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How Biased Is the Apparent Error Rate of a 

Prediction Rule? 

BRADLEY EFRON* 

A regression model is fitted to an observed set of data. How 
accurate is the model for predicting future observations? The 
apparent error rate tends to underestimate the true error rate 
because the data have been used twice, both to fit the model 
and to check its accuracy. We provide simple estimates for the 
downward bias of the apparent error rate. The theory applies 
to general exponential family linear models and general mea- 
sures of prediction error. Special attention is given to the case 
of logistic regression on binary data, with error rates measured 
by the proportion of misclassified cases. Several connected 
ideas are compared: Mallows's C,, cross-validation, general- 
ized cross-validation, the bootstrap, and Akaike's information 
criterion. 

KEY WORDS: Mallows's C,; Cross-validation; AIC; Bootstrap 
methods; Logistic regression; Generalized linear models. 

1. INTRODUCTION 

Suppose the statistician fits a regression model to an observed 
set of data. How accurate, or inaccurate, is the model for pre- 
dicting future observations? An obvious first guess is the ap- 
parent error rate, which is the observed inaccuracy of the fitted 
model applied to the original data points. However, the apparent 
error rate usually underestimates the true error rate. The reason 
is simple: the model is selected to lie near the observed points, 
which is what fitting means, so these points give a falsely 
optimistic picture of the model's true accuracy. 

This article concerns estimating the bias of the apparent error 
rate. Here is a simple example of our results. A professional 
football player had the following field-goal kicking record over 
the 1969-1972 seasons: 

Yards: 55 45 35 25 12 [Total] 

Yards indicates the distance of the kick, discretized into the 
five categories shown. A standard linear logistic regression, 

Pr{success) = 1/ [ 1 + exp - {a, + a, . Yards)], (1.2) 

was fitted to data (1.1) by maximum likelihood [see Efron 
(1982) for more details]. 

The fitted logistic regression estimates the probability of a 
successful kick as a function of the distance, ~r{success) = 

"[l + exP - ('0 + 'I . Yardsjl. We can consider this to be 
a prediction rule for future kicks, predicting success or failure 
as ~r{success) is greater or less than .5. This rule has apparent 
error rate ,310; that is, it mispredicts 31 of the 100 original 
data points (1.1). How optimistic is the value .310? 

The theory that follows, in particular formula (2.4), estimates 

* Bradley Efron is Professor of Statistics and Biostatistics, Stanford Uni- 
versity, Sequoia Hall, Stanford, CA 94305. The author is grateful to Robert 
Tibshirani for suggesting the close connection of Section 5 to Akaike's infor- 
mation criterion. 

the downward bias of the apparent error rate to be only ,012, 
indicating that bias is not a serious problem in this case. The 
reason for the small bias is the large ratio of data points to fitted 
parameters, 100 to 2. A random subset of 20 data points was 
selected from the 100 shown in (1.1). The logistic regression 
(1.2) fitted to just these 20 points had apparent error rate .400; 
that is, it misclassified 8 of the 20 points. Bias estimate (2.4) 
was now much larger, equaling .066. 

Sections 2-5 concentrate on the special but important case 
of binary data and logistic regression. Error rates are usually 
measured as in the football example, by counting mispredic- 
tions. However, the theory allows more general measures of 
prediction error, for instance the Deviance (twice the Kullback- 
Leibler distance). Considering the prediction error of the De- 
viance leads to a nice corroboration of Akaike's information 
criterion, as shown in Section 6. 

Section 6 extends the theory to linear models for general 
exponential families, as discussed for instance in McCullagh 
and Nelder (1983). Theorem 2 of Section 6 states the general 
result. This includes the most famous special case of all, or- 
dinary linear regression with prediction error measured by squared 
Euclidean distance, where our bias estimate is equivalent to 
Mallows's C, statistic (1973). 

This relationship is examined in Section 7. It is easier to see 
the connection of our results with other methods, such as cross- 
validation, in the ordinary linear regression setting. Section 7 
gives a comparative discussion of several closely related ideas: 
cross-validation, generalized cross-validation, bootstrap esti- 
mates of prediction error, Mallows's C,, and Akaike's infor- 
mation criterion. 

2. LOGISTIC REGRESSION 

Logistic regression fits a model of the form 

to an observed vector of binary data y = (y,, y,, . . . , y,). 
Here the yi independently equal 1 or 0 with probabilities z i  or 
(1 - zi); the ti are observed p-dimensional covariate vectors; 
and a is an unknown p-dimensional vector of parameters. 

