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Abstract

Penalized splines can be viewed as BLUPs in a mixed model framework, which allows
the use of mixed model software for smoothing. Thus, software originally developed for
Bayesian analysis of mixed models can be used for penalized spline regression. Bayesian
inference for nonparametric models enjoys the flexibility of nonparametric models and
the exact inference provided by the Bayesian inferential machinery. This paper provides
a simple, yet comprehensive, set of programs for the implementation of nonparametric
Bayesian analysis in WinBUGS. Good mixing properties of the MCMC chains are obtained
by using low-rank thin-plate splines, while simulation times per iteration are reduced
employing WinBUGS specific computational tricks.
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1. Introduction

The virtues of nonparametric regression models have been discussed extensively in the statis-
tics literature. Competing approaches to nonparametric modeling include, but are not limited
to, smoothing splines (Eubank 1988; Green and Silverman 1994; Wahba 1990), series-based
smoothers (Ogden 1996; Tarter and Lock 1993), kernel methods (Fan and Gijbels 1996; Wand
and Jones 1995), regression splines (Friedman 1991; Hansen and Kooperberg 2002; Hastie and
Tibshirani 1990), penalized splines (Eilers and Marx 1996; Ruppert, Wand, and Carroll 2003).
The main advantage of nonparametric over parametric models is their flexibility. In the non-
parametric framework the shape of the functional relationship between covariates and the
dependent variables is determined by the data, whereas in the parametric framework the
shape is determined by the model.
In this paper we focus on semiparametric regression models using penalized splines (Ruppert
et al. 2003), but the methodology can be extended to other penalized likelihood models.
It is becoming more widely appreciated that penalized likelihood models can be viewed as
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particular cases of Generalized Linear Mixed Models (GLMMs, see Brumback, Ruppert, and
Wand 1999; Eilers and Marx 1996; Ruppert et al. 2003). We discuss this in more details in
Section 2. Given this equivalence, statistical software developed for mixed models, such as
S-PLUS (Insightful Corp. 2003, function lme) or SAS (SAS Institute Inc. 2004, PROC MIXED
and the GLIMMIX macro) can be used for smoothing (Ngo and Wand 2004; Wand 2003). There
are at least two potential problems when using such software for inference in mixed models.
Firstly, in the case of GLMMs the likelihood of the model is a high dimensional integral
over the unobserved random effects and, in general, cannot be computed exactly and has
to be approximated. This can have a sizeable effect on parameter estimation, especially on
the variance components. The second problem is that confidence intervals are obtained by
replacing the estimated parameters instead of the true parameters and ignoring the additional
variability. This results in tighter than normal confidence intervals and could be avoided by
using bootstrap. However, standard software does not have bootstrap capabilities and favors
the “plug-in” method.
Bayesian analysis treats all parameters as random, assigns prior distributions to characterize
knowledge about parameter values prior to data collection, and uses the joint posterior dis-
tribution of parameters given the data as the basis of inference. Often the posterior density
is analytically unavailable but can be simulated using Markov Chain Monte Carlo (MCMC).
Moreover, the posterior distribution of any explicit function of the model parameters can be
obtained as a by-product of the simulation algorithm.
The Bayesian inference for nonparametric models enjoys the flexibility of nonparametric mod-
els and the exact inference provided by the Bayesian inferential machinery. It is this combina-
tion that makes Bayesian nonparametric modeling so attractive (Berry, Carroll, and Ruppert
2002; Ruppert et al. 2003).
The goal of this paper is not to discuss Bayesian methodology, nonparametric regression
or provide novel modeling techniques. Instead, we provide a simple, yet comprehensive,
set of programs for the implementation of nonparametric Bayesian analysis in WinBUGS
(Spiegelhalter, Thomas, and Best 2003), which has become the standard software for Bayesian
analysis. Special attention is given to the choice of spline basis and MCMC mixing properties.
The R (R Development Core Team 2005) package R2WinBUGS (Sturtz, Ligges, and Gelman
2005) is used to call WinBUGS 1.4 and export results in R. This is especially helpful when
studying the frequentist properties of Bayesian inference using simulations.

2. Low-rank thin-plate splines

The general methodology of semiparametric modeling using the equivalence between penalized
splines and mixed models is presented in Ruppert et al. (2003). Consider the regression model

yi = m (xi) + εi ,

where εi are i.i.d. N
(
0,σ2

ε

)
, εi is independent xi, and m(·) is a smooth function. The smooth

function could be modeled using natural cubic splines, B-splines, truncated polynomials, radial
splines etc. In Bayesian analysis, the particular choice of basis has important consequences
for the mixing properties of the MCMC chains. We will focus on low-rank thin-plate splines
which tend to have very good numerical properties. In particular, the posterior correlation
of parameters of the thin-plate splines is much smaller than for other basis (e.g. truncated
polynomials) which greatly improves mixing.
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The low-rank thin-plate spline representation of m(·) is

m (x,θ) = β0 + β1x +
K∑

k=1

uk |x− κk|3 ,

where θ = (β0,β1, u1, . . . , uK)! is the vector of regression coefficients, and κ1 < κ2 < . . . < κK

are fixed knots. Following Ruppert (2002) we consider a number of knots that is large enough
(typically 5 to 20) to ensure the desired flexibility, and κk is the sample quantile of x’s
corresponding to probability k/(K + 1), but results hold for any other choice of knots. To
avoid overfitting, we minimize

n∑

i=1

{yi −m (xi,θ)}2 +
1
λ

θ!Dθ , (1)

where λ is the smoothing parameter and D is a known positive semi-definite penalty matrix.
The thin-plate spline penalty matrix is

D =
[

02×2 02×K

0K×2 ΩK

]
,

where the (l, k)th entry of ΩK is |κl − κk|3 and penalizes only coefficients of |x− κk|3.
Let Y = (y1, y2, . . . , yn)!, X be the matrix with the ith row Xi = (1, xi), and ZK be the
matrix with ith row ZKi =

