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Maximum likelihood identification of Gaussian autoregressive 
moving average models 

BY HIROTUGU AKAIKE 

University of Hawaii and The Institute of Statistical Mathematics 

Closed form representations of the gradients and an approximation to the Hessian are 
given for an asymptotic approximation to the log likelihood function of a multidimensional 
autoregressive moving average Gaussian process. Their use for the numerical maximization 
of the likelihood function is discussed. It is shown that the procedure described by Hannan 
(1969) for the estimation of the parameters of one-dimensional autoregressive moving 
average processes is equivalent to a three-stage realization of one step of the Newton- 
Raphson procedure for the numerical maximization of the likelihood function, using the 
gradient and the approximate Hessian. This makes it straightforward to extend the 
procedure to the multidimensional case. The use of the block Toeplitz type characteristic 
of the approximate Hessian is pointed out. 

Some key words :Autoregressive moving average process ;Maximum likelihood ;Identification.; Hessian; 
Newton-Raphson; Block Toeplitz matrix. 

By an ingenious approach, Hannan (1969; 1970, pp. 377-95) developed an estimation 
procedure for the parameters of autoregressive moving average processes. The procedure 
essentially consists of modifying arbitrary consistent estimates of the parameters into 
estimates which are asymptotically efficient relative to the maximum likelihood estimates 
in the Gaussiaii case. This is accomplished by applying a single numerical step realized in 
three stages of successive computations. I n  spite of its asymptotic efficiency, iterative 
application of the procedure was suggested as a way of further improving the estimates. The 
extension of the procedure to the general multidimensional vector process case was con- 
sidered to be too complicated for explicit presentation and only the simple moving average 
case was treated. 

As an alternative to Hannan's intuitive approach, we formulate the problem directly as 
the identification of a Gaussian model by numerical maximization of the Gaussian likelihood 
function and we analyze its computational aspects. The evaluation of the gradient and the 
Hessian of the log likelihood function will then be the main subjects of this paper. It is shown 
that Hannan's procedure is equivalent to one step of a Newton-Raphson type iterative 
modification of the initial estimates for the maximization of the Gaussian likelihood 
function, realized in three successive stages of computations in lower dimensional spaces. 
This observation reveals the fact that the iterative application of Hannan's procedure 
can maximize the Gaussian likelihood function only when the initial estimates are close 
enough to the desired maximum likelihood estimates. Thus, in a practical situation a simple- 
minded application of Hannan's procedure does not always achieve an improvement of the 



initial estimates. By our present approach, the multidimensional case can be treated 
explicitly and the results clearly explain the related numerical complexity. To cope with this 
complexity a block Toeplitz-type characterization of an approximation to the Hessian is 
introduced. This representation is quite useful in reducing the dimension necessary in the 
computation. When the orders of the autoregression and the moving average are identical, 
this leads to an extremely simple numerical procedure. 

Dzhaparidze (1971) developed a procedure for the estimation of continuous time models. 
Also, there is a similarity between these procedures and the construction of the basic 
statistics of Le Cam (1956). 

Before going into the technical details, the present status of numerical procedures for 
fitting the autoregressive moving average model will be reviewed briefly. Besides the 
procedures discussed in the introduction of Hannan (1969), there are some significant 
contributions in the engineering literature which are concerned with the maximization of 
the Gaussian likelihood function. I n  an unpublished report, Astrijm, Bohlin and Wensmark 
discussed the statistical and numerical aspects of the maximum likelihood procedure for a 
general one-dimensional scalar process model, including the autoregressive moving average 
model. The numerical procedure was composed for variants of the Newton-Raphson 
type gradient procedure and the decomposition of the one step of iteration into lower 
dimensional stages was not considered. Tretter & Steiglitz (1967) fitted autoregressive and 
moving average coefficients alternately, thus taking advantage of the linearity of the fitting 
equation for the autoregressive coefficients. But this was also limited to scalar cases and the 
interaction between the two stages was not taken into account. This deficiency does not 
appear in Hannan's procedure if it is used properly. A significant contribution to the multi- 
dimensional vector case was made by Kashyap (1970), who introduced a systematic pro- 
cedure for the calculation of the gradient of the likelihood function. Like Tretter and 
Steiglitz, Kashyap left the task of maximization to available computer programs and did not 
go into the details of the maximization procedure. It is mentioned by Wilson (1971, p. 520) 
that an iterative numerical procedure which generalizes the nonlinear least square method 
of Marquardt (cf. Powell, 1970, p. 95) has been used for the maximization of the Gaussian 
likelihood function of a general model which includes the autoregressive moving average 
model as a special case. The examples reported by Kashyap (1970) and Wilson (1971) are 
restricted to two-dimensional vector cases and the orders of the models are rather low. 
Simple analysis shows that the effect of dimension on the computational complexity can be 
serious. Thus without the introduction of some new approach, practical applicability of the 
autoregressive moving average model is extremely dubious, a t  least for high-dimensional 
cases. 

