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ESTIMATING THE DIMENSION OF A MODEL1 

BY GIDEON SCHWARZ 

Hebrew University 
The problem of selecting one of a number of models of different 

dimensions is treated by finding its Bayes solution, and evaluating the 
leading terms of its asymptotic expansion. These terms are a valid 
large-sample criterion beyond the Bayesian context, since they do not 
depend on the a priori distribution. 

.1. Introduction. Statisticians are often faced with the problem of choosing 
the appropriate dimensionality of a model that will fit a given set of observations. 
Typical examples of this problem are the choice of degree for a polynomial re-
gression and the choice of order for a multi-step Markov chain. 

In such cases the maximum likelihood principle invariably leads to choosing 
the highest possible dimension. Therefore it cannot be the right formalization 
of the intuitive notion of choosing the "right" dimension. An extension of 
the maximum likelihood principle is suggested by Akaike [ l ]  for the slightly 
more general problem of choosing among different models with different 
numbers of parameters. His suggestion amounts to maximizing the likelihood 
function separately for each model j, obtaining, say, Mj(Xl, . . .,X,), and then 
choosing the model for which log Mj(Xl, . . .,X,) - kj is largest, where kj  is the 
dimension of the model. We present an alternative approach to the problem. 

In a model of given dimension maximum likelihood estimators can be obtained 
as large-sample limits of the Bayes estimators for arbitrary nowhere vanishing 
a priori distributions. 

Therefore we look for the appropriate modification of maximum likelihood 
for our case, by studying the asymptotic beavior of Bayes estimators under a 
special class of priors. These priors are not absolutely continuous, since they 
put positive probability on some lower-dimentional subspaces of the parameter 
space, namely the subspaces that correspond to the competing models. In the 
large-sample limit, the leading term of the Bayes estimator turns out to be just 
the maximum likelihood estimator. Only in the next term something new is 
obtained. This was to be expected, sinc,e (as was shown in [2] and [3], albeit 
for sequential testing) the leading term depends on the prior only through its 
support, while the second order term does reflect singularities of the a priori 
distribution. We shall arrive at the following procedure: 

Choose the model for which log Mj(Xl, . .,X,) - -&kj log n is largest. 


The validity of this procedure as a large-sample version of Bayes procedures 
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will be established here for the case of independent, identically distributed ob- 
servations, and linear models. 

2. The exact Bayes procedure. In a general parameter space, there is no 
intrinsic linear structure. We therefore assume that observations come from a 
Koopman-Darmois family, i.e., relative to some fixed measure on the sample 
space they possess a density of the form 

where t9 ranges over the natural parameter space O, a convex subset of the K-
dimensional Euclidean space, and y is the sufficient K-dimensional statistic. The 
competing models are given by sets of the form mi n O, where each mi is a ki- 
dimensional linear submanifold of K-dimensional space. 

Fitting the asymptotic nature of the result, the a priori distribution need not 
be known exactly. It suffices to assume that it is of the form C a j p j ,  where ai 
is the a priori probability of the jth model being the true one, and pi, the con- 
ditional a priori distribution of 0 given the jth model, has a kj-dimensional den- 
sity that is bounded and locally bounded away form zero throughout mi n @. 
This implies mutual orthogonality of the pj, since the intersection of two 
distinct linear manifolds either is one of them, or has lower dimensions than 
both. 

Finally, we assume a fixed penalty for guessing the wrong model. (Actually, 
a loss that depends on 0 and on the guess would yield the same asymptotic 
results, provided the loss function stays between two fixed positive bounds for 
all wrong decisions.) Under this assumption, the Bayes solution consists of selec- 
ting the model that is a posteriori most probable. Via Bayes' formula that is 
equivalent to choosing the j that maximizes 

S(Y, n, j) = log \ ai exp((Y o t9 - b(t9))n) dpi(t9) , 

where the integral extends over mj n 0 ,  and Y is the averaged y-statistic 

(lln) C y(Xi)-

3. Asymptotics. The asymptotic expansion of S(y, n, j) could be obtained 
from results in an earlier paper [3] as a special case. We shall, however, keep 
this paper self-contained by outlining a proof of the necessary result directly. 

PROPOSITION.For fixed Y and j, as n tends to co, 

S(Y, n, j) = n sup (Y o t9 - b(B)) - +kj log n + R 

where the remainder R = R(Y, n, j) is bounded in n for fixed Y and j. 

PROOF. We shall proceed in steps. 

LEMMA1. The proposition holds when Y o B - b(t9) = A - lllt9 - Bolla where 
R > 0, 8, is a fixed vector in mi, and p j  is Lebesgue measure on mi. 
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Explicit evaluation of the integral yields ~x~(lr/nR)~i 2e*A, and 

sup A - R118 - 6,1j2= A . 
Therefore 

S(Y, n, j) = nA - $kj log (nl/lr) + log ai 

establishes the proposition for this case, with R = $ki log (lr/R) + log aj. 

LEMMA2. If two bounded positive random variables U and V agree on the set 
where either exceeds p for some 0 < p < sup U, then 

log E(U*) - log E(VX) 0--t 

as n--+ co. 

Clearly it suffices to show that this holds for V that vanishes where U (p. 
In this case 0 (U" - V" 5 p", and therefore 

and we only have to show log (1 + (pn/E(V"))) -+ 0. Now (E(Vm))'/" --+ sup V 
(a well-known fact on L, norms) and sup V = sup U > p yield for p/(E(Vn))'/" 
a limit strictly less than 1, hence p"/E(V*) tends to zero, and so does log (1 + 
(P"/E(V"))). 

LEMMA3 .  For some 0 < p < eA, where A = sup (Y o 6 - b(B)), a vector 6,, 
and some positive 2, and I,, the following holds wherever exp(Y o 6 - b(6)) > p: 

As is well known, the matrix of second-order derivatives of b(6) is the covari- 
ance matrix of y, and hence positive definite. Therefore Y o 6 - b(6) is strictly 
convex, and is easily seen to attain its maximum. Let 8, be the point where the 
maximum A is attained. The Taylor expansion of Y o 6 - b(6) around 8, now 
yields the stated inequalities for some neighborhood of B,, if 21, and 21, are 
larger and smaller than all the eigenvalues of the matrix of second order deriva- 
tives of b(6) at 6,. By strict convexity it is now easy to determine p < eA so 
that it will bound exp(Y o 6 - b(6)) outside that neighborhood. 

The proposition is now proved by combining the lemmas, and the assumption 
of local boundedness of the density function of ,ujon mi n 0. 

Qualitatively both our procedure and Akaike's give "a mathematical formula- 
tion of the principle of parsimony in model building." Quantitatively, since our 
procedure differs from Akaike's only in that the dimension is multiplied by 
3 log n, our procedure leans more than Akaike's towards lower-dimensional 
models (when there are 8 or more observations). For large numbers of obser- 
vations the procedures differ markedly from each other. If the assumptions we 
made in Section 2 are accepted, Akaike's criterion cannot be asymptotically 
optimal. This would contradict any proof of its optimality, but no such proof 
seems to have been published, and the heuristics of Akaike [I]  and of Tong [4] 
do not seem to lead to any such proof. 
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