{
|xi − κ1|3 , . . . , |xi − κK |3

}
. If we divide (1) by the error variance

one obtains
1
σ2

ε
‖Y −Xβ −ZKu‖2 +

1
λσ2

ε
u!ΩKu ,

where β = (β0,β1)! and u = (u1, . . . , uK)!. Define σ2
u = λσ2

ε , consider the vector β as fixed
parameters and the vector u as a set of random parameters with E(u) = 0 and cov(u) =
σ2

uΩ
−1
K . If (u!, ε!)! is a normal random vector and u and ε are independent then one obtains

an equivalent model representation of the penalized spline in the form of a LMM (Brumback
et al., 1999). Specifically, the P-spline is equal to the best linear predictor (BLUP) in the
LMM

Y = Xβ + ZKu + ε, cov
(

u
ε

)
=

[
σ2

uΩ
−1
K 0

0 σ2
ε In

]
. (2)

Using the reparametrization b = Ω1/2
K u and defining Z = ZKΩ−1/2

K the mixed model (2) is
equivalent to

Y = Xβ + Zb + ε, cov
(

b
ε

)
=

[
σ2

bIK 0
0 σ2

ε In

]
. (3)

The mixed model (3) could be fit in a frequentist framework using Best Linear Unbiased
Predictor (BLUP) or Penalized Quasi-Likelihood (PQL) estimation. In this paper we adopt
a Bayesian inferential perspective, by placing priors on the model parameters and simulating
their joint posterior distribution.
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3. The Canadian age–income data

Figure 1 is a scatterplot of age versus log(income) for a sample of n = 205 Canadian workers,
all of whom were educated to grade 13. These data were used in Ullah (1985), and their
source is a 1971 Canadian Census Public Use Tape.

3.1. Model and priors

The mean of log(income) as a function of age was modeled using thin-plate splines with
K = 20 knots chosen so that the k-th knot is the sample quantile of age corresponding to
probability k/(K + 1). We used model (3) where yi, xi denote the log income and age of the
i-th worker. The following priors were used

{
β0, β1 ∼ N(0, 106)
σ−2

b , σ−2
ε ∼ Gamma

(
10−6, 10−6

) , (4)

where the second parameter of the normal distribution is the variance. In many applications
a normal prior distribution centered at zero with a standard error equal to 1000 is sufficiently
noninformative. If there are reasons to suspect, either using alternative estimation methods
or prior knowledge, that the true parameter is in another region of the space, then the
prior should be adjusted accordingly. The parametrization of the Gamma(a, b) distribution
is chosen so that its mean is a/b = 1 and its variance is a/b2 = 106. In Section 8 we discuss
several issues related to prior choice for nonparametric smoothing.

3.2. WinBUGS program for age–income data

We now describe the WinBUGS program that follows closely the description of the Bayesian
nonparametric model in Equation (3) with the priors defined in (4). We provide the entire
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Figure 1: Scatterplot of log(income) versus age for a sample of n = 205 Canadian workers
with posterior median (solid) and 95% credible intervals for the mean regression function
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program in Appendix A. While this program was designed for the age–income data, it can
be used for other penalized spline regression models with minor adjustments. Many features
of the program will be repeated in other examples and changes will be described, as needed.
The likelihood part of the model (3) is specified in WinBUGS as follows

for (i in 1:n)
{response[i]~dnorm(m[i],taueps)
m[i]<-mfe[i]+mre110[i]+mre1120[i]
mfe[i]<-beta[1]*X[i,1]+beta[2]*X[i,2]
mre110[i] <-b[1]*Z[i,1]+b[2]*Z[i,2]+b[3]*Z[i,3]+b[4]*Z[i,4]+

b[5]*Z[i,5]+b[6]*Z[i,6]+b[7]*Z[i,7]+b[8]*Z[i,8]+
b[9]*Z[i,9]+b[10]*Z[i,10]

mre1120[i]<-b[11]*Z[i,11]+b[12]*Z[i,12]+b[13]*Z[i,13]+b[14]*Z[i,14]+
b[15]*Z[i,15]+b[16]*Z[i,16]+b[17]*Z[i,17]+b[18]*Z[i,18]+
b[19]*Z[i,19]+b[20]*Z[i,20]}

The number of subjects, n, is a constant in the program. The first statement specifies that
the i-th response (log income of the i-th worker) has a normal distribution with mean mi

and precision τε = σ−2
ε . The second statement provides the structure of the conditional mean

function, mi = m(xi). Here beta[] denotes the 2×1 dimensional vector β = (β0,β1), which is
the vector of fixed effects parameters. The ith row of matrix X is Xi = (1, xi). Similarly, b[]
denotes the 20×1 dimensional vector b = (b1, . . . , bk) of random coefficients. Both the matrix
X and Z = ZKΩ−1/2

K are design matrices obtained outside WinBUGS and are entered as
data. In Section 9 we discuss an auxiliary R program that calculates these matrices and uses
the R2WinBUGS package to call WinBUGS from R. Such programs would be especially useful
in a simulation study. The formulae for mre110[] and mre1120[] could be shortened using
the inner product function inprod. However, depending on the application, computation
time can be 5 to 10 times longer when inprod is used.
The distribution of the random coefficients b is represented in WinBUGS as

for (k in 1:num.knots){b[k]~dnorm(0,taub)}

This specifies that the bk are independent and normally distributed with mean 0 and precision
τb = σ−2

b . Here num.knots is the number of knots (K = 20) and is introduced in WinBUGS
as a constant. The prior distributions of model parameters described in Equation (4) are
specified in WinBUGS as follows

for (l in 1:2){beta[l]~dnorm(0,1.0E-6)}
taueps~dgamma(1.0E-6,1.0E-6)
taub~dgamma(1.0E-6,1.0E-6)

The prior normal distributions for the β parameters are expressed in terms of the precision
parameter and the Gamma distributions are specified for the precision parameters τε = σ−2

ε

and τb = σ−2
b .

