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Summary. The Lasso estimate for linear regression parameters can be interpreted as a
Bayesian posterior mode estimate when the priors on the regression parameters are indepen-
dent double-exponential (Laplace) distributions. This posterior can also be accessed through
a Gibbs sampler using conjugate normal priors for the regression parameters, with indepen-
dent exponential hyperpriors on their variances. This leads to tractable full conditional distri-
butions through a connection with the inverse Gaussian distribution. Although the Bayesian
Lasso does not automatically perform variable selection, it does provide standard errors and
Bayesian credible intervals that can guide variable selection. Moreover, the structure of the
hierarchical model provides both Bayesian and likelihood methods for selecting the Lasso pa-
rameter. The methods described here can also be extended to other Lasso-related estimation
methods like bridge regression and robust variants.

Keywords: Gibbs sampler, inverse Gaussian, linear regression, empirical Bayes, penalised
regression, hierarchical models, scale mixture of normals

1. Introduction

The Lasso of Tibshirani (1996) is a method for simultaneous shrinkage and model selection
in regression problems. It is most commonly applied to the linear regression model

y = µ1n + Xβ + ε,

where y is the n × 1 vector of responses, µ is the overall mean, X is the n × p matrix
of standardised regressors, β = (β1, . . . , βp)

T is the vector of regression coefficients to be
estimated, and ε is the n×1 vector of independent and identically distributed normal errors
with mean 0 and unknown variance σ2. The estimate of µ is taken as the average ȳ of the
responses, and the Lasso estimate β̂ minimises the sum of the squared residuals, subject to
a given bound t on its L1 norm. The entire path of Lasso estimates for all values of t can
be efficiently computed via a modification of the related LARS algorithm of Efron et al.
(2004). (See also Osborne et al. (2000).)

For values of t less than the L1 norm of the ordinary least squares estimate of β, Lasso
estimates can be described as solutions to unconstrained optimisations of the form

min
β

(ỹ − Xβ)T(ỹ − Xβ) + λ

p∑

j=1

|βj |

where ỹ = y − ȳ1n is the mean-centred response vector and the parameter λ ≥ 0 relates
implicitly to the bound t. The form of this expression suggests that the Lasso may be
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interpreted as a Bayesian posterior mode estimate when the parameters βi have independent
and identical double exponential (Laplace) priors (Tibshirani, 1996; Hastie et al., 2001,
Sec. 3.4.5). Indeed, with the prior

π(β) =

p∏

j=1

λ

2
e−λ|βj | (1)

and an independent prior π(σ2) on σ2 > 0, the posterior distribution, conditional on ỹ, can
be expressed as

π(β, σ2|ỹ) ∝ π(σ2) (σ2)−(n−1)/2 exp

{
− 1

2σ2
(ỹ − Xβ)T(ỹ − Xβ) − λ

p∑

j=1

|βj |
}

.

(This can alternatively be obtained as a posterior conditional on y if µ is given an inde-
pendent flat prior and removed by marginalisation.) For any fixed value of σ2 > 0, the
maximising β is a Lasso estimate, and hence the posterior mode estimate, if it exists, will
be a Lasso estimate. The particular choice of estimate will depend on λ and the choice of
prior for σ2.

Maximising the posterior, though sometimes convenient, is not a particularly natural
Bayesian way to obtain point estimates. For instance, the posterior mode is not necessarily
preserved under marginalisation. A fully Bayesian analysis would instead suggest using the
mean or median of the posterior to estimate β. Though such estimates lack the model
selection property of the Lasso, they do produce similar individualised shrinkage of the
coefficients. The fully Bayesian approach also provides credible intervals for the estimates,
and λ can be chosen by marginal (Type-II) maximum likelihood or hyperprior methods
(Section 5).

For reasons explained in Section 4, we shall prefer to use conditional priors on β of the
form

π(β|σ2) =

p∏

j=1

λ

2
√

σ2
e−λ|βj |/

√
σ2

(2)

instead of prior (1). We can safely complete the prior specification with the (improper)
scale invariant prior π(σ2) = 1/σ2 on σ2 (Section 4).

Figure 1 compares Bayesian Lasso estimates with the ordinary Lasso and ridge regression
estimates for the diabetes data of Efron et al. (2004), which has n = 442 and p = 10. The
figure shows the paths of Lasso estimates, Bayesian Lasso posterior median estimates, and
ridge regression estimates as their corresponding parameters are varied. (The vector of
posterior medians minimises the L1-norm loss averaged over the posterior. The Bayesian
Lasso posterior mean estimates were almost indistinguishable from the medians.) For ease
of comparison, all are plotted as a function of their L1 norm relative to the L1 norm of the
least squares estimate. The Bayesian Lasso estimates were computed over a grid of λ values
using the Gibbs sampler of Section 3 with the scale-invariant prior on σ2. The estimates
are medians from 10000 iterations of the Gibbs sampler after 1000 iterations of burn-in.