The maximum likelihood estimate (MLE) of a ,  say &, gives 
estimates biby substitution in (2.1) We can think of the %, as 
predicting whether a future observation with covariate vector 
ti will be a 1 or a 0. F~~example, the predictions jji might be 
given by the rule 

jji = 1 if 2, > Co 

= 0 i f &  IC,, (2.2) 

for some cutoff point Co. The choice Co = .5 is common. 
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How accurate is prediction rule (2.2)? The apparent error 
rate 

-
err = #{y, # q,)ln (2.3) 

is the proportion of cases in the original data set y incorrectly 
predicted by 4.  However, since y was used to construct 4, -
err will usually be biased downward: a new data vector gen- 
erated according to (2.1) might not be predicted nearly as ac- 
curately by the old 4. 

We will derive estimates for ~ ( n ) ,  the expected downward 
bias of the apparent error rate as an estimator of the true error 
rate. The bias estimate for the logistic regression situation (2.1)- 
(2.3) is 

Here 4(z) = (271)-",exp( -4z2), 

2, = log
(1 
-C"c,) - ti&, 

and 

The matrix $ - I  is the usual estimate for the covariance matrix 
of &, so 2, = vir(t!&) is a quantity available in the output of 
most logistic regression programs. Formula (2.4) gave the es- 
timates of bias for the football data quoted in the Introduction. 

3. OPTIMISM OF THE APPARENT ERROR RATE 

This section considers estimating the expected optimism of 
the apparent error rate, in other words the downward bias of -
err as an estimate of the true error rate. A simple bias formula 
is derived applying to general prediction rules and general mea- 
sures of prediction error. Section 4 specializes this formula to 
the case of logistic regression and counting error, (2.1)-(2.3), 
obtaining (2.4). The results here, applying to binary data, are 
extended to general exponential families in Section 6. 

Suppose then that n = (n,, n,, . . . , n,) are probabilities, 
giving'the data vector y = (y,, y,, . . . , y,) by independent 
binary sampling, 

y, = 1 withprobability ni 

= 0 with probability 1 - n,, (3.1) 

abbreviated y -B(n). From y we form a vector of predictions 
4 = (Q1, 4,, . . . , qn), each 4, in the range [0, 11. For now 
we do not have to specify the rule y -,q. 

Giveny,  and 4,, we have some measure Q[yi, 4,] of prediction 
error, for instance the "counting error" of Section 1 (where the 
4, equalled 0 or 1) 

The average prediction error for the vector 4 is defined to be 
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For counting error, Err in (3.3) is the apparent error rate Err 
defined at (2.3). 

A wide class of error measures Q can be generated in the 
following way: let q(q,) be a concave function of 4, E [0, 11 
satisfying q(0) = q(1) = 0. (It is convenient but not necessary 
to have q(0) and q(1) equal 0, as the more general development 
in Section 6 shows.) Then define the prediction error to be 

Here y, equals 0 or 1, and q(iji) is the derivative of q(qi), 
uniquely defined by left continuity at sharp corners of the con- 
cave function q. In other words Q[y,, 4,] is the height at y, of 
the tangent line to q through the point (4,, q(Qi)). See Efron 
(1978b) for an extensive discussion of such functions. 

Three examples of error measures Q[y,, are shown in 
Table 1. Example 1, counting error, is (3.2) extended in the 
obvious way for predictions 4, possibly intermediate between 
0 and 1. Notice that Example 2, squared error, agrees with 
counting error when 4, equals 0 or 1, but is different for in- 
termediate values 4, E (0, 1). In Example 3, the average pre- 
diction error Q[y, 41, (3.3), can be expressed as 

where log f,(y) is the log-likelihood of y - B(n); then n Q[y, 
41 equals the deviance, twice the Kullback-Leibler distance 
(see Section 6). 

The true error rate Err(y, n) of a prediction vector 4 is 
defined to be 

Here yNEW is a hypothetical new data vector, with the same 
distribution but independent of the original data vector y ,  which 
gave 4. The notation in (3.6) indicates expectation over yNEW 
-B(n), with 4 held fixed. In the case of counting error (3.2), 
Err is the expected proportion of incorrect predictions yYW # 

4,. 
The difference between Err and Err is the optimism 

op(y, n) = Err - Err. (3.7) 

The expectation of op(y, n) over y - B(n), 

is the expected optimism for the rule y + ij, the quantity we 
wish to estimate. 