Note that the code is very short and intuitive presenting the model specification in rational
steps. After writing the program one needs to load the data: the n-dimensional vector
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Parameter 2.5% 50% 97.5%
β0 10.12 14.47 19.79
β1 −0.14 −0.02 0.08
σb 0.0029 0.0066 0.0161
σε 0.48 0.53 0.59

Table 1: Posterior median and 95% credible interval for some parameters of model (3) for the
Canadian age–income data

response (y) and the design matrices X[,] (X) and Z[,] (Z), the sample size n (n), the
number of knots num.knots (K). At this stage the program needs to be compiled and initial
values for all random variables have to be loaded.

3.3. Model inference

Convergence to the posterior distributions was assessed using several initial values of model
parameters and visually inspecting several chains corresponding to the model parameters.
Convergence was attained in less than 1, 000 simulations, but we discarded the first 10, 000
burn-in simulations. For inference we used 90, 000 simulations. These simulations took ap-
proximately 6 minutes on a PC (3.6GB RAM, 3.4GHz CPU).
Table 1 shows the posterior median and a 95% credible interval for some of the model pa-
rameters. We also obtained the posterior distributions of the mean function of the response,
mi = m(xi). Figure 1 displays the median, 2.5% and 97.5% quantiles of these posterior
distributions for each value of the covariate xi. The greyed area corresponds to pointwise
credible intervals for each m(xi) and is not a joint credible band for the mean function. An
important advantage of Bayesian over the typical frequentist analysis is that in the Bayesian
case the credible intervals take into account the variability of each parameter and do not use
the “plug-in”method. Prediction intervals at an in-sample x value can be obtained very easily
by monitoring random variables of the type

y∗i = mi + ε∗i ,

with ε∗i being independent realizations of the distribution N(0,σ2
ε ). This can be implemented

by adding the following lines to the WinBUGS code

for (i in 1:n)
{epsilonstar[i]~dnorm(0,taueps)
ystar[i]<-m[i]+epsilonstar[i]}

4. The wage–union membership data

Figure 2 displays data on wages and union membership for 534 workers described in Berndt
(1991). The data were taken from the Statlib website at Carnegie Mellon University http:
//lib.stat.cmu.edu/. This data set was analyzed in Ruppert et al. (2003) and standard
linear, quadratic and cubic logistic regression are not appropriate in this case. Instead, they

http://lib.stat.cmu.edu/
http://lib.stat.cmu.edu/
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Figure 2: Logistic spline fit to the union and wages scatterplot (solid) with 95% credible sets.
Raw data are plotted as pluses, but with values of 1 for union replaced by 0.5 for graphical
purposes. A worker making USD 44.50 per hour was used in the fitting but not shown to
increase detail.

model the logit of the union membership probability as a penalized spline, which allows
identification of features that are not captured by standard regression techniques. In this
section we show how to implement a semiparametric Bernoulli regression in WinBUGS using
low-rank thin-plate splines.

4.1. Generalized P-spline model

Denote by y the binary union membership variable, by x the continuous wage variable and by
p(x) the union membership probability for a worker with wage x in USD per hour. The logit
of p(x) is modeled nonparametrically using a linear (p = 1) penalized spline with K = 20
knots. We used the following model






yi|xi ∼ Bernoulli{p(xi)}
logit{p(xi)} = β0 + β1xi +

∑K
k=1 bkzik

bk ∼ N(0,σ2
b )

εi ∼ N(0,σ2
ε )

, (5)

where zik is the (i, k)th entry of the design matrix Z = ZKΩ−1/2
K defined in Section 2. The

following prior distributions were used
{

β0, β1 ∼ N(0, 106)
σ−2

b ∼ Gamma
(
10−6, 10−6

) . (6)
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Parameter 2.5% 50% 97.5%
β0 −7.48 −4.15 −2.43
β1 −0.03 0.34 1.08
σb 0.045 0.100 0.229

Table 2: Posterior median and 95% credible interval for some parameters of the model
presented in Equations (5) and (6)

4.2. WinBUGS program for wage–union data

While model (5) is very similar to model (3) the Bayesian analysis implementation in MAT-
LAB, C or other software is significantly different. Typically, when the model is changed one
needs to rewrite the entire code and make sure that all code bugs have been removed. This
is a lengthy process that requires a high level of expertise in statistics and MCMC coding.
WinBUGS cuts short this difficult process, thus making Bayesian analysis appealing to a larger
audience.
In this case, changing the model from (3) to (5) requires only small changes in the WinBUGS
code. Specifically, the two lines specifying the conditional distribution of the response variable
are replaced with

for (i in 1:n)
{response[i]~dbern(p[i])
logit(p[i])<-mfe[i]+mre110[i]+mre1120[i]}

while the rest of the code remains practically unchanged. Given this very simple change,
we do not provide the rest of the code here, but we provide a commented version in the
accompanying software file.

4.3. Model inference

Table 2 shows the posterior median and a 95% credible interval for some of the model pa-
rameters. We also obtained the posterior distributions of pi = p(xi) and Figure 2 displays
the median, 2.5% and 97.5% quantiles of these distributions. The greyed area corresponds
to credible intervals for each p(xi) and is not a joint credible band. The credible intervals
take into account the variability of each parameter. Convergence was attained in less than
1, 000 simulations, but we discarded the first 10, 000 burn-in simulations. For inference we
used 90, 000 simulations. These simulations took approximately 80 minutes on a PC (3.6GB
RAM, 3.4GHz CPU).

