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Summary. Many different methods have been proposed to construct nonparametric estimates of a 
smooth regression function, including local polynomial, (convolution) kernel and smoothing spline 
estimators. Each of these estimators uses a smoothing parameter to control the amount of 
smoothing performed on a given data set. In this paper an improved version of a criterion based 
on the Akaike information criterion (AIC), termed AICc, is derived and examined as a way to 
choose the smoothing parameter. Unlike plug-in methods, AICc can be used to choose smoothing 
parameters for any linear smoother, including local quadratic and smoothing spline estimators. The 
use of AICc avoids the large variability and tendency to undersmooth (compared with the actual 
minimizer of average squared error) seen when other 'classical' approaches (such as generalized 
cross-validation or the AIC) are used to choose the smoothing parameter. Monte Carlo simulations 
demonstrate that the AICc-based smoothing parameter is competitive with a plug-in method 
(assuming that one exists) when the plug-in method works well but also performs well when the 
plug-in approach fails or is unavailable. 

Keywords: Convolution kernel regression estimator; Local polynomial regression estimator; Plug-in 
method; Smoothing spline regression estimator 

1. Introduction 

Nonparametric estimation of an unknown smooth regression function has received con- 
siderable attention in recent years. Here, we shall assume that we have data y =(y,, . . ., y,,)' 
generated by the model 

where m(.)is an unknown smooth function, the xiare given real numbers in the interval [a, b] 
and the ci are independent random variables with mean 0 and variance a:. Either the 
predictor vector x is non-random, or analyses proceed conditionally on the observed values if 
it is random. 

Many different estimators of m have been proposed. A pth-order local polynomial 
estimator is defined as the constant term fl0 of the minimizer of 
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where K is the kernel function, generally taken to be a symmetric probability density function 
with finite second derivative (for a general discussion of this estimator, as well as the other 
techniques described in this section, see Simonoff (1996), chapter 5). Typical choices of p are 
0, 1, 2 and 3, with certain asymptotic and boundary bias correction advantages going to the 
local linear (p = 1) and local cubic (p = 3) estimators over the local constant (p = 0) and local 
quadratic (p = 2) estimators respectively. Higher values o f p  (2 or 3) also can take advantage 
of greater smoothness of m by yielding a faster convergence rate to 0 of the mean-squared 
error (MSE) of the estimator, MSE = E[{A(x) -m(x)12]. 

A Gasser-Miiller convolution kernel estimator (Gasser and Miiller, 1979) takes the form 

where xi-] < s,-, < xi (a common choice being = (xi-] + xi)/2, with so and s,, being the 
upper and lower limits of the range of x respectively). Here the kernel function Kneed not be 
a probability density function, as so-called higher order kernels can yield improved MSE 
convergence rates for smoother m (analogously to local quadratic and cubic estimators). The 
kernel functions must be corrected for potential bias effects in the boundary regions of the 
data by using boundary kernels. 

A third approach to estimating m is by using smoothing splines. A cubic smoothing spline 
estimator is the minimizer of 

over the class of functions with m and m' absolutely continuous and m" square integrable. 
Although these estimators are defined in different ways, there are connections between 

them. For example, for a fixed design of equidistant values of x, local polynomial and 
convolution kernel estimators are asymptotically equivalent in the interior (and at the 
boundary if boundary kernels are used). Despite this, the finite sample properties of the 
estimators can be very different. A property that is key to the derivations in this paper is that 
all the estimators are linear, in that = A(x) = Hy, where the matrix H i s  commonly called 
the hat matrix or smoother matrix and depends on x but not on y (regression spline and 
wavelet estimators are also linear estimators). 

A crucial step in estimating m is choosing the smoothing parameter (h for the local 
polynomial and kernel estimators, a for the smoothing spline), which controls the 
smoothness of the resultant estimate. Automatic smoothing parameter selectors generally 
fall into two broad classes of methods: classical and plug-in approaches. Classical methods 
are based on the minimization of an approximately unbiased estimator of either the mean 
average squared error 

1
MASE =- E[(mh-m)'(mh -m)]

n 

(e.g. generalized cross-validation (GCV); Craven and Wahba (1979)) or the expected 
Kullback-Leibler discrepancy given in equation (2.1) (e.g. the Akaike information criter- 
ion (AIC); Akaike (1973)). Here we use the shorthand notation m to represent m(x) = 
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m(x,, . . ., x,,)' and use h as a generic smoothing parameter for any linear smoother 
(including the smoothing spline). The smoothing parameter is chosen to be the minimizer of 
log(e2)+ +(H), where 

and +(.) is a penalty function designed to decrease with increasing smoothness of mh.Com-
mon choices of + lead to GCV (+(H) = -2 log{l - tr(H)/n)), the AIC (+(H) = 2 tr(H)/n) 
and T (Rice, 1984) (+(H) = - log{l - 2 tr(H)/n)). Each of these selectors depends on H 
through its trace, which can be interpreted as the effective number of parameters used in the 
smoothing fit (see, for example, Hastie and Tibshirani (1990), section 3.5). 

Classical bandwidth selectors (particularly GCV and the AIC) have to some extent fallen 
into disuse (particularly in application to local polynomial and kernel estimators) because 
of two unfavourable properties: the selectors lead to highly variable choices of smoothing 
parameter, and they have a noticeable tendency towards undersmoothing (too large a value 
of tr(H)). These difficulties have inspired the formulation of plug-in methods. 

The plug-in selector of Ruppert et al. (1995) for the local linear estimator is typical. It 
can be shown that the bandwidth that minimizes the weighted conditional mean integrated 
squared error 

MISE(Alx,, . . ., x,,) = E [ / l  {A(u) m ( ~ ) ) ~  I- fx(u) dulx,, . . , x,, 

asymptotically is 

where R(K)= S~ ( u ) '  du, p2(K) Ju2 K(u) du and fx(u) is the density function for the pre- 
dictors (results for fixed designs take x, = Fil(i/n), with Fx the cumulative function of the 
'density' fx of the design). The plug-in bandwidth is given by the right-hand side of equation 
(1.2) with estimates of and Sm " ( ~ ) ~fx(u) du substituted for the actual values. The resultant 
selector is much less variable than that based on GCV and does not tend to undersmooth in 
practice. 