The Bayesian Lasso estimates seem to be a compromise between the Lasso and ridge
regression estimates: The paths are smooth, like ridge regression, but are more similar in
shape to the Lasso paths, particularly when the L1 norm is relatively small. The vertical line
in the Lasso panel represents the estimate chosen by n-fold (leave-one-out) cross validation
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Fig. 1. Lasso, Bayesian Lasso, and Ridge Regression trace plots for estimates of the diabetes
data regression parameters versus relative L1 norm, with vertical lines for the Lasso and Bayesian
Lasso indicating the estimates chosen by, respectively, n-fold cross validation and marginal maximum
likelihood.
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Table 1. Estimates of the linear regression parameters for the diabetes data.
Variable Bayesian Lasso Bayesian Credible Lasso Lasso Least

(marginal m.l.) Interval (95%) (n-fold c.v.) (t ≈ 0.59) Squares

(1) age -3.73 (-112.02, 103.62) 0.00 0.00 -10.01
(2) sex -214.55 (-334.42, -94.24) -195.13 -217.06 -239.82
(3) bmi 522.62 (393.07, 653.82) 521.95 525.41 519.84
(4) map 307.56 (180.26, 436.70) 295.79 308.88 324.39
(5) tc -173.16 (-579.33, 128.54) -100.76 -165.94 -792.18
(6) ldl -1.50 (-274.62, 341.48) 0.00 0.00 476.75
(7) hdl -152.12 (-381.60, 69.75) -223.07 -175.33 101.04
(8) tch 90.43 (-129.48, 349.82) 0.00 72.33 177.06
(9) ltg 523.26 (332.11, 732.75) 512.84 525.07 751.28

(10) glu 62.47 (-51.22, 188.75) 53.46 61.38 67.63

(see e.g. Hastie et al., 2001), while the vertical line in the Bayesian Lasso panel represents
the estimate chosen by marginal maximum likelihood (Section 5.1).

With λ selected by marginal maximum likelihood, medians and 95% credible intervals
for the marginal posterior distributions of the Bayesian Lasso estimates for the diabetes
data are shown in Figure 2. For comparison, the figure also shows the least squares and
Lasso estimates (both the one chosen by cross-validation, and the one that has the same
L1 norm as the Bayesian posterior median to indicate how close the Lasso can be to the
Bayesian Lasso posterior median). The cross-validation estimate for the Lasso has a relative
L1 norm of approximately 0.55 but is not especially well-defined. The norm-matching Lasso
estimates (at relative L1 norm of approximately 0.59) perform nearly as well. Corresponding
numerical results are shown in Table 1. The Bayesian posterior medians are remarkably
similar to the Lasso estimates. The Lasso estimates are well within the credible intervals
for all variables, whereas the least squares estimates are outside for four of the variables,
one of which is significant.

The Bayesian marginal posterior distributions for the elements of β all appear to be
unimodal, but some have shapes that are distinctly non-Gaussian. For instance, kernel
density estimates for variables 1 and 6 are shown in Figure 3. The peakedness of these
densities is more suggestive of a double exponential than of a Gaussian density.

2. A Hierarchical Model Formulation

The Bayesian posterior median estimates shown in Figure 1 were obtained from a Gibbs
sampler that exploits the following representation of the double exponential distribution as
a scale mixture of normals:

a

2
e−a|z| =

∫ ∞

0

1√
2πs

e−z2/(2s) a2

2
e−a2s/2 ds, a > 0.
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Fig. 2. Posterior median Bayesian Lasso estimates (⊕) and corresponding 95% credible intervals
(equal-tailed) with λ selected according to marginal maximum likelihood (Section 5.1). Overlaid are
the least squares estimates (×), Lasso estimates based on n-fold cross-validation (4), and Lasso
estimates chosen to match the L1 norm of the Bayes estimates (5).
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Fig. 3. Marginal posterior density function estimates for the Diabetes data variables 1 and 6. These
are kernel density estimates based on 30000 Gibbs samples.



The Bayesian Lasso 7

See, e.g. Andrews and Mallows (1974). This suggests the following hierarchical representa-
tion of the full model:

y | µ, X, β, σ2 ∼ Nn

(
µ1n + Xβ, σ2In

)

β | τ2
1 , . . . , τ2

p , σ2 ∼ Np(0p, σ
2Dτ ), Dτ = diag(τ2

1 , . . . , τ2
p ) (3)

τ2
1 , . . . , τ2

p ∼
p∏

j=1

λ2

2
e−λ2τ2

j /2 dτ2
j , τ2

1 , . . . , τ2
p > 0

σ2 ∼ π(σ2) dσ2

with τ2
1 , . . . , τ2

p and σ2 independent. (The parameter µ may be given an independent,
flat prior.) After integrating out τ 2

1 , . . . , τ2
p , the conditional prior on β has the form (2).

Prior (1) can alternatively be obtained from this hierarchy if (3) is replaced by

β | τ2
1 , . . . , τ2

p ∼ Np(0p, Dτ ), Dτ = diag(τ2
1 , . . . , τ2

p ) (4)

so that β is (unconditionally) independent of σ2. Section 3 details a Gibbs sampler im-
plementation for the hierarchy of (3), which exploits a conjugacy involving the inverse
Gaussian distribution. The hierarchy employing (4) could also be easily implemented in
a Gibbs sampler, but Section 4 illustrates some difficulties posed by this prior due to the
possibility of a non-unimodal posterior. Hierarchies that employ other distributions for
τ2
1 , . . . , τ2

p can be used to produce Bayesian versions of methods related to the Lasso, as
discussed in Section 6.