5. The Sitka spruce data

The mixed model representation of penalized splines allows simple extensions to additive
mixed models. As an example we will use data on the growth of Sitka spruces displayed in
Figure 1.3 in Diggle, Heagerty, Liang, and Zeger (2002). The data consist of growth mea-
surements of 79 trees over two seasons: 54 trees were grown in an ozone-enriched atmosphere
while the remaining 25 comprise the control group.
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Figure 3: Thin-plate spline fit for the function f(·) for Sitka spruce data (solid) with 95%
credible sets. Sampling days are plotted as pluses.

5.1. Additive mixed models

A useful mixed model for the Sitka data is
{

yij = Ui + αwi + f(xij) + εij

Ui ∼ N(0,σ2
U ) , (7)

where yij , 1 ≤ i ≤ 79, 1 ≤ j ≤ 13, is the log size of spruce i at the time of measurement j
taken on day xij . Also Ui are independent random intercepts for each tree, wi is the ozone
exposure indicator and εij are random errors. We model f(·) using low-rank thin-plate splines

{
f(xij) = β0 + β1xij +

∑K
k=1 bkzijk

bk ∼ N(0,σ2
b )

, (8)

where the xij observations are stacked in one vector and (ij) corresponds to the {13 ∗ (i− 1) + j}th
observation. Here zijk is the (13 ∗ (i− 1) + j, k)th entry of the design matrix Z = ZKΩ−1/2

K
defined in Section 2. The random parameters bk are assumed independent normal with σ2

b
controling the shrinkage of the thin-plate spline function towards the first degree polynomial.

5.2. WinBUGS program for the Sitka spruce data

The WinBUGS program has essentially the same structure as the previous programs. The
likelihood part of the program is

for (k in 1:n)
{log.size[k]~dnorm(mu[k],tauepsilon)
mu[k]<-U[id.num[k]]+alpha*ozone[k]+m[k]
m[k]<-beta[1]*X[k,1]+beta[2]*X[k,2]+b[1]*Z[k,1]+b[2]*Z[k,2]+

b[3]*Z[k,3]}
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Parameter 2.5% 50% 97.5%
α −0.61 −0.31 −0.007
β0 3.39 7.20 10.99
β1 −0.92 −0.30 0.32
σU 1.87 2.62 3.55
σb 0.34 0.70 2.35
σε 0.178 0.187 0.195

Table 3: Posterior median and 95% credible interval for some parameters of the model pre-
sented in Equations (7) and (8)

The indexing structure is induced by stacking the vectors of observations corresponding to
trees. For example the kth observation corresponds to the index (i, j) such that k = 13 ∗ (i−
1)+j. The first line of the program specifies that, conditional on its mean yij are independent
with mean µij and precision τε = 1/σ2

ε . The second line of of code specifies the structure of
the mean function as the sum between a random intercept Ui, the ozone treatment effect αwi

and a nonparametric mean function f(·). The third line describes the mean function f(·) as
a low-rank thin-plate spline.
Nested indexing is a powerful feature of WinBUGS and was used here to define the clusters
corresponding to trees. To achieve this we defined a new vector id.num[] which is the tree
indicator. More precisely, id.num[k]=i if and only if the kth observation corresponds to tree
i. In this way U[id.num[k]] is Ui, the random intercept corresponding to tree i, if and only
if kth observation corresponds to tree i.
The distribution of random intercepts is specified as

for (i in 1:M){U[i]~dnorm(0,tauU)}

where M = 79 is a constant in the program and tauU is the precision τU = 1/σ2
U of the

random intercept. The rest of the program is identical to the program for age and log income
data and is omitted. A file containing the commented program and the corresponding R
programs is attached.

5.3. Model inference

Table 3 shows the posterior median and a 95% credible interval for some of the model pa-
rameters. We also obtained the posterior distributions of f(xij) and Figure 3 displays the
median, 2.5% and 97.5% quantiles of these distributions. The greyed area corresponds to
credible intervals for each f(xij)) and is not a joint credible band. Convergence was attained
in less than 1, 000 simulations, but we discarded the first 10, 000 burn-in simulations. For
inference we used 90, 000 simulations. These simulations took approximately 5.5 minutes on
a PC (3.6GB RAM, 3.4GHz CPU).



Journal of Statistical Software 11

6. The coronary sinus potassium data

We consider the coronary sinus potassium concentration data measured on 36 dogs published
in Grizzle and Allan (1969). The measurements on each dog were taken every 2 minutes from
1 to 13 minute (7 observations per dog). The 36 dogs come from 4 treatment groups.
Four smoothing spline analyses of these data were presented in Wang (1998). In Crainiceanu
and Ruppert (2004b) is presented a hierarchical model of curves including a nonparametric
overall mean, nonparametric treatment deviations from the overall curve, and nonparametric
subject deviations from the treatment curves. In this section we show how to implement such
a complex model in WinBUGS.

6.1. Longitudinal nonparametric ANOVA model

Denote by yij and tij the potassium concentration and time for dog i at time j (in this example
tij = 2j − 1, but we keep the presentation more general). Consider the following model for
potassium concentration

yij = f(tij) + fg(i)(tij) + fi(tij) + εij , (9)

where f(·) is the overall curve, fg(i)(·) are the deviations of the treatment group from the
overall curve and fi(·) are the deviations of the subject curves from the group curves. Here
g(i) represents the treatment group index corresponding to subject i. All three functions are
modeled as low-rank thin-plate splines as follows






f(t) = β0 + β1t +
∑K1

k=1 bkztk

fg(t) = γ0gI(g>1) + γ1gtI(g>1) +
∑K2

k=1 cgkz
(g)
tk

fi(t) = δ0i + δ1it +
∑K3

k=1 dikz
(i)
tk

(10)

where I(g>1) is the indicator that g > 1, that is that the treatment group is g = 2, or 3 or 4.
Here ztk is the (t, k)th entry of the design matrix for the thin-plate spline random coefficients,
Z = ZKΩ−1/2