Despite these favourable properties, plug-in selectors have several theoretical and practical 
problems. First, they only have been defined where the asymptotically optimal bandwidth ho,, 
has a simple form, which is not the case for the local quadratic estimator (for that estimator 
ho,, depends on mu', m('"' and fi).  Similarly, no plug-in methods have been proposed for 
smoothing splines. 

Plug-in selectors also have philosophical drawbacks. The main theoretical advantages 
of plug-in selectors over classical selectors refer to estimation of h,, the bandwidth that 
minimizes MISE for the given sample size and design. This bandwidth, which approaches ho,, 
as n += oo, is thus optimal with respect to the average performance over all possible data sets 
for a given population, rather than the performance for the observed data set. Although plug- 
in selectors are far better at estimating h, than are classical selectors, these large advantages 
do not carry over to estimation of Lo, the bandwidth that minimizes the integrated squared 
error or average squared error (ASE) for the observed data set. In our opinion Lo is a more 
reasonable target from a conceptual point of view, and therefore many of the reported 
theoretical advantages of plug-in selectors do not refer to a question that is relevant to 
the data analyst. See Mammen (1990), Hall and Marron (1991), Jones (1991), Jones and 
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Kappenman (1991) and Grund et al. (1994) for further discussion of the issues in estimating 
ho versus Lo. 

The local linear plug-in selector proceeds by estimating J ml'(u)' f,(u) du, which requires 
the assumption that roughly four continuous derivatives for m exist. That much smoothness 
renders the local linear estimator itself asymptotically inefficient, however, calling into 
question the entire operation. This point was noted by Terrell (1992) and Loader (1995), 
among others. Estimating this functional typically requires the data analyst to choose 
preliminary parameters in either a data-dependent or fixed fashion, and the properties of the 
final plug-in bandwidth can be sensitive to these choices. 

In this paper classical smoothing parameter selectors based on improved versions of the 
AIC are proposed. As is true for all classical methods, the selectors are defined for all linear 
estimators. Moreover, those proposed here do not exhibit the high variability and tendency 
to undersmoothing of GCV (Hart and Yi (1996) proposed a variant of cross-validation with 
the same goal in mind). The derivations are given in Section 2. Monte Carlo results discussed 
in Section 3 show that one of the improved selectors, AICc, performs comparably with well- 
behaved plug-in methods, while also performing well when the plug-in selectors fail. AICc is 
based on the smoother only through tr(H), so it is as easy to apply as GCV, the AIC and T. 
Section 3 also includes an application to a real data set, while Section 4 discusses possible 
future work. 

2. Improved versions of Akaike's information criterion for smoothing 
parameter selection 

The AIC was originally designed for parametric models as an approximately unbiased 
estimate of the expected Kullback-Leibler information. For linear regression and time series 
models, Hurvich and Tsai (1989) demonstrated that in small samples the bias of the AIC can 
be quite large, especially as the dimension of the candidate model approaches the sample size 
(thus leading to overfitting of the model), and they proposed a corrected version, AICc, 
which was found to be less biased than the AIC. We shall now develop two criteria, AICco 
and AICc,, which are specifically designed as approximately unbiased estimates of expected 
Kullback-Leibler information in the context of nonparametric regression. AICco is the more 
exact of the two, but requires numerical integration for its evaluation. AICc, is an approx- 
imation to AICco which is simpler to evaluate (although it requires calculations involving all 
the elements of an n x n matrix), and which is found in practice to perform identically with 
AICc,. A third criterion, AICc, is an approximation to AICc, that is as simple to apply as the 
classical criteria discussed in Section 1. 

We now present the derivation of AICco. Given data y generated from the true model 
y =m + E ,  E -- N(0, o~I,), we consider the candidate model y = p + r), where q -- N(0, a'],,). 
It should be stressed that in spite of the normality assumption imposed here the resulting 
criteria exhibit good performance in simulations, even for non-normal errors. If f(y) denotes 
the likelihood for (p, a') and Eo denotes expectation with respect to the true model, we 
consider the Kullback-Leibler discrepancy function 
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Thus, 

A reasonable criterion for judging the quality of the estimator mh in the light of the data is 
A(h) = EO[d(mh, &')I. Ignoring the constant n log(27r), we have 

Unfortunately, A(h) will not be known in practice, since it depends on the true regression 
function m.Therefore, we seek an approximately unbiased estimator of A(h) which depends 
only on the observed data y. At this stage, it is helpful to make the simplifying assumption 
that mh is unbiased, i.e. Eo[mh] = m,or equivalently Hm = m.Clearly, this assumption will 
rarely hold exactly in practice. Nevertheless, Cleveland and Devlin (1988) made a sim-
ilar assumption in their derivation of a nonparametric analogue of Mallows's C,. The 
assumption of unbiasedness, which is needed only to facilitate the derivation of a feasible 
penalty function, plays an analogous role to the key simplifying assumption used in the 
derivation of the AIC for parametric models, namely that the candidate family of models 
includes the true model (see Akaike (1974) and Linhart and Zucchini (1986), p. 245). It 
should be stressed that the assumption is made only in the derivation of the criterion. It is 
then possible to study the performance of this criterion without regard to the assumptions 
underlying its derivation. 

Assuming, then, that Hm = m,A(h) reduces to 

Even if mh is not unbiased, A(h) serves as an approximation to A(h). Let B, = (I- H)'(I-H), 
and write B1 = r D r l ,  where D is a diagonal matrix of eigenvalues of B, and r is an orthog- 
onal matrix whose columns are the corresponding eigenvectors of B,. Also, let B2 = H'H 
and C = r1B2r.  Define z = r 1 ~ / a 0 .Let A, be the second term on the right-hand side of 
equation (2.2) and A' be the final term. Using results in Jones (1986, 1987), it can be shown 
that 

where r is the rank of B, and 4 is the jth diagonal element of D, and 

where cii is the ith diagonal element of C. 
AICG is defined as 

AICco = n log(8') + A, + A,, 

where A, and A' may be obtained from formulae (2.3) and (2.4) by (one-dimensional) numer- 
ical integration. AICco is exactly unbiased for d(h), regardless of whether H m  = m holds, but 
if Hm # m then d(h) will not coincide exactly with the true expected Kullback-Leibler 
information A(h). The situation here is quite analogous to that for model selection in linear 
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regression, where the AIC is typically biased (even asymptotically) when the dimension of the 
candidate model is less than the dimension of the true model. 