Bayesian analysis using this general form of hierarchy predates widespread use of the
Gibbs sampler (e.g. West, 1984). Figueiredo (2003) proposes the hierarchical representation
using (4) for use in an EM algorithm to compute the ordinary Lasso estimates by regarding
τ2
1 , . . . , τ2

p as “missing data,” although this is not as efficient as the LARS algorithm.

The hierarchy that employs (4) is an example of what Ishwaran and Rao (2005) refer to as
“spike-and-slab” models, in generalisation of the terminology of Mitchell and Beauchamp
(1988). But true spike-and-slab models tend to employ two-component mixtures for the
elements of β, one concentrated near zero (the spike) and the other spread away from zero
(the slab). An early example of such a hierarchy is the Bayesian variable selection method
of George and McCulloch (1993), in which τ 2

1 , . . . , τ2
p are given independent two-point priors

with one point close to zero. George and McCulloch (1997) propose alternative versions
of this method that condition on σ2 and so are more akin to using (3). In the context
of wavelet analysis (or orthogonal designs more generally), Clyde et al. (1998) use a prior
similar to (3), but with independent Bernoulli priors on τ 2

1 , . . . , τ2
p , yielding a degenerate

spike exactly at zero. Clyde and George (2000) extended this by effectively using heavier-
tailed distributions for the slab portion and for the error distribution through scale mixtures
of normals, although they did not consider the double-exponential distribution.

Yuan and Lin (2005) propose a prior for the elements of β with a degenerate spike at
zero and a double exponential slab, but instead of performing a Bayesian analysis choose to
approximate the posterior. Their analysis leads to estimates chosen similarly to the original
Lasso and lack any corresponding interval estimates.
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3. Gibbs Sampler Implementation

We will use the typical inverse gamma prior distribution on σ2,

π(σ2) =
γa

Γ(a)

(
σ2

)−a−1
e−γ/σ2

, σ2 > 0 (a > 0, γ > 0), (5)

although other conjugate priors are available (see Athreya (1986)). We will also assume an
independent, flat (shift-invariant) prior on µ. With the hierarchy of (3), which implicitly
produces prior (2), the joint density becomes

f(y|µ, β, σ2) π(σ2) π(µ)

p∏

j=1

π(βj |τ2
j , σ2) π(τ2

j ) =

1
(
2πσ2

)n/2
e−

1
2σ2 (y−µ1n−Xβ)T(y−µ1n−Xβ)

× γa

Γ(a)

(
σ2

)−a−1
e−γ/σ2

p∏

j=1

1
(
2πσ2τ2

j

)1/2
e
− 1

2σ2τ2
j

β2
j λ2

2
e−λ2τ2

j /2.

Now, letting y be the average of the elements of y,

(y − µ1n − Xβ)T(y − µ1n − Xβ) = (y1n − µ1n)T(y1n − µ1n) + (ỹ − Xβ)T(ỹ − Xβ)

= n (y − µ)2 + (ỹ − Xβ)T(ỹ − Xβ)

because the columns of X are standardised. The full conditional distribution of µ is thus
normal with mean y and variance σ2/n. In the spirit of the Lasso, µ may be integrated out,
leaving a joint density (marginal only over µ) proportional to

1
(
σ2

)(n−1)/2
e−

1
2σ2 (ỹ−Xβ)T(ỹ−Xβ) (

σ2
)−a−1

e−γ/σ2
p∏

j=1

1
(
σ2τ2

j

)1/2
e
− 1

2σ2τ2
j

β2
j

e−λ2τ2
j /2.

Note that this expression depends on y only through ỹ. The conjugacy of the other pa-
rameters remains unaffected, and thus it is easy to form a Gibbs sampler for β, σ2 and
(τ2

1 , . . . , τ2
p ) based on this density.

The full conditional for β is multivariate normal: The exponent terms involving β are

− 1

2σ2
(ỹ−Xβ)T(ỹ−Xβ)− 1

2σ2
βTD−1

τ β = − 1

2σ2

{
βT

(
XTX + D−1

τ

)
β − 2 ỹTXβ + ỹTỹ

}
.

