumptions on f 
are unnecessary. 

2. Estimation of a regression function. Assume that Model 1 holds. It will first be shown 
that r, as defined in the theorem, is an upper bound to the rate of convergence. Now L = 
Cot,,,, L,, where L, = CI , ,= ,C , ,D .Let + be an infinitely differentiable function with compact 
support such that L,+(O) > 0 and 

Choose N > 0 and 6 E (0 ,  11 and recall that y = 1/(2p + d ) .  Define g, on 4"by 

Then g, E 9,so 8, = 80 + g, E O. Since the density of X is bounded above near the origin, 

(2.1) lim sup, n E g : ( X )  < m. 

Let p, and v, denote the joint distribution of ( X I ,  Y I ) ,  . . ., (X, ,  Y,) under PH,,and pH,, 
respectively, let L ,  denote the Radon-Nikodym derivative dv,/dp, and set I ,  = log,L,. It will 
now be shown that 

(2.2) lim sup, EH,,I I,, I < 

and 

(2.3) limko lim sup, E H ~ ,In I = 0.I 

To this end choose n sufficiently large so that I g, I 5 EO and g, = 0 on U'.  Observe that by 
Taylor's theorem with remainder 

1, = C7 [ I (Y ,I X,,  8o(X,) + gn(X , ) )- I (Y , I X,, Bo(X,)); X, E U ]  

= C7 gn(X,)I'(Yt I Xt, 8o(Xt)) + Z " ,  

where 

Z ,  = 'h C7 g ~ ( ~ , ) l " (I X, ,  Bo(X,) + E,)Y,  

for some E, , 1 5 i 5 n,  satisfying I E,  I % E O .  Thus 

and hence 

Also 

and hence 

EH,,C?  gn(X,)I'( Yt I Xt, @o(Xt)) = 0. 

Moreover 
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Therefore 

(2.5) ER,,1 C; g,(X,)lf( Y, 1 X,, Bo(X,))I 5 ( ~ n ~ g ' ? d X ) ) " ~ .  

By (2.4) and (2.5) 

This and (2.1) together yield (2.2) and (2.3). 

By (2.2) there is a finite positive constant M such that 


lim sup, EH,,~logpLnI < M. 

Choose E > 0 such that if L, > (1 - E)/E or L, < € /(I - E), then I log,L, I 2 2M. By the 
Markov inequality 

lim inf,, pn -
(1 2 E 

Let n be sufficiently large so that 

Put prior probabilities '/? each on 80 and 8,. Then 

and hence 

Therefore any method of deciding between Bo and 8, based on (XI, Y,), . a ,  (X,,Y,) must 
have overall error probability at least 4 4 .  Apply this result to the classifier 8,defined by 

It follows that 
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Consequently 

In particular 

Now 

for n sufficiently large. Since N can be arbitrarily large, (1.1) holds. 
The proof of (1.2) is very similar. Choose a positive integer io 2 2 and put prior probability 

i;' on each of the i~points 

Equation (2.3) can be used to show that there is a 6 > 0 such that for n sufficiently large any 
method of classifying 8 E .., 8,, ,} based on (XI, YI), . ., (X,, Y,) must have overall 
error probability at least 1-2/i0, which can be made arbitrarily close to I by choosing io 
sufficiently large. Equation (1.2) follows easily from this observation. This completes the proof 
that r is an upper bound to the rate of convergence. 

It remains to construct a sequence ( T " )  of estimators of T(8) such that (1.3) holds. Without 
loss of generality it can be assumed that 80 = 0. Choose SO> 0 such that U contains the ball 
B6,,= (X E @':I1 x 11 i So), SO 5 f 5 Sol on B6,and o2i 6;' on B8,,. 60, l e thGiven 0 < 6 5 
be the probability density function on R" defined by 

Then caS: if8 5 cd8i2on R". where cdl denotes the volume of a unit ball in @', 

Let A denote the collection of d-tuples a of nonnegative integers such that I a I i k and let 
IA I denote the cardinality of A.  For 0 < 6 5 6 0  let & = (damp) denote the positive definite 
symmetric IA I x IA I matrix defined by 

&sap = I x~x%(x) dx, 
ll~llE1 

Then 

(2.6) infM65s, det ds> 0. 