K corresponding to the overall mean function f(·). Similarly, we defined z(g)
tk

and z(i)
tk as the (t, k)th entries of the design matrices for random coefficients corresponding to

the group level fg(·), 1 ≤ g ≤ 4, and subject level curves fi(·), 1 ≤ i ≤ 36. The number of
knots can be different for each curve and one can choose, for example, more knots to model
the overall curve than each subject specific curve. However, in our example we used the same
knots for each curve (K1 = K2 = K3 = 3).
The model also assumes that the b, c, d and δ parameters are mutually independent and






bk ∼ N(0,σ2
b ), k = 1, . . . ,K1

cgk ∼ N(0,σ2
c ), g = 1, . . . , 4, k = 1, . . . ,K2

dik ∼ N(0,σ2
d), i = 1, . . . , N, k = 1, . . . ,K3

δ0i ∼ N(0,σ2
0), i = 1, . . . , N

δ1i ∼ N(0,σ2
1), i = 1, . . . , N

, (11)

where σ2
b , σ2

c and σ2
d control the amount of shrinkage of the overall, group and individual

curves respectively and σ2
0 and σ2

1 are the variance components of the subject random inter-
cepts and slopes. We could also add other covariates that enter the model parametrically or
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nonparametrically, consider different shrinkage parameters for each treatment group, etc. All
these model transformations can be done very easily in WinBUGS.
To completely specify the Bayesian nonparametric model one needs to specify prior distribu-
tions for all model parameters. The following priors were used

{
β0, β1, γ0g, γ1g ∼ N(0, 106), g = 1, . . . , 4
σ−2

b , σ−2
c ,σ−2

d , σ−2
ε ,σ−2

0 , σ−2
1 ∼ Gamma

(
10−6, 10−6

) . (12)

6.2. WinBUGS program for the dog data

We provide the entire WinBUGS code for this model in Appendix B. Equation (10) is coded
in WinBUGS as

for (k in 1:n)
{response[k]~dnorm(m[k],taueps)
m[k]<-f[k]+fg[k]+fi[k]
f[k]<-beta[1]*X[k,1]+beta[2]*X[k,2]+b[1]*Z[k,1]+

b[2]*Z[k,2]+b[3]*Z[k,3]
fg[k]<-(gamma[group[k],1]*X[k,1]+gamma[group[k],2]*X[k,2])

*step(group[k]-1.5)+c[group[k],1]*Z[k,1]+
c[group[k],2]*Z[k,2]+c[group[k],3]*Z[k,3]

fi[k]<-delta[dog[k],1]*X[k,1]+delta[dog[k],2]*X[k,2]+
d[dog[k],1]*Z[k,1]+d[dog[k],2]*Z[k,2]+d[dog[k],3]*Z[k,3]}

The response is organized as a column vector obtained by stacking the information for each
dog. Because there are 7 observations for each dog, the observation number k can be written
explicitly in terms of (i, j), that is k = 7(i − 1) + j. The number of observations is n =
36× 7 = 252.
We used two n× 1 column vectors with entries dog[k] and group[k], that store the dog and
treatment group indexes corresponding to the k-th observation.
The first two lines of code in the for loop correspond to Equation (9), where dnorm specifies
that response[k] has a normal distribution with mean m[k] and precision taueps. The mean
of the response is specified to be the sum of f[k], fg[k] and fi[k], which are the variables
for the overall mean, treatment group deviation from the mean and individual deviation from
the group curves.
The following lines of code in the for loop describe the structure of these curves in terms of
splines. We keep the same notations from the previous sections. Because in this example we
use the same knots and covariates the matrices X and Z do not change for the three types of
curves.
The definition of the overall curve f[k] follows exactly the same procedure with the one
described in Section 3.2. The definition of fg[k] follows the same pattern but it involves
two WinBUGS specific tricks. The first one is the use of the step function, described in
Section 5.2. Here step(group[k]-1.5) is 1 if the index of the group corresponding to the
k-th observation is larger than 1.5 and zero otherwise. This captures the structure of the
fg(·) function in Equation (10) because the possible values of group[k] are 1, 2, 3 and 4.
The second trick is the nested indexing used in the definition of the γ and c parameters using
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the dogs vector described above. For example, the γ parameters are stored in a 4× 2 matrix
gamma[,] with the g-th line gamma[g,] corresponding to the parameters γ0g, γ1g of the fg(·)
function. Note that if g is replaced by group[k] we obtain the parameters corresponding to
the k-th observation. Similarly, c[,] stores the cgk parameters of fg(·) and is a 4× 3 matrix
because there are 4 treatment groups and 3 knots. The definition of fi[k] curve uses the
same ideas, with the only difference that the vector dog[k] is used instead of group[k]. Here,
delta[,] is a 36 × 2 matrix with the i-th line containing the δ0i and δ1i, the random slope
and intercept corresponding to the i-th dog. Also, d[,] is a 36× 3 matrix with the i-th line
storing the di1, di2 and di3, the parameters of the truncated polynomial functions for the i-th
dog.
The WinBUGS coding of the distributions of b, c, d and δ follows almost literally the definitions
provided in Equation (11)

for (k in 1:num.knots){b[k]~dnorm(0,taub)}
for (k in 1:num.knots)

{for (g in 1:ngroups){c[g,k]~dnorm(0,tauc)}}
for (i in 1:ndogs)

{for (k in 1:num.knots){d[i,k]~dnorm(0,taud)}}
for (i in 1:ndogs)

{for (j in 1:2){delta[i,j]~dnorm(0,taudelta[j])}}

For example, the parameters cj,k are assumed to be independent with distribution N(0,σ2
c )

and the WinBUGS code is c[g,k]~dnorm(0,tauc). Here num.knots, ngroups and ndogs are
the number of knots of the spline, the number of treatment groups and the number of dogs
respectively. These are constants and are entered as data in the program. Using the same
notations as in Section 3.2 the normal prior distributions described in Equation (12) are coded
as

for (l in 1:2){beta[l]~dnorm(0,1.0E-6)}
for (l in 1:2)

{for (j in 1:ngroups){gamma[j,l]~dnorm(0,1.0E-6)}}

and the prior gamma distributions on the precision parameters are coded as

taub~dgamma(1.0E-6,1.0E-6)
tauc~dgamma(1.0E-6,1.0E-6)
taud~dgamma(1.0E-6,1.0E-6)
taueps~dgamma(1.0E-6,1.0E-6)
for (j in 1:2){taudelta[j]~dgamma(1.0E-6,1.0E-6)}

Here taub, tauc, taud and taueps are the precisions σ−2
b , σ−2

c , σ−2
d and σ−2

ε respectively.
taudelta[1] and taudelta[2] are the precisions σ−2

0 and σ−2
1 for the δ-parameters.