Letting A = XTX + D−1
τ and completing the square transforms the term in brackets to

βTAβ − 2 ỹTXβ + ỹTỹ =
(
β − A−1XTỹ

)T
A

(
β − A−1XTỹ

)
+ ỹT

(
In − XA−1XT

)
ỹ,

so β is conditionally multivariate normal with mean A−1XTỹ and variance σ2 A−1.
The full conditional distribution of σ2 is inverse gamma: The terms in the joint distri-

bution involving σ2 are

(
σ2

)−(n−1)/2−p/2−a−1
exp

{
− 1

σ2

(
(ỹ − Xβ)T(ỹ − Xβ)/2 + βTD−1

τ β/2 + γ
)}
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so σ2 is conditionally inverse gamma with shape parameter (n − 1)/2 + p/2 + a and scale
parameter (ỹ − Xβ)T(ỹ − Xβ)/2 + βTD−1

τ β/2 + γ.
For each j = 1, . . . , p the portion of the joint distribution involving τ 2

j is

(
τ2
j

)−1/2
exp

{
− 1

2

(
β2

j /σ2

τ2
j

+ λ2τ2
j

)}
,

which happens to be proportional to the density of the reciprocal of an inverse Gaussian
random variable. Indeed, the density of η2

j = 1/τ2
j is proportional to

(
η2

j

)−3/2
exp

{
− 1

2

(
β2

j

σ2
η2

j +
λ2

η2
j

)}
∝

(
η2

j

)−3/2
exp

{
−

β2
j

(
η2

j −
√

λ2σ2/β2
j

)2

2σ2η2
j

}
,

which compares with one popular parameterisation of the inverse Gaussian density (Chhikara
and Folks, 1989):

f(x) =

√
λ′

2π
x−3/2 exp

{
− λ′(x − µ′)2

2(µ′)2x

}
, x > 0,

where µ′ > 0 is the mean parameter and λ′ > 0 is a scale parameter. (The variance is
(µ′)3/λ′.) Thus the distribution of 1/τ2

j is inverse Gaussian with

mean parameter µ′ =

√
λ2σ2

β2
j

and scale parameter λ′ = λ2.

A relatively simple algorithm is available for simulating from the inverse Gaussian distribu-
tion (Chhikara and Folks, 1989, Sec. 4.5), and a numerically stable variant of the algorithm
is implemented in the language R, in the contributed package statmod (Smyth, 2005).

The Gibbs sampler simply samples cyclically from the distributions of β, σ2, and
(τ2

1 , . . . , τ2
p ) conditional on the current values of the other parameters. Note that the sam-

pling of β is a block update, and the sampling of (τ 2
1 , . . . , τ2

p ) is also effectively a block update
since τ2

1 , . . . , τ2
p are conditionally independent. Our experience suggests that convergence is

reasonably fast.
Parameter µ is generally of secondary interest, but the Gibbs sample can be used to

perform inference on it if desired. As noted previously, the posterior of µ conditional on the
other parameters is normal with mean y and variance σ2/n. It follows that the marginal
mean and median are y, and the variance and other properties of the marginal posterior
may be obtained using the Gibbs sample of σ2.

4. The Posterior Distribution

The joint posterior distribution of β and σ2 under priors (2) and (5) is proportional to

(
σ2

)−(n+p−1)/2−a−1
exp

{
− 1

σ2

(
(ỹ − Xβ)T(ỹ − Xβ)/2 + γ

)
− λ√

σ2

p∑

j=1

|βj |
}

. (6)

The form of this density indicates that we may safely let a = 0 and, assuming that the data
do not admit a perfect linear fit (i.e. ỹ is not in the column space of X), also let γ = 0. This
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corresponds to using the non-informative scale-invariant prior 1/σ2 on σ2. The posterior
remains integrable for any λ ≥ 0. Note also that λ is unitless: A change in the units of
measurement for y does not require any change in λ to produce the equivalent Bayesian
solution. (The X matrix is, of course, unitless because of its scaling.)

For comparison, the joint posterior distribution of β and σ2 under prior (1), with some
independent prior π(σ2) on σ2, is proportional to

π(σ2) (σ2)−(n−1)/2 exp

{
− 1

2σ2
(ỹ − Xβ)T(ỹ − Xβ) − λ

p∑

j=1

|βj |
}

. (7)

In this case, λ has units that are the reciprocal of the units of the response, and any change
in units will require a corresponding change in λ to produce the equivalent Bayesian solution.

It can be shown that posteriors of the form (6) generally do not have more than one mode
for any a ≥ 0, γ ≥ 0, λ ≥ 0 (see the Appendix). In contrast, posteriors of the form (7) may
have more than one mode. For example, Figure 4 shows the contours of an bimodal joint
density of β and log(σ2) when p = 1 and π(σ2) is the scale-invariant prior 1/σ2. (Similar
bimodality can occur even if π(σ2) is proper.) This particular example results from taking
p = 1, n = 10, XTX = 1, XTỹ = 5, ỹTỹ = 26, λ = 3. The mode on the lower right is
near the least-squares solution β = 5, σ2 = 1/8, while the mode on the upper left is near
the values β = 0, σ2 = 26/9 that would be estimated for the selected model in which β is
set to zero. The crease in the upper left mode along the line β = 0 is a feature produced
by the “sharp corners” of the L1 penalty. Not surprisingly, the marginal density of β is
also bimodal (not shown). When p > 1, it may be possible to have more than two modes,
though we have not investigated this.

Presence of multiple posterior modes causes both conceptual and computational prob-
lems. Conceptually, it is questionable whether a single posterior mean, median, or mode
represents an appropriate summary of a bimodal posterior. A better summary would be
separate measures of the centres of each mode, along with the approximate amount of prob-
ability associated with each, in the spirit of “spike and slab” models (Ishwaran and Rao,
2005), but this would require an entirely different methodology.