For suppose otherwise and let As denote the smallest eigenvalue of d6 .  Then info<sss, As 
= 0. Let ps = (ps,) be an eigenvector of s46 corresponding to the eigenvalue As and such that 
Cmp&= 1. Let P6 be the polynomial on Rd defined by Ps(x) = C,psexe. Then 
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Consequently, by a compactness argument, there is a nonzero polynomial P on Rd such that 

P2(x) dx = 0. 

By continuity P = 0 on { x  E @ 11 x 11 5 l),  which is impossible. Therefore (2.6) holds as 
desired. 

Set y = 1/(2p + d). Let {en) be a sequence of positive numbers satisfying either of the 
following two conditions: (i) E, is nonrandom and 0 < lim,,nGn < m; (ii) en is the Nnth smallest 
value among 11 XI 11, . . . , 11 Xn 11, where {N,) is a sequence of nonrandom positive integers such 
that Nn 5 n and 0 < limnn-2yPNn< m. Set 

In= {i: 1 5 i 5 n and 11 Xi 11 5 E,) 

and 

8, = max[ll X, 11 : i E I,,]. 

Note that under (ii), 8, = E,, and I, has cardinality N,,. Let N, also denote the cardinality of 
I, under (i). Since f is bounded away from zero and infinity near the origin, n E~/N, ,is bounded 
in probability away from zero and infinity and hence so are nY E, and n-""N,; also a,/€, 
converges to one in probability. Consequently (note that r = @ - m)y )  

(2.7) = n-'OP(1)&-"I 

and 

Clearly lim,P(O < 6, % So) = 1. In the definitions below it is assumed that 0 < 6, i 60. 
Arbitrary definitions can be employed on the complementary event of vanishingly small 
probability. 

Let Zn= (%,,,,) denote the N,, x I A I matrix defined by 

X:' 
sn;<,= -8kI' iEI , ,  and a E A ,  

and let 3:denote the transpose of Sn.Then f,,3,, is the I A I x I A I matrix determined by 

It is clear that the elements of N;;'ZLZn - &a, converge to zero in probability. Thus by (2.6), 
Nn(%2^:,Zn)-' is bounded in probability; that is 

Define the N,-dimensional vectors % = (%), %, = (G,,)and g,, = (%,) by 

%nr = o k ( X t ) ,  i E I,,, 

8 b  denoting kth degree Taylor polynomial approximation to 8, and 
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!q,, = Y,, i E I,. 

Set Z,, = !?Y - Z.Define the ) A  I-dimensional vector IP, = ( IP , , , )  by 

a!c,,
IP"" =w a E A .  

where C,, = 0 for rn < 1 a 1 5 k. Now 

for i E I,, 

and hence 

T(0)= 2;(%; 

Let e k n  denote the polynomial on R" of degree k which minimizes 

C ~ E I , ,( Yi - ekn(~t))' 

and set T~= L&(o). It follows from the normal equations for least squares estimators that 

i;, = YA(T;fn)-'Jt;:'v,. 

x"
(Write b ( x )  = z l c . a k  b<,%and note that b<.= (( J:).,)-'fA%,). ) Consequently 

Now 
I.%, - & , I %  M))X,) lP_ 'M8%, i E I,. 

Thus 

- 1 I 1 ' '  8: 5 MN.8:.1 (2;(.% c%k))cv5 M E~EI,,-@- a E A ,  

and hence by (2.7) and (2.9) 

(2.1 1) yl( / f r. J - Y-kn) = n-'O,,( 1). . f.1-1f I ( ~ -

Observe also that 

and by (2.8) and (2.9) 

Var(YA( $ A  x;yn f n )  5 8;' PA( 3; $n)-i9nn-2rop( 1). 1 = 

It follows that 

It is easily seen by examining the proof of (2.13) that it actually holds uniformly in 0, so that 
(1.3) holds. This completes the proof that r is an achievable rate of convergence. Therefore the 
theorem is valid for Model I. 