As was pointed out by Tretter & Steiglitz (1967), there is another problem, namely the 
decision on the order of the models to be fitted to real data. A procedure for fitting multi- 
dimensional autoregressive models (Akaike, 1971 a ) was successfully applied to real data 
by Otomo, Nakagawa & Akaike (1972). Although there is hope of extending the same 
decision procedure to the present case (Akaike, 1972 a) ,the multidimen~ional autoregressive 
moving average model fitting by maximizing the Gaussian likelihood function must be con- 
sidered to be still hampered by its enormous numerical complexities. I n  this paper we shall 
content ourselves by only providing some of the basic information for the development of 
future numerical studies. 
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Assume that a set of observations, y(n) (n = 1, ...,N), on a d-dimensional zero mean 
stationary random process is given. To these data, we fit an autoregressive moving average 
model 

P P 

C b(m) y(n -m) = C a(m) x(n -m), (2.1)
m=O m=O 

where a(m) and b(m) are d x d matrices, q(0) = a(0) = I,, the d x d identity matrix, x(n) is 
a d-dimensional white noise with E{x(n)) = 0, a zero vector, and E{x(n) x(m)') = 0, a zero 
matrix, for n $ m, and E{x(n) x(n)') = G. We assume that the process is Gaussian and 
develop the maximum likelihood estimation procedure for the coefficients a(m), b(m) and G 
under this assumption. When the process is not Gaussian but stationary and ergodic, this 
procedure will give a Gaussian model which will asymptotically give the best fit to the finite 
dimensional distributions of the observed process as evaluated by a properly defined mean 
information of Kullback (1959, p. 5). I n  this sense we call the procedure maximum likeli- 
hood identification rather than maximum likelihood estimation. Since the exact evaluation 
of the Gaussian likelihood is rather complicated even for a one-dimensional case (HAjek, 
1962, p. 432), we assume that the effect of imposing the initial conditions 

is negligible for the evaluation of the likelihood. Under this assumption, the values of 
x(n) (n = 1, ... , N) can be calculated for a given set of a(m) and b(m) by using (2.1) and the 
set of observations y(n). 

The corresponding likelihood is given by 

where IGI denotes the determinant of G. Twice the negative of the logarithm of the likeli- 
hood is given by 

L = Ndlog(2n)+Nlog IGI + N t r  (COG-I), (2.3)
where 

N 
Go= ( l /N) C x(n) xl(n). (2.4)

n=l 


Since the dependence of Go on the parameters is highly nonlinear, i t  is not easy to develop 
an insight into the minimization of L. By using Fourier transforms an explicit expression 
of this dependence can be obtained, and for this we need another approximation. Assuming 
y(n) = 0 for n < 0 and n > N, we define the Fourier transform of y(n)/JN by 

The Fourier transforms of a(m) and b(m) are defined by 

P 

A(f )= C exp ( -i2nfm) a(m), 
m=O 

4 

B(f) = C exp (-i2nfm) b(m). 

m=O 



We assume that for the evaluation of C, the Fourier transform X(f) of x(n)/JN, 
analogously defined to Y(f ), can be replaced by 

This assumption is equivalent to neglecting the effect of the transient reponse of the filter 
specified by {A(f))-I B(f), a t  n > N. Under the present assumption (2.4) is replaced by 

where * denotes conjugate transpose. Hereafter the limits of integration are always -$ and 
iJ and they are omitted. Also the argument f, which denotes the frequency, is sometimes 
omitted. Thus (2.5) may be expressed in the form X = A-lBY. 