Computationally, posteriors having multiple offset modes are a notorious source of con-
vergence problems in the Gibbs sampler. Although it is possible to implement a Gibbs
sampler for posteriors of the form (7) when π(σ2) is chosen to be the conjugate inverse
gamma distribution using a derivation similar to that of Section 3, we were able to con-
struct examples that make the convergence of this Gibbs sampler much too slow for practical
use. A Gibbs sampler can be alternated with non-Gibbs steps designed to facilitate mixing
by allowing jumps between modes, but such methods are more complicated and generally
rely upon either knowledge of the locations of all modes or access to an effective search
strategy.

5. Choosing the Bayesian Lasso Parameter

The parameter of the ordinary Lasso can be chosen by cross-validation, generalised cross-
validation, and ideas based on Stein’s unbiased risk estimate (Tibshirani, 1996). The
Bayesian Lasso also offers some uniquely Bayesian alternatives: empirical Bayes via marginal
(Type II) maximum likelihood, and use of an appropriate hyperprior.
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5.1. Empirical Bayes by Marginal Maximum Likelihood
If the hierarchy of Section 2 is regarded as a parametric model, the parameter λ has a likeli-
hood function that may be maximised to obtain an empirical Bayes estimate. Casella (2001)
proposes a Monte Carlo EM algorithm that complements a Gibbs sampler implementation.
For the Bayesian Lasso, the steps are

(a) Let k = 0 and choose initial λ(0).
(b) Generate a sample from the posterior distribution of β, σ2, τ2

1 , . . . , τ2
p using the Gibbs

sampler of Section 3 with λ set to λ(k).
(c) (E-Step:) Approximate the expected “complete-data” log likelihood for λ by substi-

tuting averages based on the Gibbs sample of the previous step for any terms involving
expected values of β, σ2, or τ2

1 , . . . , τ2
p .

(d) (M-Step:) Let λ(k+1) be the value of λ that maximises the expected log likelihood of
the previous step.

(e) Return to the second step, and iterate until desired level of convergence.

The “complete-data” log likelihood based on the hierarchy of Section 2 with the conju-
gate prior (5) is

− ((n + p − 1)/2 + a + 1) ln
(
σ2

)
− 1

σ2

(
(ỹ − Xβ)T(ỹ − Xβ)/2 + γ

)

− 1

2

p∑

j=1

ln
(
τ2
j

)
− 1

2

p∑

j=1

β2
j

σ2τ2
j

+ p ln
(
λ2

)
− λ2

2

p∑

j=1

τ2
j

(after neglecting some additive constant terms not involving λ). The ideal E-step of itera-
tion k involves taking the expected value of this log likelihood conditional on ỹ under the
current iterate λ(k) to get

Q(λ|λ(k)) = p ln
(
λ2

)
− λ2

2

p∑

j=1

Eλ(k)

[
τ2
j

∣∣ỹ
]

+ terms not involving λ

(in the usual notation associated with EM). The M-step admits a simple analytical solution:
The λ maximising this expression becomes the next EM iterate

λ(k+1) =

√
2p∑p

j=1 Eλ(k)

[
τ2
j

∣∣ỹ
] .

Of course, the conditional expectations must be replaced with the sample averages from the
Gibbs sampler run.

When applied to the diabetes data using the scale invariant prior for σ2 (a = 0, γ = 0),
this algorithm yields an optimal λ of approximately 0.237. The corresponding vector of
medians for β has L1 norm of approximately 0.59 relative to least squares (as indicated in
Figure 1). Table 1 lists these posterior median estimates along with two corresponding sets
of Lasso estimates, one chosen by n-fold cross-validation and one chosen to match the L1

norm of the Bayes estimate. The Bayes estimates are very similar to the Lasso estimates
in both cases.
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We have found that the convergence rate of the EM algorithm can be dramatically
affected by choice of the initial value of λ. Particularly large choices of λ can cause con-
vergence of the EM algorithm to be impractically slow. Even when it converges relatively
quickly, the accuracy is ultimately limited by the level of approximation of the expected
values. When each step uses the same fixed number of iterations in the Gibbs sampler, the
iterates will not converge but instead drift randomly about the true value, with the degree
of drift depending on the number of Gibbs sampler iterations. McCulloch (1997) and Booth
and Hobert (1999) encountered similar problems when employing Monte Carlo maximum
likelihood methods to fit generalised linear mixed models, and suggested ways to alleviate
the problem. (These remedies typically involve increasing the Monte Carlo replications as
the estimates near convergence.)