3. Estimation of a density function. Assume that Model 2 holds. It will first be shown that 
r is an upper bound to the rate of convergence. Let xo be a point in @ other than the origin. 
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Let + be a nonnegative infinitely differentiable function with compact support such that 
L,+(O) > 0, + vanishes on a neighborhood of xo, 

and 

Let y still be 1/(2p + d), let S and N be positive constants, and define gn on @"for n sufficiently 
large by 

g,(x) = SN1'n-"(+(N-'nYx) - b,+(~-'nYx+ xo)), 

where b, is chosen so that j' g,Oo dx = 0. Since Bo is bounded away from zero and infinity on 
some neighborhood of the origin there is a positive constant B independent of S such that 0 
5 b, 5 B for n sufficiently large. Now 

for n sufficiently large, where 6 is now chosen so that S(1 + B) 5 1. Thus g, E 9 for n 
sufficiently large. Since lim,max, I g,(x) I = 0, 8, = Bo(1 + g,) E Q for n sufficiently large. 
Since Oo is bounded on a neighborhood of the origin, 

(3.1) lim sup, nEoog:(~) < m. 

Let p, and v, denote the joint distribution of XI, ..., X, under PoI,and PO,,respectively, let 
L, denote the Radon-Nikodym derivative dv,/dp, and set I, = log,L,. Then 

(3.2) lim sup, EH,, I I,, I < co 

and 

(3.3) lim,holim sup, EH,,I In I = 0. 

To see this note that (for n sufficiently large) 

also 

and hence 

1" = 1;log(1 + g,(X, )). 

Thus 

I 1, - 27 ,(X, ) 1517 gk(X,) 

and therefore 

l l 5 IC7 gn(X,) I 
Since Ebi g,(X ) = j' g,Bo dx = 0, 

Schwarz's inequality now implies that 

The last inequality and (3.1) together yield (3.2) and (3.3). 
The argument required to conclude from (3.2) and (3.3) that r is an upper bound to the rate 

&X,) 17 + 
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of convergence is essentially the same as the argument required to prove the same conclusion 
in Section 2 based on (2.2) and (2.3). (Note that 

It remains to construct a sequence {T") of estimators of T(8) such that (1.3) holds. It suffices 
to verify that 

(3.4) lim sup, n" SU~H€(+EH(T"- T(8))' < m. 

To this end write 8 = Bob, where h = 1 + g. Then 

Since 8" is fixed, L(Boh)(0) is clearly a linear combination of Dh(O), I a I 5 m. Consequently 

L(Boh)(O) = Lh(0) = Lhh(O), 

where E is a fixed linear differential operator on ct,, of order m. Thus 

Let S be a positive number such that &(x) 2 S for 11 xll 5 13. Let K be an infinitely 
differentiable function with compact support such that j' K(y)  dy = 1 and 

for 1 5 l a l 5 k .  

Let E, be a sequence of positive numbers such that 

Let K,, be the function on W"defined by 

It can be assumed that 

K,(x) = 0 for n r I and 1 1  x Ilr& 

Set I, = {i: I 5 i 5 n and IIX, 11 5 6). 
Let h, denote the estimator of h defined by 

1 Kn(x - X,)
h n ( x ) = - &I,, 

n 80(x,) ' 

Set 

Then 

Next it will be shown that 

(3.5) E"T" = ~ ( 8 )+ &,(-y)(h(y) - M y ) )  dy. I 

To see this note that 
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and hence that 

Consequently 

from which (3.5)follows 
By (3.5) 

so that 

lim sup, E , ~ ~ - ~ ~ )SUPHEH I - IE ~ T ~  < m.~ ( 0 )  


Therefore 

(3.6) 	 lim sup, n' SUPHE@( E H R- T(B) ( < m. 

Observe next that 

Consequently 

lim sup, n E?+(' SUPHEC~VarHj;,< m 

and hence 

(3.7) 	 lim sup, n" supsE" VarHii;, < m. 

Now (3.4)follows from (3.6)and (3.7),so r is an achievable rate of convergence. Therefore the 
theorem is valid for Model 2. 
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