Our problem is now to minimize L defined by (2.3), (2.5) and (2.6) with respect to a(m),  
b(m)and G. This formulation may be considered to be a special case of the least squares 
parameter estimation developed by Whittle (1953). Our derivation clearly shows that the 
transient response of A-1B plays a definite role in determining the validity of the approxi- 
mations. I n  the following discussion it is tacitly assumed that both A and B are invertible, 
in the sense that the elements of A-l and B-l are the Fourier transforms of some absolutely 
convergent sequences which take only zeros on the negative time axis. 

When a matrix F is nonsingular and its elements are functions of a set of parameters Bi, 
it  is not hard to verify the following relations (e.g. Dwyer, 1967): 

where the derivative of a matrix denotes the matrix of the derivatives of the elements. 
Using these relations, we get from (2.3), for i,j = I, ...,d, 

--aL - N t r  (E ,~G-1) -N t r  (c,G - ~ E , ~G-I), 
8% 

where Gij denotes the (i,$)th element of G and Eij denotes a matrix with (i,j) th element 
equal to 1and others equal to zero and with the dimension identical to that of its adjacent 
matrices. By equating the above derivatives to zero, we get 

Gsl = (G-lC,, G-l)ji, 

which implies that, other parameters being b e d ,  G = C,gives the minimum of L. Inserting 
this into (2.3), to maximize the likelihood function, we have only to minimize M defined by 

M = log lC,I. (3.3) 


As was mentioned in the preceding section, except for the case of a pure autoregression, 

the dependence of C, on the parameters is highly nonlinear and the only way to minimize 

M is by numerical procedures. Numerical optimization, either minimization or maximiza- 
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tion, is itself a subject of intensive current study, but as can be seen from a recent survey 
by Powell (1970) the gradient and the Hessian play the dominant roles in this field. With 
the aid of Fourier transforms, compact representations for these quantities are available 
in the present case. Prom (2.6) and (2.5), we have 

Co= SA-lBYY*B*A*-ldf. (3.4) 

Let aij(m) and bij(m) denote the (i, j ) th  elements of a(m) and b(m), respectively. By (3.1), 
we have aM/aauv(k) = aCola~uv(k)).tr{C;l Prom (3.4) and the relation 

aA/aauv(k)= exp ( -i2nkf) Euv, 
we get 

acol%v(k)= C,{cc,,(k)) +C,{auv(k))',
where 

Cl{au,(k)) = -SA-lBYY *B*A*-lE,,A*-l exp (i2nkf) df. (3.5) 

Taking into account the symmetry of Co and the fact that  the factors can be rotated 
under the trace sign, we get, from (3.1) and (3.3), 

aM/aauv(k)= 2 t r  [C,{a,,(E)) C, I]. 

Analogously, we get 
aM/abrs(m)= 2 t r  [Cl{b,(m)) Gi l l ,  

where 

Cl{b,(m)) = /A-'BYY*E,A*-I exp (i2nmf) df. 

By rotating the factors of (3.6) and (3.7) under the trace sign and using the 
relation X = A-lBY, one representation for the gradient of M is given as follows, for 
u , v , r , s =  1 ,...,d ; k =  1 ,...,p ; m =  1 ,...,q ,  

aM - -2 t r  HAXX*E,, exp (i2nkf) df m- S 
aM 
ab,o=2 t rSHBYY*E,exp (i2nqf) df, 

where 
H = A*-I@-1A-1.