Monte Carlo techniques for likelihood function approximation are also easy to imple-
ment. For notational simplicity, let θ = (β, σ2, τ2

1 , . . . , τ2
p ). Then, for any λ and λ0, the

likelihood ratio can be written

L(λ|ỹ)

L(λ0|ỹ)
=

∫
L(λ|ỹ)

L(λ0|ỹ)
πλ(θ|ỹ) dθ =

∫
fλ(ỹ, θ) πλ0 (θ|ỹ)

πλ(θ|ỹ) fλ0(ỹ, θ)
πλ(θ|ỹ) dθ

=

∫
fλ(ỹ, θ)

fλ0(ỹ, θ)
πλ0(θ|ỹ) dθ

where fλ is the complete joint density for a particular λ and πλ is the full posterior. Since fλ

is known explicitly for all λ, the final expression may be used to approximate the likelihood
ratio as a function of λ from a single Gibbs sample taken at the fixed λ0. In particular,

fλ(ỹ, θ)

fλ0(ỹ, θ)
=

(
λ2

λ2
0

)p

exp

{
− (λ2 − λ2

0)

p∑

j=1

τ2
j

2

}

and thus

L(λ|ỹ)

L(λ0|ỹ)
=

(
λ2

λ2
0

)p ∫
exp

{
− (λ2 − λ2

0)

p∑

j=1

τ2
j

2

}
πλ0(τ

2
1 , . . . , τ2

p |ỹ) dτ2
1 · · · dτ2

p .

(The approximation is best in the neighbourhood of λ0.) As a by-product, this expression
may also be used to establish conditions for existence and uniqueness of the maximum
likelihood estimate through the apparent connection with the posterior moment generating
function of

∑p
j=1 τ2

j /2.
Figure 5 shows an approximation to the logarithm of this likelihood ratio for the diabetes

data, using the Gibbs sampler of Section 3 with the scale-invariant prior for σ2 and with λ0

taken to be the maximum likelihood estimate (approximately 0.237). The figure includes
the nominal 95% reference line based on the usual chi-square approximation to the log
likelihood ratio statistic. The associated confidence interval (0.125, 0.430) corresponds to
the approximate range (0.563, 0.657) of relative L1 norms for the vector of posterior medians
(compare Figure 1).

Using the marginal maximum likelihood estimate for λ is an empirical Bayes approach
that does not automatically account for uncertainty in the maximum likelihood estimate.
However, the effect of this uncertainty can be evaluated by considering the range of values of
λ contained in the approximate 95% confidence interval stated above. Informal investigation
of the sensitivity to λ, by using values at the extremes of the approximate 95% confidence
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Fig. 5. The log likelihood ratio log{L(λ|ỹ)/L(λMLE|ỹ)} for the diabetes data, as approximated by a
Monte Carlo method described in the text. The horizontal reference line at −χ2

1,0.95/2 suggests the
approximate 95% confidence interval (0.125, 0.430).
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interval, reveals that the posterior median estimates are not particularly sensitive to the
uncertainty in λ, but that the range of the credible sets can be quite sensitive to λ. In
particular, choosing λ near the low end of its confidence interval widens the 95% credible
intervals enough to include the least squares estimates. An alternative to this approach is
to adopt the fully Bayesian model that puts a hyperprior on λ. This is discussed in the
next section.

5.2. Hyperpriors for the Lasso Parameter
Placing a hyperprior on λ is appealing because it both obviates the choice of λ and auto-
matically accounts for the uncertainty in its selection that affects credible intervals for the
parameters of interest. However, this hyperprior must be chosen carefully, as certain priors
on λ may induce not only multiple modes and but also non-integrability of the posterior
distribution.

For convenience, we will regard λ2 as the parameter, rather than λ, throughout this
section. We consider the class of gamma priors on λ2 of the form

π(λ2) =
δr

Γ(r)

(
λ2

)r−1
e−δλ2

, λ2 > 0 (r > 0, δ > 0) (8)

because conjugacy properties allow easy extension of the Gibbs sampler. The improper
scale-invariant prior 1/λ2 for λ2 (formally obtained by setting r = 0 and δ = 0) is a tempting
choice, but it leads to an improper posterior, as will be seen subsequently. Moreover, scale
invariance is not a very compelling criterion for choice of prior in this case because λ is
unitless when prior (2) is used for β (Section 4).

When prior (8) is used in the hierarchy of (3), the product of the factors in the joint
density that involve λ is

(
λ2

)p+r−1
exp

{
− λ2

(
1

2

p∑

j=1

τ2
j + δ

)}

and thus the full conditional distribution of λ2 is gamma with shape parameter p + r and
rate parameter

∑p
i=1 τ2

i /2 + δ. With this specification, λ2 can simply join the other
parameters in the Gibbs sampler of Section 3, since the full conditional distributions of the
other parameters do not change.

The parameter δ must be sufficiently larger than zero to avoid computational and con-

ceptual problems. To illustrate why, suppose the improper prior π(λ2) =
(
λ2

)r−1
(formally

the δ = 0 case of (8)) is used in conjunction with priors (2) and (5). Then the joint density
of ỹ, β, σ2, and λ2 (marginal only over τ2

1 , . . . , τ2
p ) is proportional to

(
λ2

)p/2+r−1 (
σ2

)−n/2−p/2−a−1
exp

{
− 1

σ2

(
(ỹ − Xβ)T(ỹ − Xβ)/2 + γ

)
−

√
λ2

√
σ2

p∑

i=1

|βi|
}

Marginalising over λ2 (most easily done by making a transformation of variable back to λ)
produces a joint density of ỹ, β, and σ2 proportional to

(
σ2

)−n/2+r−a−1
exp

{
− 1

σ2

(
(ỹ − Xβ)T(ỹ − Xβ)/2 + γ

)}( p∑

i=1

|βi|
)−p−2r
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and further marginalising over σ2 gives

(
(ỹ − Xβ)T(ỹ − Xβ)/2 + γ

)−n/2+r−a
( p∑

i=1

|βi|
)−p−2r

.