6.3. Model inference

Figure 4 shows the data for the 36 dogs corresponding to each treatment group together with
the posterior mean and 90% credible interval for the treatment group mean functions. Recall
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Figure 4: Coronary sinus potassium concentrations for 36 dogs in four treatment groups with
posterior median and 90% credible intervals of the group means. The dotted lines represent
the individual dog data. The solid lines are the posterior medians of the group means. The
dashed lines are the 5% and 95% quantiles of the posterior distributions of the group means.

that the treatment group functions are the sums between the overall mean function and the
functions for the treatment group deviations from the mean functions, that is

fgroup(t) = f(t) + fg(t)

This is achieved in WinBUGS by monitoring a new variable fgroup[] defined as

for (k in 1:n){fgroup[k]<-f[k]+fg[k]}

For inference we used 90, 000 simulations. These simulations took approximately 4.5 minutes
on a PC (3.6GB RAM, 3.4GHz CPU).

7. Improving mixing

Mixing is the property of the Markov chain to move rapidly throughout the support of the
posterior distribution of the parameters. Improving mixing is very important especially when
computation speed is affected by the size of the data set or model complexity. In this section
we present a few simple but effective techniques that help improve mixing.
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Model parametrization can dramatically affect MCMC mixing even for simple parametric
models. Therefore careful consideration should be given to the complex semiparametric mod-
els, such as those considered in this paper. Probably the most important step for improving
mixing in this framework is careful choice of the spline basis. While we have experimented
with other spline bases, the low-rank thin-plate splines seem best suited for the MCMC sam-
pling in WinBUGS. This is probably due to the reduced posterior correlation between the
spline parameters. The truncated polynomial basis provides similar inferences about the
mean function but mixing tends to be very poor with serious implications about the coverage
probabilities of the pointwise confidence intervals.

In our experience with WinBUGS, centering and standardizing the covariates also improve,
sometimes dramatically, mixing properties of simulated chains.

Another, less known technique is hierarchical centering (Gelfand, Sahu, and Carlin 1995b,a).
Many statistical models contain random effects that are ordered in a natural hierarchy (e.g.
observation/site/region). The hierarchical centering of random effects generally has a positive
effect on simulation mixing and we recommend it whenever the model contains a natural
hierarchy. Bayesian smoothing models presented in this paper also contain the exchangeable
random effects, b, which are not part of an hierarchy and they cannot be “hierarchically
centered”.

In Crainiceanu, Ruppert, Stedinger, and Behr (2002) it is shown that even for a simple
Poisson-Log Normal model the amount of information has a strong impact on the mixing
properties of parameters. A practical recommendation in these cases is to improve mixing, as
much as possible, for a subset of parameters of interest. These model specification refinements
pay off especially in slow WinBUGS simulations.

8. Prior specification

Any smoother depends heavily on the choice of smoothing parameter, and for P-splines in a
mixed model framework, the smoothing parameter is the ratio of two variance components
Ruppert et al. (2003). The smoothness of the fit depends on how these variances are estimated.
For example, in Crainiceanu and Ruppert (2004a) it is shown that, in finite samples, the
(RE)ML estimator of the smoothing parameter is biased towards oversmoothing.

In Bayesian mixed models, the estimates of the variance components are known to be sensitive
to the prior specification, e.g., see Gelman (2004). To study the effect of this sensitivity upon
Bayesian P-splines, consider model (3) with one smoothing parameter and homoscedastic er-
rors. In terms of the precision parameters τb = 1/σ2

b and τε = 1/σ2
ε , the smoothing parameter

is λ = τε/τb = σ2
b/σ2

ε and a small (large) λ corresponds to oversmoothing (undersmoothing).

It is standard to assume that the fixed effects parameters, βi, are apriori independent, with
prior distributions either [βi] ∝ 1 or βi ∝ N(0,σ2

β), where σ2
β is very large. In our applications

we used σ2
β = 106, which we recommend if x and y have been standardized or at least have

standard deviations with order of magnitude one.

As just mentioned, the priors for the precisions τb and τε are crucial. We now show how criti-
cally the choice of τb may depend upon the scaling of the variables. If [τb] ∼ Gamma(Ab, Bb)
and, independently of τb, [τε] ∼ Gamma(Aε, Bε) where Gamma(A,B) has mean A/B and
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variance A/B2, then

[τb|Y ,β, b, τε] ∼ Gamma
(

Ab +
Km

2
, Bb +

||b||2

2

)
(13)

and

[τε|Y ,β, b, τε] ∝ Gamma
(

Aε +
n

2
, Bε +

||Y −Xβ −Zb||2

2

)
.