0 

It can be seen that aM/aauv(k) can be obtained as minus twice the (u, v)th element of the 
k-lag cross-covariance matrix between the time series which are the inverse Fourier trans- 
forms of HAX and X. Analogously, aH/ab,,(m) is twice the (r, s)th element of the m-lag 
cross-covariance matrix between the series corresponding to HBY = HAX and Y. This 
observation reveals the identity between the present results and those obtained by Kashyap 
(1970, p. 29) by a time domain analysis with the help of Lagrange multipliers. By using (3.2), 
wehave , fo ru ,v , r , s=  I ,...,d; k =  I ,...,p ; m =  I ,...,q, 

Here we are going to develop an approximation to the Hessian, which will practically 
always satisfy the numerically basic requirement of positive definiteness. Also, i t  will 
provide a good approximation to the inverse of Fisher's information matrix when the model 

mailto:A*-I@-1A-1


is correct and a large number of observations are available and therefore the estimates of 
the parameters are close to the true values. We already noticed the relation 

where Cl{a,,(k)) was given by (3.5). 
When N is sufficiently large and the estimates are close to the true values, 

A-lBYY*B*A*-I will be close to G, the covariance matrix of x(n). Since A is physically 
realizable, the Fourier transform of A*-' vanishes on the positive side of the time axis. 
These observations suggest an approximation to the Hessian obtained by putting aCo/aa,,(k) 
equal to zero. By using (3.8), analogous discussion can be applied to aC0/2b,(m) and we 
come to the conclusion that a reasonable approximation to the Hessian will be obtained 
by assuming these first order derivatives within the above formula equal to zero. This 
amounts to ignoring the derivatives of C t l  and thus from (3.6) an approximation to 
a2M/abTs(m)Ba,,(k) is given by 2 t r  [C,' aCl{a,(k))/ab,s(m)]. This approximation was dis- 
cussed in the unpublished report of Astrom, Bohlin and Wensmark for the one-dimensional 
case. Now from (3.5), we get 

-J A-lBYY*EsTA*-lEv,A*-l exp {i2n(k +m) f )  df. 

On taking into account the relation X = A-,BY, the last term can be expressed in the 
farm 

F * A * B * - ' E  ST A*-' E,A*-1 exp {i2n(k +m) f)df. 

I n  the time domain, this represents a matrix whose elements can be expressed as various 
sums of (k+m)-lag cross-products between the elements of autocovariance matrix 
sequence of x(n) and the elements of a matrix time series; the latter have only zeros 
on the negative side of the time axis. Thus, when the data length N is large and the fitted 
model produces nearly white x(n), this term will nearly vanish. Based on this, we neglect 
the last term and adopt the approximation 

By analogous reasoning we have approximately 

aC1fauv(k))= exp {i2n(k -m) f )  df. / ~ - ~ E ~ ~ X X * E , , A * - ~  
aa,s(m)

We have exactly 

aC1{bw(k))= /i-~E,YY*E,A*-1 exp {i2n(k -m) f )  df. 
ab,s(m) 

Thus as our final approximation to the Hessian we adopt, for u,v, r ,s = 1, ...,d, 

a2M 
= 2 t r  SE,XX*E,,Hexp {i2n(k-m) f)df (m, k = 1,...,p) ,  (3.11)

aa,(m) a a , m  

a2M 


= - 2 t r  1EmYX*E,,Hexp{i2n(k-m)f)df ( m = 1,...,q ; k = l ,  ...,p),
ab~s(m)aa,,(k) (3.1 2) 
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a2M 
= 2trSE,,YY*Ev,Hexp{i2;.r(k-m) f)df (m,k = 1, ...,q),  (3.13)

ab,s(m)ab,(k) 
where H = A*-lC,lA-l. TO show the nonnegative definiteness of this approximation, we 
proceed as follows. Let D represent the positive definite symmetric square root of C<l. 
Define the stationary stochastic processes X,,(n) and Y,,(n) by 

X,,(n) =Sexp (i2rnf) DA-lE,,dX0( f ), 

where dXo( f )and dYo( f )represent orthogonal increment processes with 

E{dXo(f) dXo(f)*) = XX*, E{dYo(f)dXo(f)*)= YX*, E{dYo(f)dYo(f)*)= YY* 

By introducing a d-dimensional random vector e, which is independent of X,,(n) and 
Y,,(n) and with mutually independent components e(i) (i = 1, . . .,d) with E{e(i)) = 0 and 
E{e(i))2= 1, we can define stationary scalar stochastic processes x,(n) = efX,(n) and 
yrs(n)= efY,(n). The above approximation to the Hessian is identical to the variance 
covariancema.trixof{-x,,(n+k),y,,(n+m)) (u , v , r , s  = 1,...,d; k = 1,...,p ; m  = 1, ...,q). 
This proves that the present approximation to the Hessian is nonnegative definite. 