For fixed ỹ, both of these last two expressions are degenerate at β = 0 and bimodal (unless
the least squares estimate is exactly 0). The same computational and conceptual problems
result as discussed in Section 4. Moreover, taking r = 0 produces a posterior that is not
integrable due to the singularity at β = 0.

It is thus necessary to choose a proper prior for λ2, though to reduce bias it is desirable
to make it relatively flat, at least near the maximum likelihood estimate. If, for the diabetes
data, we take r = 1 and δ = 1.78 (so that the prior on λ2 is exponential with mean equal
to about ten times the maximum likelihood estimate), then the posterior median for λ is
approximately 0.279 and a 95% equal-tailed posterior credible interval for λ is approximately
(0.139, 0.486). Posterior medians and 95% credible intervals for the regression coefficients
are shown in Figure 6, along with the intervals from Figure 2 for comparison. The two sets
of intervals are practically identical in this case.

6. Extensions

Hierarchies based on various scale mixtures of normals have been used in Bayesian analysis
both to produce priors with useful properties and to robustify error distributions (West,
1984). The hierarchy of Section 2 can be used to mimic or implement many other methods
through modifications of the priors on τ 2

1 , . . . , τ2
p and σ2. One trivial special case is ridge

regression, in which the τ2
j ’s are all taken to have degenerate distributions at the same

constant value. We briefly list Bayesian alternatives corresponding to two other Lasso-
related methods.

• Bridge Regression

One direct generalisation of the Lasso (and ridge regression) is penalised regression
by solving (Frank and Friedman, 1993)

min
β

(ỹ − Xβ)T(ỹ − Xβ) + λ

p∑

j=1

|βj |q

for some q ≥ 0 (the q = 0 case corresponding to best-subset regression). See also
Hastie et al. (2001, Sec. 3.4.5) and Fu (1998), in which this is termed “bridge regres-
sion” in the case q ≥ 1. Of course, q = 1 is the ordinary Lasso and q = 2 is ridge
regression.

The Bayesian analogue of this penalisation involves using a prior on β of the form

π(β) ∝
p∏

j=1

e−λ|βj |q

although, in parallel with (2), we would emend this to

π(β|σ2) ∝
p∏

j=1

e−λ
(
|βj |/

√
σ2

)q

.
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Fig. 6. Posterior median Bayesian Lasso estimates and corresponding 95% credible intervals (solid
lines) from the fully hierarchical formulation with λ2 having an exponential prior with mean 1/1.78.
The empirical Bayes estimates and intervals of Figure 2 are plotted in dashed lines above these for
comparison.
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Thus the elements of β have (conditionally) independent priors from the exponential

power distribution (Box and Tiao, 1973) (also known as the “generalised Gaussian”
distribution in electrical engineering literature), though technically this name is re-
served for the case q ≥ 1. Whenever 0 < q ≤ 2, this distribution may be represented
by a scale mixture of normals. Indeed, for 0 < q < 2,

e−|z|q ∝
∫ ∞

0

1√
2πs

e−z2/(2s) 1

s3/2
gq/2

(
1

2s

)
ds

where gq/2 is the density of a positive stable random variable with index q/2 (West,
1987; Gneiting, 1997), which generally does not have a closed form expression. A
hierarchy of the type in Section 2 is applicable by placing appropriate independent
distributions on τ2

1 , . . . , τ2
p . Their resulting full conditional distributions are closely

related to certain exponential dispersion models (Jørgensen, 1987). It is not clear
whether an efficient Gibbs sampler can be based on this hierarchy, however.

• The “Huberized Lasso”

Rosset and Zhu (2004) illustrate that the Lasso may be made more robust by using
loss functions that are less severe than the quadratic. They illustrate the result of
solving

min
β

n∑

i=1

L(ỹi − xT

i β) + λ

p∑

j=1

|βj |,

where L is a once-differentiable piecewise quadratic Huber-type loss function that is
quadratic in a neighbourhood of zero and linearly increases away from zero outside
of that neighbourhood. It is not easily possible to implement an exact Bayesian
analogue of this technique, but it is possible to implement a Bayesian analogue of the
very similar hyperbolic loss

L(d) =
√

η(η + d2/ρ2)

for some parameters η > 0 and ρ2 > 0. Note that this is almost quadratic near zero
and asymptotically approaches linearity away from zero.