Also,

E(τb|Y ,β, b, τε) =
Ab + Km/2
Bb + ||b||2/2

, Var(τb|Y ,β, b, τε) =
Ab + Km/2

(Bb + ||b||2/2)2
,

and similarly for τε.
The prior does not influence the posterior distribution of τε when both Ab and Bb are small
compared to Km/2 and ||b||2/2 respectively. Since the number of knots is Km ≥ 1 and in
most problems considered Km ≥ 5, it is safe to choose Ab ≤ 0.01. When Bb << ||b||2/2
the posterior distribution is practically unaffected by the prior assumptions. When Bb in-
creases compared to ||b||2/2, the conditional distribution is increasingly affected by the prior
assumptions. E(τb|Y ,β, b, τε) is decreasing in Bb so large Bb compared to ||b||2/2 correspond
to undersmoothing. Since the posterior variance of τb is also decreasing in Bb a poor choice of
Bb will likely result in underestimating the variability of the smoothing parameter λ = τε/τb

causing too narrow confidence intervals for m. The condition Bb << ||b||2/2 shows that the
“noninformativeness” of the gamma prior depends essentially on the scale of the problem,
because the size of ||b||2/2 depends upon the scaling of the x and y variables. If y is rescaled
to ayy and x to axx, then the regression function becomes aym(axx) whose p-th derivative
is aya

p
xm(p)(axx) so that ||b||2/2 is rescaled by the factor a2

ya
2p
x . Thus, ||b||2/2 is particularly

sensitive to the scaling of x.
A similar discussion holds true for τε but now large Bε corresponds to oversmoothing and τε

does not depend on the scaling of x. In applications it is less likely that Bε is comparable in
size to ||Y −Xβ −Zb||2, because the latter is an estimator of nσ2

ε . If σ̂2
ε is an estimator of

σ2
ε a good rule of thumb is to use values of Bε smaller than nσ̂2

ε /100. This rule should work
well when σ̂2

ε does not have an extremely large variance.
Alternative to gamma priors are discussed by, for example, in Gelman (2004); Natarajan and
Kass (2000). These have the advantage of requiring less care in the choice of the hyperpa-
rameters. However, we find that with reasonable care, the conjugate gamma priors can be
used in practice. Nonetheless, exploration of other prior families for P-splines would be well
worthwhile, though beyond the scope of this paper.

9. Interface with and processing in R

WinBUGS 1.4 provides a Graphical User Interface (GUI) that is user friendly and provides
important information including the chain histories that can be used to asses mixing. However,
the WinBUGS script language is relatively limited and is hard to use for effective simulation
studies involving repeated calls for WinBUGS.
R2WinBUGS Sturtz et al. (2005) is an R package that calls WinBUGS 1.4 and exports results
into R. We used this package into our own R function that also does processing of data. R
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functions for each model described in this paper are attached to this paper. We present here
important parts of the R code, while commented R programs are attached to this paper.
The R program starts with

data.file.name="smoothing.norm.txt"
program.file.name="scatter.txt"
inits.b=rep(0,20)
inits<-function(){list(beta=c(0,0),b=inits.b,taub=0.01,taueps=0.01)}
parameters<-list("lambda","sigmab","sigmaeps","beta","b","ystar")

The first two code lines define the file names for data and WinBUGS program respectively.
The third and fourth lines define the initial values to be used in the WinBUGS program and
the fifth line indicates the name of the parameters to be monitored in the MCMC sampling.
These parameters must correspond to parameters in the WinBUGS program. The R program
continues with

data<-read.table(file=data.file.name,header=TRUE)
attach(data)
n<-length(covariate)
X<-cbind(rep(1,n),covariate)
knots<-quantile(unique(covariate),
seq(0,1,length=(num.knots+2))[-c(1,(num.knots+2))])

The first and second lines read and attach the data, the third line defines the sample size,
and the fourth line defines the X matrix of fixed effects for the thin-plate spline. The last
assignment defines the num.knots number of knots at the sample quantiles of the covariate.
An important step in using thin-plate splines is to define the ZK , ΩK and the design matrix
of random coefficients Z = ZKΩ−1/2

K . The following lines of code achieve this

Z_K<-(abs(outer(covariate,knots,"-")))^3
OMEGA_all<-(abs(outer(knots,knots,"-")))^3
svd.OMEGA_all<-svd(OMEGA_all)
sqrt.OMEGA_all<-t(svd.OMEGA_all$v %*%
(t(svd.OMEGA_all$u)*sqrt(svd.OMEGA_all$d)))
Z<-t(solve(sqrt.OMEGA_all,t(Z_K)))

At this stage data is defined, WinBUGS is called from R and the output of the program is
loaded into R for further processing. The main function for doing this is bugs() implemented
in the R2WinBUGS package.

data<-list("response","X","Z","n","num.knots")
Bayes.fit<- bugs(data, inits, parameters, model.file = program.file.name,

n.chains = 1, n.iter = n.iter, n.burnin = n.burnin,
n.thin = n.thin,debug = FALSE, DIC = FALSE, digits = 5,
codaPkg = FALSE,bugs.directory = "c:/Program Files/WinBUGS14/")

attach.all(Bayes.fit)
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10. Pros and cons

An advantage of WinBUGS is the simple programming that translates almost literally the
Bayesian model into code. This saves time by avoiding the usually lengthy implementations
of the MCMC simulation algorithms. For example, total programming time for one model is
approximately 1 to 2 hours. Programs designed by experts for specific problems can be more
refined by taking into account properties of the model and using a combination of art and
experience to improve mixing and computation time. However, when we compare a WinBUGS
with an expert program in terms of computation speed, programming time needs to be taken
into account.
WinBUGS allows simple model changes to be reflected in simple code changes, which encour-
ages the practitioner or the expert to investigate a much wider spectrum of models. Expert
programs are usually restrictive in this sense.
Our recommendation is to start with WinBUGS, implement the model for the specific data set.
If it runs in a reasonable time and has good mixing properties, then continue with WinBUGS.
Otherwise consider designing an expert program. Even if one decides to use the expert
program we still recommend using WinBUGS as a method of checking results. Programming
errors and debugging time are also dramatically reduced in WinBUGS.
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A. WinBUGS code for the age–income example

Model

This is the complete code for scatterplot smoothing used in the age–income example.