Theorem 1. Let [ = ([,, [,, . . . , [,) be the vector with 
ith component 

Table 1. Three Measures of Prediction Error for Binary Data: 
The Measure Q[y,, iji] Is Derived From the 
Concave Function q($JAccording to (3.4) 

Name 	 qf4J Q[yir 411 

1. Counting Error rnin(ije 1 - il,) I ifyi= l , i j , < 1 0 r  
if y, = 0,il,> 1 

0 otherwise 

2. Squared Error %(I - ir i) (Y, - el)Z 

3. 	Deviance -2fijdog(fi,! - 2  log $:(I - ijj)'-yJ 
(twice Kullback-Leibler) + ( I  - q,)log(l - fii)] 



Efron: How Biased Is the Apparent Error Rate of a Prediction Rule? 

Then the expected optimism is 

Proof. From definition (3.4), 

The theorem follows from definition (3.8). 

Remark A.  For the three error measures in Table 1, tiequals 
(a) sign(24i - 11, (b) Yi - 1, and (c) 2 log[Qil(l - Qi)], 
respectively. 

Remark B. Another expression for o(n)  is 

In the case of counting error, where ti= sign(24, - 1) = 
24, - 1 for Qi = 0 or 1 as in (2.2), 

Equation (3.14) is a quantitative statement of the fact that the 
expected bias of the apparent error rate depends on how much 
each y, affects its own prediction Q,. 

Remark C .  Formula (3.10) can also be expressed as 

where 

This is another statement showing how w(n) depends on the 
effect of y, on its own prediction. Expressions (3. lo), (3.13), 
and (3.15) are numerically identical of course, but (3.15) is 
slightly more convenient for the theoretical calculations of Sec- 
tion 4. 

Remark D.  The optimism op(y, n), (3.7), refers to the 
error-rate bias for a given vector 4. The expected optimism 
o(n),  (3.8), is the expected bias for the rule y + 4. We would 
like to estimate bp(y, n), but must settle for estimating w(n), 
as briefly discussed in Section 5. 

Remark E.  Section 5 also considers the problem of esti- 
mating the true error rate Err = Err + op(y, n). Constructing 
estimates of Err better than Err is the most obvious purpose of 
estimating the bias ~ ( n ) .  

Remark F. The notation Err and Err is taken from Efron 
(1983). However, the definition of Err has been changed in a 
way that makes the problem easier. The difference has to do 
with working in the framework for Mallows's C, statistic, rather 
than that appropriate to cross-validation calculations. This dis- 
tinction, which relates to questions of conditionality, is dis- 
cussed in Section 7. 

Remark G .  Often the observations y, occur in groups, for 
instance, the five groups in the football example (2.7). If 4, is 
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the common prediction in group g, then we might wish to 
measure prediction error according to a grouped measure Q[p,, 
Q,], where p, is the observed proportion of yi7s equaling 1 in 
group g. It turns out that formula (3. lo), which ignores group- 
ing, still gives reasonable answers in the grouped case. Starting 
with squared error at (3.3), for example, formula (3.10) is the 
expected optimism for the grouped measure Q[p,, rj,] = (p, 
- as well as for the ungrouped measure Q[yi, Qi] = (y, 
- fii)2. See Efron (1978b), in particular the last column of 
Table 3. 

Remark H .  The proof of Theorem 1 uses only E N E W { Y ~ ~ ~  
/ y, n) = n, and not the full distributional assumptions y, yNEW 
independently -B(n). In particular, (3.10) applies to the case 
where the yi are correlated binary variables. 

4. DERIVATION OF FORMULA (2.4) 

This section specializes Theorem 1 to the case of logistic 
regression and counting error (2.1)-(2.3), leading to estimate 
(2.4) for the expected optimism w(nj. Except for the end re- 
marks, the discussion in this section is mainly technical. 

Suppose then that the binary data vector is distributed as y 
- B(n) as in (3.1), that n = (nl ,  . . . , nn) is given by the 
logistic formula (2. I), and that the prediction rule is (2.2). For 
convenience define 

Then (3.15), (3.16) can be expressed as 

where, since ti = 2Qi - 1 in this case, 

The derivation of (2.4) consists of finding a simple approxi- 
mation for (4.3). 