Although the terms A ,  and A, in AICco are easily and accurately obtained, the necessity 
for using numerical integration (even in one dimension), as well as numerical eigensystem 
routines, may be considered a drawback. We therefore present another criterion, Arcc, ,  
which can be evaluated without resort to numerical integration, and which is found to pro- 
vide an excellent approximation to AIC,, . From equation (2.2) and the notation following 
it, we may write 

Using the method described by Cleveland and Devlin (1988) based on Satterthwaite's approx- 
imation (Khatri (1980) and Kotz and Johnson (1986), pages 376-379), the distributions of 
zlDz and z1Cz/z'Dzare approximated as 

and 

where 6,= tr(B,), 6, = tr(@), v, = tr(B2), v2 = t r ( ~ i )  and B, and B2 are as defined above. 
Treating these distributional approximations as exact yields 

and 

AICc,, proposed as an approximately unbiased estimator of A(h), is defined as 

The accuracy of the approximation of AICcl to AICco was examined in Monte Carlo simu- 
lations (not reported here) and was found to be excellent. 

AICc, and AICcl are somewhat complicated to apply in practice, as they require eigen- 
analysis and numerical integration in the former case and calculations involving all the 
elements of the n x n matrix H in the latter case (these calculations can be accelerated by 
using binning techniques; see Turlach and Wand (1996)). Hurvich and Tsai (1989) showed 
that in parametric linear regression and autoregressive time series contexts the bias-corrected 
AIC (AICc) takes the form 

where 6' is the estimated error (or innovations) variance and p is the number of regression (or 
autoregressive) parameters in the model. By analogy, then, we obtain the version of AICc for 
smoothing parameter selection, 
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This criterion is easier to apply, as it is a function of H only through its trace. 
If H is assumed to be symmetric and idempotent (an assumption which was not made in 

the derivation of AIC,,), then AIC,, reduces to AIC,. Since H will not be symmetric and 
idempotent in general (although it is for regression splines), one way to think of AICc is 
as an approximation to AICc, (which is, in turn, a very accurate approximation to AIC,,). 
Negative penalties in AICc, and AICc are treated as infinite. 

It follows from Hardle et al. (1988) that all the classical selectors considered here are 
asymptotically equivalent. Given this, we might wonder why they might exhibit noticeably 
different performances in practice. The reason is that the asymptotic theory assumes that 
tr(H)/n + 0, a situation that is not consistent with a small smoothing parameter. 

Fig. 1 makes this distinction clear. It gives the penalty functions $(H) as a function of tr(H) 
for GCV, T, the AIC and AICc - 1 (subtracting 1 from AICc makes it comparable with 
the other selectors, as can be seen from equation (2.5), and does not affect its smoothing 
parameter choices; since AICc depends on n, its curve is given for n = 100). All four $-
functions become indistinguishable at the left-hand end of the plot, which corresponds to 
tr(H)/n + 0 and the usual asymptotics. The criteria differ markedly for a small smoothing 
parameter (large tr(H)/n), however, with a sharper rise corresponding to a heavier penalty 
against undersmoothing. The AIC and GCV have relatively weak penalties; this accounts for 

Fig. 1. $-penalties for various selectors as a function of tr(H)/n: ,AIC,; .......... GCV.- - -, , - - -
- T . -
AIC 
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their tendencies to lead to undersmoothing. T, in contrast, has a very strong penalty, as it is 
effectively infinite for tr(H)/n 2 0.5. This means that T must lead to oversmoothing when a 
very small smoothing parameter is appropriate. AICc occupies a position between these two 
extremes, being less susceptible to both the undersmoothing of the AIC and GCV and the 
oversmoothing of T. 

3. 	 Practical performance of the selectors 

In this section we use Monte Carlo simulations and real data examples to investigate the 
properties of the various selectors in practice. The Monte Carlo simulations examine the 
performance of the selectors as they relate to the sample size, the pattern of predictor values, 
the true regression function, the true standard deviation of the errors and the regression 
estimator being used. Although only some of the results are reported here, the following 
settings of these factors were examined, with 500 simulation replications for each setting of 
factors: 

(a) sample size n = 50, 100 and 500; 
(b) the pattern of predictor values -an equispaced fixed design, a random uniform design 

and a non-uniform fixed design, all on [0, I]; 
(c) the following six regression functions, most of which were used in earlier Monte Carlo 

studies (Ruppert et al., 1995; Hart and Yi, 1996; Herrmann, 1997)- 
(i) 	 m(x) = sin(l5nx) (a function with a large amount of fine structure), 
(ii) 	 m(x) = sin(5nx) (a function with less fine structure), 
(iii) m(x) = 1 -48x +218~" 315x3+ 145x4 (a function with less fine structure and a 

trend, in some sense 'typical' of many regression situations), 
(iv) m(x) = 0.3 expi-64(x - 0.25)') +0.7 exp{-256(x - 0.75)') (a function with no- 

ticeably different degrees of curvature for different values of the predictor), 
(v) 	 m(x) = 10 exp(-lox) (a function with a trend, but no fine structure), 
(vi) m(x) = exp(x -+) for x < f and expi-2(x - f)} for x 2 f (a function with un-

defined first derivative at x =:, which violates the standard assumptions for 
optimal performance of the estimators used here); 

(d) error standard deviation a, = 0.01 R,, 0.05R,, 0.25R, and 0.5R,, where R, is the range 
of.m(x) over x E [0, 11; 

(e) regression estimators-the 	 local linear and quadratic estimators using a Gaussian 
kernel, second-order and fourth-order boundary-corrected Gasser-Miiller convolution 
kernel estimators, as described in Herrmann (1997), and a cubic smoothing spline 
estimator. 