model{ #Begin model
#This model can be used for any simple scatterplot smoothing. It
#can be easily modified to accommodate other covariates and/or
#random effects

#Likelihood of the model
for (i in 1:n)

{response[i]~dnorm(m[i],taueps)
m[i]<-mfe[i]+mre110[i]+mre1120[i]
mfe[i]<-beta[1]*X[i,1]+beta[2]*X[i,2]
mre110[i]<-b[1]*Z[i,1]+b[2]*Z[i,2]+b[3]*Z[i,3]+b[4]*Z[i,4]+

b[5]*Z[i,5]+b[6]*Z[i,6]+b[7]*Z[i,7]+b[8]*Z[i,8]+
b[9]*Z[i,9]+b[10]*Z[i,10]

mre1120[i]<-b[11]*Z[i,11]+b[12]*Z[i,12]+b[13]*Z[i,13]+b[14]*Z[i,14]+
b[15]*Z[i,15]+b[16]*Z[i,16]+b[17]*Z[i,17]+b[18]*Z[i,18]+
b[19]*Z[i,19]+b[20]*Z[i,20]}

#Prior distributions of the random effects parameters
for (k in 1:num.knots){b[k]~dnorm(0,taub)}

#Prior distribution of the fixed effects parameters
for (l in 1:2){beta[l]~dnorm(0,1.0E-6)}

#Prior distributions of the precision parameters
taueps~dgamma(1.0E-6,1.0E-6); taub~dgamma(1.0E-6,1.0E-6)

#Deterministic transformations. Obtain the standard deviations and
#the smoothing parameter

sigmaeps<-1/sqrt(taueps);sigmab<-1/sqrt(taub)
lambda<-pow(sigmab,2)/pow(sigmaeps,2)

#Predicting new observations
for (i in 1:n)

{epsilonstar[i]~dnorm(0,taueps)
ystar[i]<-m[i]+epsilonstar[i]}

} #end model
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Data

Data consists of the response variable (response[]) design matrix for fixed effects (X[,])
design matrix of random effects (Z[,]) sample size (n), and number of knots (num.knots).

Initial values

Initial values are provided for the fixed effects β (beta[]) random coefficients b (b[]) precision
τb (taub) and precision τε (taueps). All other initial values are generated by WinBUGS from
their prior distributions.
Both data and initial values are specified and processed in R and then used in WinBUGS
through the bugs() function implemented in the R2WinBUGS package as described in Sec-
tion 9.

B. WinBUGS code for coronary sinus potassium example

Model

This is the complete code for the Bayesian semiparametric model for coronary sinus potassium
example presented in Section 6.

model{ #Begin model
#This model was designed for the coronary sinus potassium model
#described in this paper. However, the basic coding ideas can be
#applied more generally to longitudinal models that involve a
#hierarchy of parametric and/or nonparametric curves

#Likelihood of the model
for (k in 1:n)

{response[k]~dnorm(m[k],taueps)
m[k]<-f[k]+fg[k]+fi[k]
f[k]<-beta[1]*X[k,1]+beta[2]*X[k,2]+b[1]*Z[k,1]+

b[2]*Z[k,2]+b[3]*Z[k,3]
fg[k]<-(gamma[group[k],1]*X[k,1]+gamma[group[k],2]*X[k,2])

*step(group[k]-1.5)+c[group[k],1]*Z[k,1]+
c[group[k],2]*Z[k,2]+c[group[k],3]*Z[k,3]

fi[k]<-delta[dog[k],1]*X[k,1]+delta[dog[k],2]*X[k,2]+
d[dog[k],1]*Z[k,1]+d[dog[k],2]*Z[k,2]+d[dog[k],3]*Z[k,3]}

#Prior for the random parameters of the overall curve
for (k in 1:num.knots){b[k]~dnorm(0,taub)}

#Prior for the random parameters for the curves describing group
#deviations from the overall curve

for (k in 1:num.knots)
{for (g in 1:ngroups){c[g,k]~dnorm(0,tauc)}}
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#Prior for the random parameters for the individual deviations
#from the group curve

for (i in 1:ndogs)
{for (k in 1:num.knots){d[i,k]~dnorm(0,taud)}}

#Prior for monomial parameters of the overall curve
for (l in 1:2){beta[l]~dnorm(0,1.0E-6)}

#Prior for monomial parameters of curves describing the group
#deviations from the overall curve

for (l in 1:2)
{for (j in 1:ngroups){gamma[j,l]~dnorm(0,1.0E-6)}}

#Prior for monomial parameters of curves describing the individual
#deviations from the group curve

for (i in 1:ndogs)
{for (j in 1:2){delta[i,j]~dnorm(0,taudelta[j])}}

#Priors of precision parameters
taub~dgamma(1.0E-6,1.0E-6)
tauc~dgamma(1.0E-6,1.0E-6)
taud~dgamma(1.0E-6,1.0E-6)
taueps~dgamma(1.0E-6,1.0E-6)
for (j in 1:2){taudelta[j]~dgamma(1.0E-6,1.0E-6)}

#Define the group curves
for (i in 1:n){fgroup[i]<-f[i]+fg[i]}

} #End model

Data

Data consists of the response variable (response[]) design matrix for fixed effects (X[,])
and design matrix of random effects (Z[,]), sample size (n), number of knots (num.knots),
number of subjects (nsubjects), number of groups (ngroups), subject indicator vector (dog),
and group vector indicator (group).

Initial values

Initial values are provided for the fixed effects for all curves β (beta[]), γ (gamma[,]), δ
(delta[,]), random coefficients for all curves b (b[]), c (c[,]), d (d[,]), precisions τb (taub),
τc (tauc), τd (taud) and precision τε (taueps).

Both data and initial values are specified and processed in Rand then used in WinBUGS
through the bugs() function implemented in the R2WinBUGS package as described in Sec-
tion 9.
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