Under model (2. I), the p-dimensional vector 

is sufficient for a ,  having an exponential family of density 
functions 

The vector a is the natural parameter of this family, whereas 
the expectation parameter is the vector 

The MLE of P equals the observed vector z, with covariance 

matrix 


Notice that according to (2. l), (2.2), Qi equals 1 or 0 as 
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tl(& - a )  exceeds or is less than 

ci = log(C0l(1 - C,)) - t la.  (4.8) 

Then (4.3) can be written as 

A, = 2[Prn{t((&- a )  > c i I y i  = 1) 

- Pr,{tl(& - a )  > ci I yi = 011. (4.9) 

Standard exponential family theory gives the approximation 

t((& - a) = t!$-l@ - 8 )  (4.10) 

(see Efron 1978a, eq. 2.4), so 

A, = 2[~r,{t;$-'(fi - 8)  > ci / yi = 1) 

- ~r{t;$-l($ - 8 )  > c i Iy i  = 011. (4.11) 

Now let 8(i) x,+,t,q and b(,)= x,+,t,yj, SO 

) - 8 = ()(i) - + ti(yt - 71,). (4.12) 

Likewise define $, = xj+i~,t,tj'. A standard matrix identity 
gives 

Finally, letting da,, = t($o'ti, we have 

where d, = tl$ -Iti. 
From (4.12), (4.13) we get 

This is a convenient formula for use in (4.1 l) ,  since it separates 
out the dependence of t;$ -I() - P) on y,. 

Standard asymptotic theory gives a limiting normal distri- 
P(,,as the matrix Scijgrows large, bco- /?(o 

The mean 0 and variance d(, are exact in (4.16), only the 
normality being asymptotic. Notice that ), is independent of 
y,. We can now write (4.15) as 

where Z +N(0, 1) is independent of y,. 
Using the last expression of (4.17) in (4.11) gives 

@(z) .f?, 6(x)dx. The factor 1 - xid, is asymptotically 
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negligible, leading to the slightly cruder approximations 

Going back to (4.2), 

Formula (2.4) is (4.21) with 

substituted everywhere for xi. In other words, w(2) is the MLE 
for ~ ( n ) ,  or at least the MLE for approximation (4.21) to w(n). 
Formula (2.4) has the usual asymptotic optimality properties 
of maximum likelihood estimates. The favorable finite-sample 
properties of maximum likelihood, approximate median un- 
biasedness and high efficiency among nearly unbiased esti- 
mators, should also hold. Section 5 describes the performance 
of (2.4) in a sampling experiment. 

Remark I .  Theorem 1 combined with (4.15) makes it easy 
to derive bias expressions like (2.4) applying to deviance and 
squared error, rather than to counting error, 

squared error: w(n) = -
2 "C x?di 
n i = l  

deviance: ~ ( n )= -2~ . (4.23)
n 

This last formula is an expression of Akaike's information cri- 
terion (AIC) (see the corollary in Sec. 6). 

Remark J .  Bootstrap methods can be used to approximate 
the bias estimate w(2) for any prediction rule y + f l ,  not nec- 
essarily involving logistic regression, and for any error measure 
Q[y, 91. Parametric bootstrap data vectors are generated ac- 
cording to y* - B(fi), giving bootstrap prediction vectors y* 
+ Q*; B such bootstrap replications give the estimate 

As B + a,(4.24) approaches w(2), the MLE of co(n). 
Remark K .  For the football example described in the In- 

troduction, the approximate MLE (2.4) agreed well with actual 
MLE w(2) evaluated by Monte Carlo, (4.24). Table 2 shows 
the comparison. The difference between (4.24) and (2.4) are 
small compared with the statistical variability in ~ ( 2 )  (coming 
from the variability of 2 as an estimate of n). 

The statistical variability is indicated by reevaluating the 
approximation based on (4.18) at vectors n moderately distant 
from the MLE f i .  For example, the symbol + - refers to (4.18) 
evaluated at the vector n obtained by substituting (&, + id l ,  
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Table 2. Estimates of w(n) for the Football Data, All n = 100 Kicks, and where Cj'=,f t y (1  - ftY)tojt6,;and Bi = t6 ip -1$p-1 to i ,  
for a Randomly Chosen Subset of n = 20 Kicks, as Described in where $ = Zy=,fti(l - fti)to,t6,. 

the Introduction: The Last Four Rows Indicate the Statistical 
Variability in the Estimate 0(7?) 

n = 700 n = 20 

Bootstrap (4.24): ,0120 (+,0011, = 4,000) ,059 (+,004, = 
Approximation (2.4): .0119 ,066 
Approximation (4.18): ,0121 ,075 

h2 - $d2)'in (2.I ) ,  where jd, is the original estimated standard 
deviation of 2,. 