Tables 1 4  and Figs 2-6 summarize some of the results of the simulations. Tables 1 4  give 
the average of the optimal ASEs (based on the optimal smoothing parameter for the given 
simulated data set) and the mean of the ratio of the ASE to the optimal value when using a 
particular selector. Squared error does not completely reflect the actual performance of the 
selectors, so the distributions of the amount of smoothing done by the selectors compared 
with the smoothing done by the smoothing parameters that minimize the ASE are also 
examined in several figures. Selectors based on GCV, T,AICc and AICc, are reported for all 
estimators. In addition, results for the plug-in selector described in Herrmann (1997) for each 
of the convolution kernel estimators are given, as are results for the local linear plug-in 
selector of Ruppert et al. (1995). Finally, a plug-in selector for the local quadratic estimator is 
calculated as 27&/16, where h, is the local linear plug-in bandwidth, since that yields a 
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-0.3 -0.2 -0.1 

Logged ratio of chosen number of parameters to optimal number 

(a) 

0.0 

-0.2 0.0 0.2 

Logged ratio of chosen number of parameters to optimal number 

(b) 

0.4 

Logged ratio of chosen number of parameters to optimal number 

Fig. 2. Kernel density estimates of the distribution of logged ratios of the number of fitted parameters to the 
number corresponding to the minimizer of the ASE for the local linear estimator using AICc (-), GCV 
(........-), T (- - -), AICc, (- - - -) and the plug-in method (-. -): (a) m(x) = sin(l5nx), u/Ry= 0.01; (b) 
m(x) = 1 -48x +218x2 - 315x3 + 145x4, a/Ry = 0.01; (c) m(x) = 10 exp ( - 1 Ox), u/Ry = 0.05 (negative 
values indicate oversmoothing; positive values indicate undersmoothing) 
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0 .  

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 

Logged ratio of chosen number of parameters to optimal number 

(a) 

Logged ratio of chosen number of parameters to optimal number 

Logged ratio of chosen number of parameters to optimal number 

Fig. 3. Kernel density estimates of the distribution of logged ratios of the number of fitted parameters to the 
number corresponding to the minimizer of the ASE for the local quadratic estimator using AICc (-), GCV 
(..........), T (- - -), AICc, (- - - -) and the plug-in method (-. -): (a) m(x) = s i n ( l 5 ~ x ) ,u/Ry = 0.01; (b) 
m(x) = 1 -48x +218x2 -315x3+ 145x4,u/R, = 0.01; (c) m(x) = 10 exp(- lox),  u/Ry = 0.05 
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-0.3 -0.2 -0.1 

Logged ratio of chosen number of parameters to optimal number 

(a) 

Logged ratio of chosen number of parameters to optimal number 

Logged ratio of chosen number of parameters lo optimal number 

Fig. 4. Kernel density estimates of the distribution of logged ratios of the number of fitted parameters to the 
number corresponding to the minimizer of the ASE for the second-order convolution kernel estimator using AICc 
( ) , GCV (....---), T (- - -), AICc, (- - - -) and the plug-in method (-. -): (a) m(x) = sin(15mx), 
u/Ry =0.01; (b) m ( x ) = l  -48x+218x2-315x3+145x4, u/Ry=O.O1; (c) m(x)=10 exp(-lox), u/Ry = 
0.05 
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Logged ratio of chosen number of pararneters to optimal number 

Fig. 5. Kernel density estimates of the distribution of logged ratios of the number of fitted parameters to the 
number corresponding to the minimizer of the ASE for the fourth-order convolution kernel estimator using AICc 
(-1, GCV (..........), T (- - -), AICc, (- - - -) and the plug-in method (-. -): (a) m(x) = sin(15~x), 
u/Ry = 0.01; (b) m(x) = 1 -48x+ 218x2 - 315x3+ 145x4, u/Ry = 0.01; (c) m(x) = 10 exp(-lox), u/Ry = 
0.05 
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Logged ratio of chosen number of parameters to optimal number 

Logged ratlo of chosen number of parameters to optimal number 

Logged ratio of chosen number of parameters to optimal number 

Fig. 6. Kernel density estimates of the distribution of logged ratios of the number of fitted parameters to the 
number corresponding to the minimizer of the ASE for the smoothing spline estimator using AIC, (-1, GCV 
(..........), T (- - -) and AIC,, (- - - -): (a) m(x) = sin(l5ax), u/Ry= 0.01; (b) m(x) = 1 - 48x + 
218x2 - 315x3+ 145x4, u/RY= 0.01; (c) m(x) = 10 exp(-lox), u/R, = 0.05 
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bandwidth for the local quadratic estimator that has the same asymptotic variance as the 
local linear estimator using LL while having smaller asymptotic bias (Sheather, 1996). No 
results are given for the bandwidths using the AIC, since this rule almost invariably chose the 
smallest bandwidth tried in the simulation runs. The optimal and data-based bandwidths 
were found by using grid search routines. The results in Tables 1-4 will be discussed shortly. 

Figs 2-6 show how the smoothing parameter selectors compare with the optimal choices 
for each of the regression estimators for three selected true regression functions (with an 
equispaced design and n = 100). The curves are kernel density estimates of the distribution of 
the logarithms (base 10) of the ratios of the effective number of fitted parameters chosen by 
the selector (i.e. tr(H)) to the effective number of fitted parameters for the value that 
minimizes the ASE (i.e. the optimal value). By using this measure it is possible to compare the 
properties of the selectors for the different regression estimators, since the smoothing 
parameters themselves are not directly comparable. Note that average logged ratios greater 
than 0 (the right-hand side of the plots) correspond to undersmoothing, whereas average 
logged ratios that are less than 0 (the left-hand side of the plots) correspond to over-
smoothing; this demarcation line is provided as an aid to interpretation. 

Figs 2-6 describe properties for the three regression functions 

(a) m(x) = sin(l5nx), with o/R,  = 0.01, 
(b) m(x) = 1 - 48x +21 8x2 - 31 5x3 + 145x4, with o/R,  = 0.01, and 
(c) m(x) = 10 exp(-lox), with a/R,  = 0.05. 