The Newton-Raphson procedure for successive minimization of M is realized by cor- 
recting the vector of the present estimates of the parameters by the amount equal to the 
negative of the inverse of the Hessian times the gradient. This gives the exact minimum in 
one step if the objective function is quadratic (Powell, 1970, p. 83). Thus the procedure will 
be useful when the initial estimates come sufficiently close to the minimizing values of the 
parameters. This is generally not the case in practical applications and we have to incor- 
porate various modifications of the correcting procedure to make it useful. Thus only a 
reasonable approximation to the inverse of the Hessian will be sufficient for numerical 
procedures. It will be shown that Hannan's procedure is equivalent to just one step of the 
standard Newton-Raphson procedure with the gradient and the approximate Hessian 
obtained in the preceding section. 

The scalar case where d = 1 is especially simple to treat, since in this case the trace signs 
and E,,'s can be ignored and we have only a(k) = a,,(k) and b(nz) = bll(m) to consider. In  
this case if we denote by U the p x p matrix given by (3.1 1) and by a the vector of 

a(k)(k = 1, . . . ,p) 

the part of the gradient given by (3.9) can be represented in the form -c -Ua, where c is a 
p-dimensional vector obtained by putting m = 0 in (3.11) for k = 1, ...,p. Analogously, the 
part of the gradient given by (3.10) can be represented in the form d +Vb, where V is a q x q 
matrix given by (3.13), b is the vector of b(m) (m = 1, ...,p) and d is a p-dimensional 
vector obtained by putting m = 0 in (3.13) for k = 1, ...,q. Each step of the Newton- 
Raphson procedure modifies a and b into a, and b1 defined by 



where -W denotes a q x p  matrix obtained by (3.12) (m = I, ...,q; k = 1, ...,p). It can be 
seen that if we put 

- W  v 
then 

P = ( U-W'V-lW)-l, R = V-lW(U -W'V-1W-)-1, R' = PW'V-I 

Q = V-I +V-lWR' 
Using these relations, we get 

a, = a +E, bl = -V-l(d -WE), (4.2)
where 

E = (I, -U-1W'V-lW)-l {U-l(c +Ua)+U-lW'( -V-ld -b)), (4.3) 

I, denoting a p x p identity matrix. 
If we consider the fact that in the quadratic case -WAa and W'Ab give the variations of 

the derivatives of M with respect to b and a due to the variations Aa and Ab of a and b,  
respectively, we can see that the above step of the Newton-Raphson procedure can be 
decomposed into three stages of operation. First, by equating d +Vb equal to zero, b is 
replaced by b, = -V-ld. This is equivalent to minimizing M with respect to b and the 
change of b by the amount of Ab = -V-ld -b modifies - (C +Ua) of (4.1)into 

- ( c + U a +  W'Ab). 

If we put this last quantity equal to zero and solve for a , then we get a, = -U - ~ ( C+W'Ab), 
and this introduces the modification of a by the amount Aa = U-l(c +Ua)+U-IW'Ab. 
Even with this second modification the minimum of a quadratic objective function cannot 
be directly obtained and the process has to be iterated indefinitely to attain the minimum. 
The modification of a by Aa changes d +Vb in the gradient into d +Vb -WAa, and by 
equating this equal to zero a new value of b is obtained as -V-ld +V-lWAa. The difference 
between this and the original b is given by Ab, = -b -V-ld +V-IWAa. At this point i t  is 
easy to see that the iteration of this process will eventually lead to the solution given by 
(4.2) and (4.3). The Hannan procedure is a realization of this successive minimization 
procedure with a modification of the second stage so that the whole process will be complete 
a t  the third stage. The above b, is Hannan's @(I),a, is the second intermediate statistic of 
Mannan (&(z )  of 1969, &(I)of 1970)and a, and b, are the h a 1  estimates B(l)and 13"'. Tretter & 
Steiglitz (1907) did not consider the possibility of this modification. 