Large numbers of bootstrap replications B were taken in order 
to make the comparisons in Table 2 more informative. In fact, 
B = 200 bootstraps gave reasonable estimates of w(R)in both 
cases. An advantage of the bootstrap method is that quantities 
of interest besides w(n) can be estimated from the same rep- 
lications, for example the variability in the prediction vector 
8 .  

Remark L. Formula (2.4) makes double use of 2;  as the 
vector that defines the predictions f i ,  via (2.2),and as the point 
in the space of possible n vectors at which w(n) is evaluated. 
These two uses can be separated. In some cases the prediction 
vector f i  might not be obtained from f t ,  the MLE of n. 

Here is an important example: suppose that in (2.1) a is 
partitioned into (a,, a , ) ,  and likewise tl = (t&, tii); that 2: is 
the MLE of ni in the lower-dimensional model where a ,  is 
assumed to be zero; and that f i i  equals 1 or 0 as RP is greater 
or less than C,. In this case we are using a prediction rule based 
on a possibly inadequate parametric model. 

The bias estimate for this situation turns out to be 

where ?ti is obtained from (2.1) by substitution of &, the MLE 

5. A SAMPLING EXPERIMENT 

Table 3 re~or ts  the results of a sam~ling ex~eriment on the 
A " 1 

performance of estimate (2.4) in a small-sample situation. The 
data for each trial of the sampling experiment consist of 20 
independent vectors (y ,, s,), where 

yi = 1 ,  probability 4 

= 0 ,  probability 4 (5.1) 

and 

for i = 1 ,  2 ,  . . . ,20. Conditioning on si, model (2.1)applies 
to ni = P{yi = 1 I si), with tl = ( 1 ,  s i) ,a = (0 ,  1 ,  0)' [see 
Sec. 1 of Efron (1975)l. The sampling experiment comprised 
100 trials, with 20 observations (y i ,  si) for each trial. 

For each trial, prediction rule (2.2) based on the logistic 
regression maximum likelihood estimates iti was calculated from 
the data {(yi ,  si), i = 1 ,  2 ,  . . . , 20), C, = .5. The first two 
columns of Table 3 show the true error rate Err, (3.6),and the 
apparent error rate Err, (2.3).We see that the expected optimism 
in this situation is substantial, w(n)  = .342 - .254 = ,088. 
Four hundred more trials verified this value to within .001. 

Column 4 shows the approximate MLE of the bias w(ft) ,  
(2.4); w(ft)  is nearly unbiased for w(n) ,with quite small stan- 
dard deviation. For comparison, column 6 shows the cross- 
validation estimate of bias, dcV= mcV - Err, where 

indicating the prediction (2.2) for case i based on the 19 
observations ( y j ,  s,), j # i .  The estimate dcVis also nearly 
unbiased, but has standard deviation more than four times larger 
than that of the MLE w(ft).This comparison of co(?t)with dCV 
is somewhat unfair, as discussed in Section 7 .  See also Remark 

of a in the full model; c^i is as given in (2.5);2: = t ~ ~ p - l t ~ ~ ,T. 

Table 3. First 10 Trials of the Sampling Experiment, and Summary Statistics for 100 Trials 

Maximum Cross-
Likelihood Validation 

Trial Err Srr Err 4 %  Errcv ~ C V 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

100 trials 
Mean 
(Sd)
Coeff. of 

Variation 
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Figure 1. Errors in Estimating Err. Err - ~ r r ,sol,id line, compared with Err - grr, dashed line. 

The most obvious use of the bias estimate w(2) is to correct -
err as an estimate of Err, say to 

Err = Err + w(2). (5.4) 

Err performs well in Table 3, removing the bias in Err as an 
estimate of Err, while decreasing the coefficient of variation 
of the estimate from .37 to .30. Figure 1 compares the distri- 
butions of Err - Err and Err - Err for the 100 trials. Notice 
that Err - Err is positive 80% of the time, while Err - Err 
exceeds zero only 54% of the time. 