These correspond to situations where either a relatively small, moderate or large amount 
of smoothing respectively is appropriate ((a) was deliberately chosen to represent an ex- 
treme low smoothing situation). Results are given for the local linear (Fig. 2), local quadratic 
(Fig. 3), second-order convolution kernel (Fig. 4), fourth-order kernel (Fig. 5) and cubic 
smoothing spline (Fig. 6) estimators. 

The properties of the selectors differ for the various estimators, but certain patterns 
emerge. For all estimators, unless a very small amount of smoothing is appropriate, the curve 
for GCV has a noticeable long right-hand tail, corresponding to that selector's tendency to 
lead to undersmoothing. This is particularly apparent for the local polynomial estimators 
(Figs 2 and 3), where GCV cannot be considered to be sufficiently well behaved to use in 
practice. In virtually all situations the distribution of GCV is supported over a considerably 
wider range than the other selectors, reflecting its relatively high variability. 

The Arcc-, Arcc,- and T-selectors are generally similar to each other. They tend to 
oversmooth, although (except for local polynomial estimation and m(x) = sin(l5nx)) not 
dramatically so. They are considerably less variable than GCV in virtually all situations. Of 
these three selectors, AICc is usually best, in that it has the smallest tendency to oversmooth. 

The properties of the plug-in selectors differ widely from estimator to estimator. All the 
plug-in selectors have relatively low variability, but their tendencies towards undersmoothing 
or oversmoothing are different. The local linear plug-in selector of Ruppert et al. (1995) does 
very poorly in the fine structure-strong regression situation (a), leading to severe over- 
smoothing (all the selectors except GCV strongly oversmooth, with AICc least extreme in 
this regard). Otherwise, its performance is quite reasonable. 

Given its somewhat ad hoc nature, it is not surprising that the local linear-based local 
quadratic plug-in selector (Fig. 3) does not do well when compared with selectors designed 
to target the actual optimal bandwidth. It leads to oversmoothing in situation (a) and 
undersmoothing in situations (b) and (c). Its low variability does not make up for these 
difficulties, and AICc, AICc, and Ta re  clearly better behaved. 
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The plug-in methods for the convolution kernel estimators (Figs 4 and 5), in contrast, seem 
to be comparatively well 'tuned' for these estimators in these situations. As noted earlier, they 
have low variability, although there is a small tendency towards oversmoothing for the 
second-order kernel and undersmoothing for the fourth-order kernel. Overall the plug-in 
selectors are probably the best choice for these estimators, with AICc being second best. 

An interesting result is that the classical selectors perform better for the cubic smoothing 
spline (Fig. 6) than they do for the other estimators. GCV, for example, is noticeably less 
variable and somewhat less likely to undersmooth for this estimator, lending some support to 
its widespread use for smoothing splines in practice (it is still generally more variable and 
more likely to undersmooth than AICc is, however). 

Tables 1-3 describe Monte Carlo results for an equispaced design and n = 100. These 
squared error results generally support the impressions given in Figs 2-6. Box plots of the 
ASEs for each simulation run (not given here) show that the summary measures given in 
Tables 1-3 do reflect the actual relative behaviour of the selectors, i.e. the mean ratio of ASE 
to optimal ASE does not reflect unusual values, but rather the actual pattern of the entire 
distribution of ASE values. The median ratios, though generally smaller than the mean 
ratios, follow the same patterns as the mean values. Signed rank tests comparing the paired 
ASE values for any two selectors are generally statistically significant at a 0.05 level if the 
difference in mean ASE ratios is greater than 0.02-0.05 for all the selectors except GCV; the 
high variability of this selector implies that differences in mean ASE ratio up to 0.15 are some- 
times not statistically significant when the GCV selector is involved in the comparison. 

Table 1 refers to the local linear estimator. The plug-in selector is most often best, and 
(except for m(x) = sin(l%x), where it fails badly) is usually not far from best otherwise. GCV 
does well when a small bandwidth is appropriate (although even then often worse than the 
plug-in estimator), but it deteriorates when a moderate or large bandwidth is best, because of 
its tendency to undersmooth. T, AICc and AICc, are usually similarly behaved, with AIC, 
noticeably better. Overall, AICc is competitive with the plug-in selector, though usually 
resulting in a slightly higher ASE. 

The optimal mean ASE is uniformly lower for the local quadratic estimator (Table 2) 
compared with the local linear estimator, and for strong regression relationships (small a/R,) 
it is often 4&50% smaller. This clear superiority of the local quadratic estimator is consistent 
with the asymptotic properties and can be contrasted with the situation in kernel density 
estimation, where higher order kernel estimators only improve on second-order kernels for 
sample sizes in the hundreds and even thousands (Marron and Wand, 1992). The advantage 
of the local quadratic estimator lessens for weaker regression relationships and is small for 
regression function (vi), where the kink in the function means that the local quadratic 
estimator is not asymptotically superior to the local linear estimator, but in no cases is the 
local quadratic estimator worse than the local linear estimator. This is not true for the local 
cubic estimator, where Monte Carlo simulations (not given here) indicate that increased 
variability outweighs any advantages in boundary bias correction. 

The second important point from Table 2 is that these available optimal gains from using 
the local quadratic estimator are achievable in practice. AICc is clearly the best choice, as it 
has good properties for all the situations examined. Once again GCV has problems when a 
large bandwidth is appropriate, whereas AICc is similar to, but consistently better than, T 
and Arcc, .  The local linear-based local quadratic plug-in method beats the plug-in method 
applied to the local linear estimator, as it was designed to do, but it is not competitive with 
the other selectors under strong relationships for most of the regression functions. This is not 
surprising, since it is not targeting the actual optimal bandwidth for the local quadratic 
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Table 1. Monte Carlo results for the local linear estimator? 