On taking into account the relations 

the above discussion can be extended directly to the multidimensional vector case, if the 
definitions of a and b are replaced by 

{a,(k):u,v= 1,...,d ; I c = I ,  ...,p), {brs(m):r ,8=l,...,d ; m = l ,  ...,q), 

those of U,  V and W modified correspondingly and I, in (4.3)replaced by apd2x pd2identity 
matrix. As will be discussed in the next section, it seems that this extension to the multi- 
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dimensional case differs from the one suggested by Hannan for the multidimensional moving 
average case. 

The above discussion is only about a realization of one step of the Newton-Raphson 
procedure and it should be remembered that the simple iteration of the step with recalcula- 
tion of the gradient and Hessian does not guarantee the convergence to the minimum of M in 
practical applications. The simple iteration will work only if the initial estimates are 
sufficiently close to the minimizing parameter values. There are various numerical pro- 
cedures developed to overcome the difficulty when the initial estimates are far from the 
minimizing values (Powell, 1970), but since the choice of the best procedure is highly 
empirical we mill leave it to future experimental studies. 

The dimension of the Hessian is (p +q) d2 x (p+q) d2. This shows that when d is large 
the computational difficulty will be quite significant. Thus even if we adopt a numerical 
procedure which avoids the direct calculation of the Hessian, if an estimate of the inverse of 
the Hessian is required the amount of storage necessary will become a serious problem. 
On reflection it becomes clear that we can drastically reduce this amount. As was already 
mentioned, the present approximation to the Hessian has the structure of a variance matrix 
of a set of variables of some stationary stochastic processes. Thus if in the discussion a t  the 
end of § 3 we arrange the elements of the stochastic processes in the form 

{-x . . (n+I ) ,  ..., - X . . ( ~ + P ) ,  y . . ( n+ l ) ,...,y..(n+q)), 
where 

z .  n = . . . 2,. (n)= (z,,(n), ...,~,d(n)) 

for z = x and y, the resulting approximate Hessian has a block Toeplitz type characteristic, 
i.e. we have only to store the first columns of d2 x d2 blocks of U and V and the first rows 
and columns of d2 x d2 blocks of W. Other d2 x d2 blocks are obtained by diagonally shifting 
down these blocks and using the symmetry of the Hessian. This means the reduction of the 
amount of necessary storage from (p+q) d2x (p+q) d2 to {2(p+q)-1)x d2x d2. If we 
take into account the symmetry of two of the matrices, this figure further reduces to 
2(p+q- I )  x d2x d2. For the block Toeplitz matrices U and V there are efficient procedures 
for computi~.ig their inverses and the solutions of the simultaneous equations with coefficients 
equal to U or V (Kutikov, 1967; Akaike, 1973). I n  applying Hannan's procedure, the 
comput,ation of (4.3) introduces serious trouble. 'CVithout further analysis of this stage, it 
looks as if the necessary dimension of the matrix jumps up again to pd2 x pd2. The simplest 
case is where p = q. I n  this case we arrange the approximate Hessian so that it corresponds 
to the covariance matrix of 

Obviously the corresponding approximate Hessian is a block Toeplitz matrix and we have 
only to manipulate with p blocks each of dimension 2d2 x 2d2, one of which is symmetric. For 
this case the advantage of a block Toeplitz matrix can be fully exploited and without using 
the formulae (4.2) we can directly get the results of (4.1) with manipulations of 2d2 x 2d2 
dimensional matrices. This leads to a significant computational simplicity which has not 
previously been mentioned in the literature. For the Newton-Raphson procedure, the 
explicit evaluation of the inverse of the Hessian is not necessary. But it is necessary for the 



evaluation of the statistical variability of the estimates, as this provides an estimate of 
Fisher's information matrix. For the block Toeplitz type Hessian this can be obtained easily. 
A further point is that the block Toeplitz type characteristic is not disturbed by the addition 
of a constant d2x d2diagonal matrix to the diagonal blocks of the Hessian. This permits the 
Marquardt type modification of the Newton-Raphson procedure (Powell, 1970, p. 95) 
without losing the above-stated numerical convenience. 