The cross-validation estimate ErrcV is also nearly unbiased 
for Err, also with smaller coefficient of variation than Err. Let 
MSE(E~)  indicate the mean squared error of an estimate Err 
for Err, 

MSE(EU) = E[Err - Err12. (5.5) 

In the sampling experiment, 

These values can be compared with the MSE for the ideal 
constant estimator = Err + ~ ( n )= Err + .088 : 
M S E ( E ~ ~ ' ~ ).0096. (Edc is the preferred estimate of Err if = 
o(n) is known, which of course is not so in most real problems.) 
The relative inefficiency of Err is defined as in Efron (1983) 
to be 

REL(E~)= [MSE(EIT) - M S E ( E ~ ~ ' ~ ) ]  

For our sampling experiment, 

To summarize the results of the experiment, Err = Err + 
w(2) quite effectively improves Err as an estimate of Err, and 
o(2) is an excellent estimator of ~ ( n ) .  Cross-validation is hope- 
lessly inefficient for estimating w(n), but less bad for estimating 
Err. 

Why would we want to estimate w(n)? In the author's opin- 
ion, o(n) is an interesting measure of how vulnerable a pre- 

diction rule is to overfitting. A large value of o(2), or perhaps 
of o(R)lErr, suggests retreating to a more parsimonious pre- 
diction rule. However, no quantitative guidelines have been 
investigated. 

Remark M .  In the sampling experiment, the correlation be- 
tween o(2) and op(y, n) was cor(w(B), op) = - .84. This 
confirms Remark D, that o(2) is not estimating the random 
variable op(y, n), but rather its expectation ~(71). 

Remark N .  For any estimator Err = Err + 0 ,  the MSE 
(5.5) is 

MSE(EIT) = E[(EIT+ op) - (EU + h)12 

In this context 0 is judged by how well it estimates op, no 
matter what it is supposed to be estimating. In the sampling 
experiment cor(hCV, op) = .03. This makes hcVa relatively 
less bad estimate of op than of o ,  compared with the MLE 
o(ft), which has much smaller variance but a substantial neg- 
ative correlation [see (3.1) of Efron (1983)l. 

Remark 0. In the setting of Efron (1983) it was possible 
to find a compromise between cross-validation and maximum 
likelihood that had small variance and nonnegative correlation 
with op. This compromise, the ".632 estimator," was the clear 
winner in the sampling experiments of the 1983 paper. It is 
plausible, but so far unverified, that a similar compromise is 
possible here. 

Remark P .  Our sampling experiment differs from experi- 
ment (2, 20) of Efron (1983) in the choice of prediction rule, 
logistic regression rather than linear discrimination, and in the 
definition of Err, as discussed in Section 7. That is why the 
numbers in Table 3 differ from those in Table 2 of Efron (1983). 

6. EXPONENTIAL FAMILIES AND GENERAL 
LINEAR MODELS 

All of our calculations so far have concerned binary data. 
Similar results hold when the yi come from a general linear 
model, as described in McCullagh and Nelder (1983). This 
section gives a brief discussion of the theory, mostly without 
proofs. 
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7. MALLOWS'S C, AND CROSS-VALIDATION estimate of Err, as in (5.4), is 

In the ordinary least squares (OLS) situation, with normally 
distributed observations, linear models, and squared error pre- 
diction assessment, our theory coincides with Mallows's Cp 
approach (1973). It is easier to pinpoint the differences between We see that the approach of the earlier sections results in CP(fQ, 

Mallows's approach, which is the framework for our results, 2) when applied to the situation considered by Mallows. 

and cross-validation methods in the OLS context of this section. Table 4 summarizes four different estimates of prediction 

The data vector y is now assumed to have an n-dimensional error for the OLS situation. The naive Cp estimate Cp(&,, &) 

normal distribution with mean vector p and covariance matrix is just Cp(2,,, 63) with 2 = &. In other words, we use twice, 

a21, where p is known to lie in a p-dimensional linear subspace both to define the prediction vector ,& and to estimate the true 
error rate Err for the rule y -+ /&. In this sense Cp(&, &,) is2,  
similar to formula (2.4), or more exactly to (2.4) plus Err, while 
Cp(2,,, 2) is similar to (4.25) plus Err (see Remark L). 

Contained in 2 is a po-dimensional subspace &, po 5 p.  Let It is interesting that 


band ,& denote the projections of y into 2 and &, respectively, Efl,a2{cp(&,, &,)I 2 Efl,a2{Err}? (7.8)

with corresponding estimates of c2, 


with equality if and only if p E &,. The naive estimator Cp(2,,, 
&,) tends to overestimate Err when the assumption p E & is 

The statistician is interested in the estimator ,&, perhaps for 
false. The generalized cross-validation estimate 

prediction purposes, despite the possibility that p $?! fQ .  (Nor- 
mality is not actually needed here; it is enough for the mean 
vector and covariance matrix to be as described in (7. I).) 