~ / R . Y  Results for the follo~ving estimators: 

Optimal GCV T AICc AICc, Plug-in 

m ( x )= s in ( l5~x j  
0.01 3.7238 x 1.0718 17.4050 8.2626 15.0197 19.3300 
0.05 5.5520 x lo-) 1.8320 2.0377 1.4709 2.0328 2.0425 
0.25 7 .1133x10 -~  1.0808 1.1446 1.1119 1.2063 1.1571 
0.5 0.21055 1.1261 1.1505 1.1574 1.2631 1.6895 

m( x )= sin(S.irx) 
0.01 1.7427 x 1.0788 1.4794 1.2409 1.5125 1.0901 
0.05 2.3635 x lo-) 1.1101 1.0907 1.0782 1.1316 1.0300 
0.25 3.0802 x 1.1868 1.0926 1.0963 1.1032 1.0679 
0.5 9.3359 x 1.2736 1.1502 1.1541 1.1505 1.1138 

m ( x )= 1- 48x +218x2- 315x3+ 145x4 
0.01 4 .3702x10-~  1.1124 1.1669 1.1172 1.1986 1.0503 
0.05 5.7036 x lo-' 1.1400 1.0770 1.0790 1.0984 1.0373 
0.25 7.4161 x 1.3431 1.1919 1.1933 1.1885 1.1837 
0.5 0.220 19 1.4465 1.2628 1.2570 1.2538 1.2720 

m(x j  = 0.3 exp{- 64(x - 0.25j2}+0.7 exp{-256(x - 0 .75)~)  
0.01 2.4797 x lo-' 1.9902 1.7656 1.341 1 1.7844 1.2266 
0.05 3.2843 x 1.0867 1.1 137 1.0901 1.1643 1.091 1 
0.25 4.1577 x lo-' 1.1932 1.1085 1.1142 1.1287 1.0716 
0.5 1.1892 x 1.2550 1.1526 1.1605 1.1607 1.1301 

m(x j = 10 exp(-l0xj 
0.01 2.3381 x lo-) 1.1157 1.0993 1.0883 1.1429 1.0499 
0.05 2.8251 x 1.1676 1.0993 1.1042 1.1137 1.0614 
0.25 0.34798 1.5630 1.3019 1.2982 1.2708 1.3356 
0.5 1.0270 2.0272 1.5871 1.5708 1.5436 1.8056 

m ( x )= exp(x - 1/3j,  x < 113; m(x)= exp(-2(x - 1/3j},x > 113 
0.01 1.3842 x lo-' 1.1096 1.1214 1.1067 1.1729 1.2017 
0.05 1 .6298x10-~  1.1930 1.1055 1.1093 1.1130 1.0743 
0.25 1.9694 x lo-) 1.4431 1.2904 1.2847 1.2692 1.2819 
0.5 5.7039 x lo-' 2.1 343 1.5719 1.5663 1.5220 1.6770 

t n  = 100. Entries are t h e  average  of  t h e  o p t i m a l  A S E s  a n d  averages o f ratios o f t h e  A S E  
t o  t h e  op t imal  A S E .  

estimator, but is only designed to beat the local linear estimator. Overall, Tables 1 and 2 
clearly demonstrate that for n = 100 and an equispaced fixed design the best local polynomial 
choice is the local quadratic estimator using AICc to select the bandwidth. 

Results for the second- and fourth-order convolution kernel estimators (not given here) are 
directly comparable with those in Tables 1 and 2 respectively. The optimal performance of 
the kernel estimators is comparable with that of the local linear and quadratic estimators, 
which is consistent with their asymptotic equivalence (i.e. the fourth-order kernel's optimal 
mean ASE is consistently smaller than that of the second-order kernel). The second-order 
plug-in selector is often better 'tuned' for the estimator than the plug-in estimator of Ruppert 
et al. (1995) is for the local linear estimator; the fourth-order plug-in selector is much better 
than the local linear-based local quadratic counterpart, since it targets the true optimal 
bandwidth. The effectiveness of GCV for small bandwidths combined with its ineffective- 
ness when large bandwidths are needed is again seen. Finally, AICc has the best overall 
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Table 3. Monte Carlo results for the cubic smoothing spline estimator? 

,J/R,' Results for the following estimators: 

Optimal GC V T AICc AICc, 

in( x )= sin (15nx) 
0.01 1.9775 x 1.0210 1.6827 1.1500 1.1935 
0.05 3.4964 x 1o-) 1.0424 1.1665 1.0796 1.1409 
0.25 6.0982 x 1 o - ~  1.0534 1.0832 1.0675 1.1052 
0.5 0.20250 1.1074 1.2334 1.2575 1.3837 

m ( x )  = sin (5n.x) 
0.01 8.2714 x 1.0656 1.0620 1.0557 1.0779 
0.05 1.4395 x lo-) 1.1075 1.0652 1.066 1 1.0722 
0.25 2.4680 x 1.1428 1.1171 1.1183 1.1176 
0.5 8.2995 x 1.2540 1.1543 1.1548 1.1492 

m ( x )  = I - 48x + 218x2 - 315x3 + 145x4 
0.01 3.1636 x 1.0785 1.0851 1.0780 1.1080 
0.05 4.5184 x lo-' 1.1364 1.0968 1.1007 1.1014 
0.25 6.6864 x 1.271 1 1.2042 1.2046 1.1939 
0.5 0.205 13 1.3900 1.2719 1.2657 1.2565 

m ( x )= 0.3 exp{- 6 4 ( x  - 0 . 2 5 ) ~ )+ 0.7expJ-256(x - 0 . 7 5 ) ~ )  
0.01 1.4642 x 1.0447 1.1056 1.0638 1.1112 
0.05 2.5468 x 1.0652 1.0686 1.063 1 1.0881 
0.25 3.9257 x lo-' 1.1652 1.1273 1.1330 1.1425 
0.5 1.1705 x 1.2553 1.2017 1.2167 1.2273 

m ( x )  = I0 exp(- l o x )  
0.01 1.8821 x 10-3 1.0975 1.0835 1.0830 1.1043 
0.05 2.5465 x 1.1675 1.1261 1.1315 1.1328 
0.25 0.34545 1.4831 1.3128 1.3082 1.2973 
0.5 1.0373 1.9060 1.6007 1.5909 1.5689 

m ( s ) =  exp(x - 1 / 3 ) ,  x < 113; m ( x )  = exp{-  2 ( x  - 1 / 3 ) ] ,  x 2 113 
0.01 1.2380 x 1o - ~  1.0896 1.1085 1.1046 1.1400 
0.05 1.4496 x 1o - ~  1.2204 1.1419 1.1461 1.1425 
0.25 1.7391 x lo-' 1.4468 1.3573 1.3527 1.3415 
0.5 5.3246 x 10-3 1.9124 1.6375 1.6221 1.5845 

kernel estimators for the two regression functions mentioned above casts doubt on its use 
over the other estimators for an equispaced design. 