Computations of the Hessian can be done from (3.11), (3.12) and (3.13). By replacing X 
by A-lBY, these quantities can be obtained from the sequences of autocovariance matrices 
of Y with the aid of some finite duration approximation of the inverse Fourier transform of 
A-l. To realize this, A must be invertible. Since (3.9) shows that a t  the minimum of Jlevery 
(u,v)th element of (3.9) should vanish, we have 

~ ~ ~ ~ * e x p ( i 2 n k ~ ) d ~ = O( k =  1, ...,p). 

Because H = A*-lCilA-l, we have that 

SKACoexp(i2nkf)df= O  ( k =  I ,  ...,p), 


where K = A*-lC,lXX*C,1A-l. Since C, is a positive definite constant matrix, we have 


SKA exp (i2nkf) df = 0 (k = 1, . . . ,p) .  (5.1) 


This last result shows that a(m)(m = 1, ...,p )  are the coefficient matrices of thepth order 

autoregressive model fitted to the sequence of autocovariance matrices corresponding to K. 

Now K will never exactly correspond to a finite order autoregressive model; Whittle (1963) 

has shown that in this case A is invertible. Analogously, from (3.10), we can infer that B is 

invertible. These observations show that during the process of maximization of the Gaussian 

likelihood we can limit A and B to the set of invertible models. Incidentally, (5.1) is 

apparently in the same form as the equation proposed by Hannan [1969, (13); 1970, (5.11)] 

for the calculation of the intermediate statistic for the fitting of a multidimensional moving 

average model. It is clear from our discussion of the Newton-Raphson procedure that if in 

(3.9)and (3.11) we define H by the present values of A and C, and equate (3.9) to zero to 
solve for a new A, this will give the desired intermediate statistics. I n  contrast to this, if 
in (5.1) we define K by the present values of A and C, and solve for A as proposed by Hannan, 
the relation between the present solution and the Newton-Raphson procedure is not clear. 
This is because (5.1) is an arbitrary linearization of the nonlinear maximum likelihood 
equation, obtained by equating (3.9) to zero. 

The following observation clarifies the inherent difficulty in the multidimensional case. In  
the scalar case, once the moving average coefficients are fixed, the best fitting autoregression 
coefficients are directly obtained as the autoregression coefficients of the series corresponding 
to A-lY. Unfortunately in the multidimensional case A-1 and B usually do not commute 
and thus the gradient of the likelihood function with respect to the autoregressive co- 
efficients becomes highly nonlinear and the maximization of thelikelihood with respect to the 
autoregressive coefficients can only be realized through some iterative numerical procedure. 

The final comments are about getting the initial estimates of the parameters and the 
decision on the order of the models. Since a decision procedure developed by Akaike (1971 a) 
on the order of an autoregressive model to be fitted to a given set of data gives reasonable 
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results in practical applications (Otomo, et al. 1972), it seems that by using this procedure 
we can fit an autoregressive model to get an estimate of x(n).This, as was suggested by 
Durbin (1960), will allow us to get the initial estimates of the coefficients of an autoregressive 
moving average model. Based on an information theoretic consideration, the basic idea of 
the decision procedure on the order of autoregressive models has been extended to the 
general case of the maximum likelihood model identification by Akaike (1971 b) and its 
practical utility has been checked with numerical examples, including one-dimensional 
autoregressive moving average models (Akaike, 1972a, b). For the final, and possibly also 
for the initial, determination of proper autoregressive moving average models, this pro- 
cedure may profitably be used. Models of various orders should be tried and compared, and 
for the decision oil the best fit the above-mentioned procedure will be useful. 

The author would like to express his sincere thanks to Professors Will Gersch and Richard 
11.Jones, the University of Hawaii, for helpful and stimulating discussions of the present 
subject. This work was partially supported by National Science Foundation Grants at  the 
University of Hawaii. 
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