Mallows's Cp is an estimate of prediction error for ,&. Using (7.9) 

error measure Q[y, ,&I = lly - ,L,,l121n, the true error rate of introduced by Craven and Wahba (1979), overestimates Err 
,& is slightly more. 

1 Generalized cross-validation is a rotationally invariant form 
Err Eiv,wQ[yNEW,Pol = ;{IIp - cioI12 + n0'1, (7.3) of the cross-validation estimate 

where yNEW - Nn(p, a21) is independent of y. The statistic 

1 
Cp(% 2)  Es ;{I~Y- ciol12 + 2poa2} (7.4) as motivated in Golub, Heath, and Wahba (1979). Here Pt) is 

the prediction for yi calculated from the reduced data set, which 
is an unbiased estimator of Err, in the sense that both have the omits yi and its corresponding covariate vector, described more 
same expectation under model (7.1 ), carefully below; and P!. is the iith diagonal element of the 

projection matrix p0 into &,. The term "hat matrix" is often 
given to Po. 

1 The average value of P!, is 
= - {IIp - poll2 + (n + p0)a2), (7.5)n 	 lln tr Po  = poln, 

po being the projection of p into 2,,. Our statistic Cp(&, 2) so GCV(&) is just CV(&) with the denominator 1 - P! re-

differs slightly from the usual definition of Cp (see Remark Q). placed by its average value 1 - poln. This results in E{CV(&,)) 


For the OLS situation, Theorem 2 gives usually exceeding E{GCV(&)), because of Jenson's inequality. 


0 (p ,  a2) = (2poln)a2. (7'6) 
The inequality E{CV) r E{GCV) is always true when p E &,, 

and true in an average sense, averaging over spheres of constant 


In this case, Err = Q[y, ,&I = Ily - ,L,,(io1l21n. The obvious lip - poll value, when p $?! &,. 

Table 4. Four Different Estimates of Prediction Error for the Ordinary Least Squares Situation 

Name Notation Formula 	 Expectation (7.7) 

2. Naive Cp 

3. 	Generalized I I ~ - f i o l i ~  - n 6g EICP(2o, 90))  
cross-validation GCV(P.) ( ( I  - po/n )2 }  n - po 1 - p8/n2 
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Table 5. First 10 Trials of a Sampling Experiment Comparing 6 Different Estimators of Err and Err+ in an OLS Situation, and Summary 

Statistics for 20 Trials: The Bootstrap Estimate of Err, is Defined in Section 2 of Efron (1983); Cp(&, 23 is (7.4) 


With % the Space of Fifth Degree Polynomials in x 


-Err err Cp(So,So) = GCV Cp(% 9) cp(SoJ2 6 )  CV yoor) or) Err+ 
Trial (7.3) (7.7) (7.9) 

It may seem strange that CV($,) is biased upward for E{Err), 
given how plausible CV(&) = ( l ln)x:=,iyi- looks as 
an estimator of Err. In fact CV($,) is estimating a somewhat 
different quantity, which we now describe. 

Suppose as in (6.2) that pi = tl a for i = 1 ,  2,  . . . , n. 
The p x n matrix T = ( t , ,  t,, . . . , t,) must have row space 
i$,,(T) = 2 ,  in accordance with (7.1). Suppose also that we 
can partition ti and a into ti = (t&, ti,) and a' = (a;,a ; )as 
in Remark L, where to,and a ,  are of dimension p,, and that 
the po x n matrix To = ( to l ,  tO2, . . . , ton)has %,(To) = &. 
Then the projection ,& of y into 9, is given by 

Equivalently we can describe the prediction rule ,& by 

The appropriate context for cross-validation is that where the 
pairs ( t i ,  yi) ,  i = 1 ,  2,  . . . , n ,  are independently selected 
according to some joint probability distribution F on ( p  + 1)-
dimensional space. Now suppose that one more independent 
pair is obtained from F, say ( t , ,y +). The predicted value for 
y + based on the original rule (7.13) is ,&(t+) = t;+b0.The 
expected squared error of prediction is 

E ,  indicating expectation over ( t + ,  y,), with &, fixed. 
The expected value of CV(&) tends toward E,,,2{Err+) rather 

than EP,,2{Err). The predictor flj appearing in (7.10) equals 
tii&8),where h#)= (To(i~T;(i))-lT~(i)y(i),= (tol,. . . , to,,-I ,To(,) 
to,i+l, . . . , t ~ , n ) ,andY(i) = ( Y I ,  + - .  , Y i - l , Y i + ~ ,  . . . ,yn).  
We see that EP,,2{CV(&))equals the expected value of Err,, 
for sample size n - 1 rather than n. 