Results for n = 50 and n = 500 (not given here) can be summarized as follows. For the 
smaller sample size, variability of the estimators is naturally a problem, and accordingly the 
low variability of the plug-in selectors works in their favour. For this reason the plug-in 
selectors are generally better than the other selectors, although AICc is still competitive. The 
plug-in selector's properties are very similar to those of the classical selectors (except GCV) 
when n = 500. The results of Hall and Johnstone (1992) imply that plug-in methods are 
asymptotically superior to most classical methods in terms of the ASE (having the same 
convergence rate, but a smaller constant). 

It is well known that the convolution kernel (1 .I) is asymptotically inefficient for random 
designs; for example, the asymptotic conditional variance of the optimal second-order kernel 
estimator is 1.5 times the conditional variance of the asymptotically optimal local linear 
estimator. Herrmann (1996) discussed general versions of the Gasser-Miiller estimator 
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X - U  
= h-l= K ( - ~ )i=1 ci{J: du}yi, 

pointing out that it is the variability of the differences bi - ai ((xi+] - xi-,)/2 for estimator 
(1.1)) that potentially inflates the variance of estimator (3.1) (see also Chu and Marron (1991) 
and Jones et al. (1994)). Herrmann suggested taking ci = 1 and using kernel quantile estim- 
ators to determine ai and bi, 

and 

where K, is a symmetric boundary-corrected kernel of order k ,  = 2 or k ,  = 4, 

= 0.7qn + 1)-(3k+l)l(2k+l)(k.+l), 

and k is the order of the kernel K.  This estimator does not suffer the asymptotic inefficiency 
under random designs of estimator (1.1) (a different approach to this problem is given by 
Hall and Turlach (1997)). 

Simulation results when the predictor values in each simulation run were taken as a 
random sample from a uniform distribution (not given here) were similar to those for a 
fixed uniform grid. The mean ASE values for the local quadratic and cubic smoothing 
spline estimators were close to those for the fixed uniform design, which is consistent with 
those estimators' asymptotic equivalence under fixed and random designs. The values for 
Herrmann's modified convolution kernel estimator were sometimes considerably higher, 
however, indicating that the corrective action has not taken hold at n = 100. The plug-in 
selector for this estimator also did not approach as close to the optimal ASE as the fixed 
uniform design version does in some situations. The AICc selector, in contrast, generally 
performed well. 

Table 4 gives representative results (n = 100) for when the predictor values fall in a fixed 
non-uniform grid. The values satisfy xi = exp(i/20 - 5), i = 1, . . ., 100, yielding a set of 
values that are much more tightly packed at the low end than at the high end (x3, is closer to 
0 than x,, is to 1). In this situation a fixed local polynomial or kernel bandwidth is not 
optimal, but the performance of fixed bandwidth selectors is still of interest. No values are 
given for the local linear-based local quadratic plug-in bandwidth because the algorithm 
frequently did not converge to an answer. The results are consistent with those for fixed and 
random uniform designs, in that 

(a) GCV works well for small 0, but less well for large a, 
(b) the convolution kernel plug-in selector sometimes does not approach as close to the 

optimal ASE as the fixed uniform design version does and 
(c) the AIC, selector generally performs well in all circumstances. 

A simple way to allow the bandwidth of the local quadratic estimator to vary with the 
design density is to base it on a fixed number of nearest neighbours rather than on a fixed 
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Table 4. Monte Carlo results for a non-uniform fixed design? 

~ / R Y  Results for the follo+cjing estimators: 

Optimal GCV T AICc AICc, Plug-in 

Local quadratic estimator, m ( x )  = sin(5ax) 
0.01 8.7407 x lo-' 1.0670 1.0666 1.0635 1.0733 
0.05 1.4579 x lo-' 1.1087 1.0813 1.0830 1.0839 
0.25 2.4684 x 1.2098 1.1505 1.1519 1.1523 
0.5 8.3624 x 1.2943 1.2235 1.2240 1.2135 

Fourth-order kernel estimator, m(x )=  s in(5m)  
0.01 1.0683 x 1.1824 1.2084 1.2037 1.2179 1.6998 
0.05 1.5433 x lo-' 1.1514 1.1116 1.1131 1.1132 1.3636 
0.25 2.3408 x 1.3557 1.2896 1.2908 1.2820 1.2661 
0.5 7.3234 x 1.4176 1.3008 1.3048 1.3026 1.2826 

Cubic smoothing spline estimator, m ( x )  = sin(5nx) 
0.01 8.2293 x lo-' 1.0647 1.0605 1.0562 1.0735 
0.05 1.4260 x lo-' 1.1233 1.0683 1.0697 1.0747 
0.25 2.4355 x 1.1470 1.1153 1.1165 1.1159 
0.5 8.1981 x 1.2382 1.1445 1.1452 1.1413 

Local quadratic estimator, m ( x )  = 0.3 expi-64(x - 0 .25 )~ )+ 0.7 exp{-256(x - 0 .75 )~ )  
0.01 1.1687 x lo-' 1.0575 1.0721 1.0619 1.0706 
0.05 2.1593 x 1.0924 1.0727 1.0751 1.0838 
0.25 3.2169 x lo-' 1.2119 1.1795 1.1852 1.1862 
0.5 9.5174 x lo-' 1.4309 1.3247 1.3290 1.3191 