The key idea for robustification is to replace the usual linear regression model with

y ∼ Nn(µ1n + Xβ, Dσ)

where Dσ = diag(σ2
1 , . . . , σ2

n). (Note the necessary re-introduction of the overall
mean parameter µ, which can safely be given an independent, flat prior.) Then
independent and identical priors are placed on σ2

1 , . . . , σ
2
n. To mimic the hyperbolic

loss, an appropriate prior for (σ2
1 , . . . , σ2

n) is

n∏

i=1

1

2K1(η)ρ2
exp

(
− η

2

(
σ2

i

ρ2
+

ρ2

σ2
i

))

where K1 is the modified Bessel K function with index 1, η > 0 is a shape parameter,
and ρ2 > 0 is a scale parameter. The scale parameter ρ2 can be given the non-
informative scale-invariant prior 1/ρ2, and the prior (3) on β would use ρ2 in place
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of σ2. Upon applying this prior and integrating out σ2
1 , . . . , σ

2
n, the conditional density

of the observations given the remaining parameters is

n∏

i=1

1

2K1(η)
√

ηρ2
exp

(
−

√
η
(
η + (yi − µ − xT

i β)2/ρ2
))

(Gneiting, 1997), which has the desired hyperbolic form. The Gibbs sampler is easy
to implement here because the full conditional distributions of the σ2

i ’s are reciprocal
inverse Gaussian, and the full conditional distribution of ρ2 is in the class of generalised

inverse Gaussian distributions, for which reasonably efficient simulation algorithms
exist (Atkinson, 1982).

7. Discussion

For the diabetes data, results from the Bayesian Lasso are surprisingly similar to those
from the ordinary Lasso. Although computationally more intensive, it is just as easy to
implement and provides finite-sample interval estimates, which are not available for the
ordinary Lasso. The asymptotics for Lasso-type estimators by Knight and Fu (2000) might
be used to construct frequentist confidence sets, but it isn’t clear what their small-sample
properties might be.

Credible sets allow assessment of practical significance as well as statistical significance.
If a parameter must meet a certain threshold to be considered significant, a credible set will
indicate the degree of certainty that this requirement is met.

Correcting Bayesian credible sets for multiple comparisons is reasonably straightforward.
For instance, simultaneous intervals for the elements of β can be obtained by expanding
the hyper-rectangle defined by the uncorrected credible intervals until it includes 95% of
the sampled points. The sides of this expanded credible set would then be nearly exact
simultaneous credible intervals for the coefficients.

The ordinary Lasso, as computed using the LARS algorithm, has the property that at
most n− 1 variables may have nonzero coefficients, which is not necessarily desirable when
n− 1 � p. In contrast, the n− 1 < p case poses no such problems for the Bayesian version.
In informal simulations under the condition n − 1 < p, we have observed convergence to a
solution that is nearly a legitimate solution to the normal equations and has all medians
clearly nonzero, in contrast to the Lasso solution, which necessarily sets p−n+1 coefficients
to zero.

Appendix: Derivation of Unimodality

We demonstrate that the joint posterior distribution of β and σ2 > 0 under prior

π(β, σ2) = π(σ2)

p∏

j=1

λ

2
√

σ2
e−λ|βj |/

√
σ2

= π(σ2)
λp

2p (σ2)p/2
e−λ‖β‖1/

√
σ2

is unimodal (for typical choices of π), in the sense that every upper level set {(β, σ2) | π(β, σ2) >
x, σ2 > 0}, x > 0, is connected.
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Unimodality in this sense is immediate for densities that are log concave. Unfortunately,
this isn’t quite true in this case, but we can instead show that it is true under a continuous
transformation with continuous inverse, which will prove unimodality just as effectively,
since connected sets are the images of connected sets under such a transformation.

The log posterior is

log
(
π(σ2)

)
− n + p − 1

2
log(σ2) − 1

2σ2
‖ỹ − Xβ‖2

2 − λ‖β‖1/
√

σ2 (9)

after dropping all additive terms that involve neither β nor σ2. Consider the transformation
defined by

φ ↔ β/
√

σ2 ρ ↔ 1/
√

σ2,

which is continuous with a continuous inverse when 0 < σ2 < ∞. Note that this is simply
intended as a coordinate transformation, not as a transformation of measure (i.e. no Jaco-
bian), so that upper level sets for the new parameters correspond under the transformation
to upper level sets for the original parameters. In the transformed parameters, (9) becomes

log
(
π
(
1/ρ2

))
+ (n + p − 1) log(ρ) − 1

2
‖ρỹ − Xφ‖2

2 − λ‖φ‖1, (10)

where π is the prior density for σ2. The second and fourth terms are clearly concave
in (ρ, φ), and the third term is a concave quadratic in (ρ, φ). Thus, the expression is
concave if log

(
π(1/ρ2)

)
is concave (because a sum of concave functions is concave). Func-

tion log
(
π(1/ρ2)

)
is concave if, for instance, the prior on σ2 is the inverse gamma prior (5)

or the scale-invariant prior 1/σ2.
The log posterior is thus unimodal in the sense that every upper level set is connected,

though this does not guarantee a unique maximiser. A sufficient condition for a unique
maximiser is that the X matrix has full rank and ỹ is not in the column space of X, since
this makes the third term of (10) strictly concave.
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