(7.4) (Quintic) (7.10) (5  = 400) (7.14) 

The results of a small sampling experiment are reported in 
Tables 5 and 6. The data for each trial of the experiment com- 
prised 20 pairs (x i ,  y,), generated as follows: 

The spaces S and & were taken to be those associated with 
quadratic and linear regression, respectively. In other words, 
hi = + &olxi l ,the simple linear regression of yi on xi 
based on the data (x i ,  y,), i = 1 ,  . . . ,20; whereas a2in (7.2) 
was based on a quadratic regression for P, dimension p = 3. 

Twenty trials of (7.15)were run. Notice in Table 5 that Err, 
is usually larger than Err. This is no surprise; Err, is the pre- 
diction error for a completely new pair (x+,y +), whereas Err 
is the average prediction error for a new pair having xNEWequal 
to one of the 20 original xi values. It is easier to predict in the 
latter case because the (x ,  y) pairs are nearer the training set 
{(xi, y,), i = 1 ,  . . . , 20). See Section 6 of Efron (1983). 

Table 6 shows how well the six estimators performed in the 
sampling experiment. Two mean squared errors are shown, 
MSE (5.5)and MSE, ,which is (5.5)with Err, replacing Err. 

Several facts are worth mentioning: it is much easier to es- 
timate Err than Err+; cross-validation is a better estimator of 
Err+ than Err, though not wonderful in either case; the bootstrap 
estimation for Err, described in Efron (1983)does somewhat 
better in both cases; Cp(&, S )  does very well in estimating 
Err, considering it is an unbiased estimator; Err does even better 
in this case, but the MSE criterion favors estimators that are 
biased downwards; Cp(&, S,), based on an overly large choice 
of S in (7.4), performs just as well as Cp(&, 2) using the 
correct choice of S .  

Table 6. How Well the Six Estimators in Table 5 Estimated Err and Err+ in 
the 20 Trials of the Sampling Experiment: MSE is Defined at (5.5); 

MSE, Is the Corresponding Mean Squared Error for Err+; 
It Is Much Easier to Estimate Err 

err 
(7.7) 

CP(&' &) = GCV 
(7.9) 

Cp(4 ,  9) 
(7.4) 

CP(T,, 24 
(Quintic) 

cv 
(7.10) 

,&yo00 
( 5  = 400) 

MSE: 
MSE,: 

.31 
2.09 

54  
1.38 

.35 
1.71 

.33 
1.70 

1.60 
1.47 

.92 
1.33 
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The main point is that it is easier to estimate Err than Err,, 
and that Cp(&, 6)  is the estimator of choice for Err. The logistic 
regression experiment in Section 5 reached a similar conclusion, 
with Cp(&, 6)replaced by its binary data analogue (5.4). 

Remark T. The difference Err, - Err is only about .005 
in the experiment of Section 5, too small to be apparent in 
Table 3 .  

Remark U. Unlike CP(&, 6),neither cross-validation nor 
E ~ ' $ ' ~ ~ T )  require the statistician to name a space 6 guaranteed 
to contain the mean vectorp. However, they estimate a different 
quantity from Cp(&, 6),  Err, rather than Err, and with less 
efficiency. 

Remark V. Which quantity is more relevant, Err or Err,? 
Arguments can be made both ways, depending on the context, 
but for comparing different possible models &, efficiency of 
the error estimation is the primary consideration. This offers 
some pragmatic ground for preferring Cp to cross-validation, 
though the evidence so far is by no means overwhelming. 

Remark W. Despite its name, GCV(&) is (nearly) a mem- 
ber of the Cp family of estimates. 

Remark X .  The cross-validation estimate CV(&) depends 
on the coordinate system in which & and y are expressed. We 
can get an invariant version of CV(&) by averaging (7.10) over 
a uniform choice among all possible orthogonal coordinate sys- 
tems. The invariant version of CV(&) turns out to equal 

This calculation is close to the one in Golub, Heath, and Wahba 
(1979), which gives exactly GCV(&), except that they average 
over a group that includes complex-valued rotations. 

Journal of the American Statistical Association, June 1986 

Remark Y. The bootstrap estimate E~' ,BOOT) in Tables 5 and 
6 is not the analogue of the bootstrap method for binary data 
described in Remark J. The bootstrap argument of Remark J, 
applied to the OLS situation of this section, gives exactly Cp(&, 
2). 
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