Fourth-order kernel estimator, m(x )=  0.3 exp{-64(x - 0 . 2 5 ) ~ )+ 0.7 exp{-256(x - 0 .75 )~ )  
0.01 1.4170 x lo-' 1.0479 1.0567 1.0534 1.0534 2.01 79 
0.05 2.2239 x 1.1446 1.0769 1.0815 1.0832 1.2631 
0.25 3.2546 x lo-) 1.2659 1.2035 1.2051 1.2074 1.1628 
0.5 9.7789 x lo-) 1.4871 1.3454 1.3373 1.3365 1.2305 

Cubic smoothing spline estimator, m ( x )  = 0.3 exp{-64(x - 0 .25 )~ )+0.7 exp{-256(x - 0 .75 )~ )  
0.01 1.4242 x 1 0-' 1.0435 1.0977 1.0652 1.0996 
0.05 2.5024 x 1.0628 1.0660 1.061 7 1.0830 
0.25 3.8233 x lo-' 1.1611 1.1260 1.1311 1.1387 
0.5 1.1463 x 1.2603 1.2243 1.2345 1.2462 

distance, as is done in most implementations of LOESS (this distinction does not matter for 
uniform designs except in the boundary region). Choosing the number of nearest neighbours 
by using GCV, T, AICc and AICc, was investigated here as well. It turned out, however, that 
the optimal ASE achieved by the local quadratic LOESS estimator was consistently at least 
25% larger than that achieved by the fixed bandwidth local quadratic estimator, and 
sometimes more than three times larger, so this estimator cannot be recommended on the 
basis of an ASE criterion. 

We conclude this section with a real data example. Fig. 7 refers to the data set, which 
relates the concentration of nitric oxide in engine exhaust (normalized by engine work) to the 
equivalence ratio, a measure of the richness of the air-ethanol mix, for burning ethanol in a 
single-cylinder automobile test engine (Brinkman, 1981). Local quadratic estimates based on 
AICc (full curve, h = 0.0382), GCV (dotted curve, h =0.0227) and a plug-in method based 
on the local linear plug-in estimator (broken curve, h = 0.0426) are superimposed on the plot. 
GCV leads to undersmoothing, whereas AICc gives a very reasonable representation of the 
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Equivalence ratio 

Fig. 7. Ethanol data: superimposed are local quadratic estimates with smoothing parameters chosen by using 
AIC, (-), GCV (..........) and the local linear-based plug-in method (- - - -) 

data (including the bimodality in the centre of the curve). The local linear-based local 
quadratic plug-in estimate is seemingly slightly oversmoothed but is generally similar to the 
AICc-based estimate. 

The fitted GCV- and AICc-based regression estimates in Fig. 7 for these data do not give a 
complete impression of the properties of these selectors for these data. The GCV criterion is 
very flat for these data over a wide range of bandwidths (differing by less than of its 
value over the range h" E [0.0185, 0.04]), while being minimized towards the low end of this 
interval. AICc, in contrast, is much less flat over the range of bandwidths considered. These 
results are consistent with the pattern seen in the Monte Carlo simulations, since the flatness 
of the GCV criterion is consistent with high variability, and the minimum at small h is 
consistent with the tendency to undersmooth. 

4. Conclusions 

The construction of effective smoothing parameters for nonparametric regression estimators 
has been a source of much research, and much controversy, in recent years. In this paper we 
have proposed a variant of the AIC that avoids some of the difficulties of other selectors, and 
that can be applied easily for use with any linear smoother. 

The results here leave open several problems. The local polynomial and kernel estimators 
can be modified so that the bandwidth can be locally varied to give better estimates by 
accounting for local differences in curvature of rn, density f, and variance a2(x). Several 
researchers have proposed automatic selection methods for this, and it would be interesting 
to see whether AICc could also be applied to this important problem. 

An application to smoothing estimators based on principles other than least squares would 
also be valuable. Just as generalized linear models (McCullagh and Nelder, 1989) generalize 
regression models to binomial, Poisson and other data types, so also can smoothing methods 
be generalized to other data types through the likelihood function. Recent examples of such 
methods are given in Gu and Qiu (1994) and Fan et al. (1995). The Poisson regression model 
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provides a natural link to local likelihood density estimation (Hjort and Jones, 1996; Loader, 
1996) through categorical data smoothing (Simonoff (1996), chapter 6), implying potential 
applications to these other smoothing problems. 

Our finding that AICc tends to undersmooth less than GCV parallels an analogous result 
for model selection in parametric linear regression. In Hurvich (1997) it is shown that in the 
parametric case AICc is guaranteed to select a model which is at least as parsimonious as 
that selected by using Tukey's MS/u criterion. The MS/u criterion (discussed in Anscombe 
(1967), Tukey (1967) and Mosteller and Tukey (1977), p. 386) is defined as the ratio of the 
residual sum of squares to the square of the residual degrees of freedom and therefore is the 
exact parametric analogue of the GCV criterion. Thus, for parametric models, AICc tends to 
select a model with fewer parameters than does the analogue of GCV, yielding a less 
undersmoothed estimate of the mean function. 
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Appendix A: S-PLUS functions 

S-PLUS functions and the data set used in Section 3can be obtained as an S-PLUS dump file using the 
World Wide Web at the location 

These functions can be used to determine the AIC,-based smoothing parameters for the near-
est neighbour local polynomial estimator LOESS (aicc. loess) and the cubic smoothing spline 
(aicc. spline) respectively. The functions determine the minimizer of AICc by using the function 
minimizer nlminb (rather than using a grid search, as was done in the results summarized in Section 3). 
Each function takes the predictor vector x and response vector y as input and returns as output the 
appropriate smoother object (loess or smooth. spline respectively) and the value of AICc. 

It is possible that the function minimizer will not find the true minimum, and for this reason we 
suggest that the functions are run several times with the starting values start set to different values 
(this is particularly important if there is a relatively small number of distinct predictor values, since then 
the criterion will have many local plateaus). The criteria functions (crit.loess and crit.spline) 
can also be used to perform a grid search over the appropriate range of smoothing parameters to 
determine the true minimizer of AICc. 

A Postscript file of an expanded version of this paper is available via the World Wide Web at the 
location 
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