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Smoothing Noisy Data with Spline Functions

M.F. Hutchinson and F.R. de Hoog
CSIRO Division of Mathematics and Statistics, GPO Box 1965, Canberra, ACT 2601, Australia

Summary. A procedure for calculating the trace of the influence matrix
associated with a polynomial smoothing spline of degree 2m—1 fitted to n
distinct, not necessarily equally spaced or uniformly weighted, data points
is presented. The procedure requires order m?n operations and therefore
permits efficient order m*n calculation of statistics associated with a poly-
nomial smoothing spline, including the generalized cross validation. The
method is a significant improvement over an existing method which re-
quires order n® operations.

Subject Classifications: AMS(MOS): 65D, 65K; CR: G.1.2, G.1.1.

1. Introduction

Since its introduction by Schoenberg [13] and Reinsch [11], the polynomial
smoothing spline has provided an attractive way of smoothing noisy data
values observed at n distinct points on a finite interval. Craven and Wahba [1]
have shown how to choose the degree of smoothing of this spline objectively,
both when the amount of noise associated with the data is known, and when it
is not known. In the first case, one may minimize the expected mean square
error over the data points, and in the second case, one may minimize the
generalized cross validation (GCV), a procedure which is asymptotically the
same as minimizing the expected mean square error. However, in each case,
the function to be minimized involves the trace of the influence matrix as-
sociated with the smoothing spline. An existing method lor calculating the
trace in the non-equally spaced data point case, as described in Craven and
Wahba [1] and implemented by IMSL [10], is expensive, requiring order n?
operations and approximately n? storage locations. Utreras [15] has provided
2 method for calculating an approximation to the trace in order n operations
when the weighting is uniform and the data points are equally spaced. He has
indicated in [16] a method for calculating an approximation to the trace in the
non-equally spaced case in order n? operations.
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In this article we provide a method for calculating the trace in the general,
not necessarily equally spaced or uniformly weighted case, which requires just
order m?n operations and order mn storage locations. This overcomes the
principal objection raised to the method of Craven and Wahba [1] by Weinert
etal. [21] and Wecker and Ansley [20]. A second objection raised in [20]
concerning repeated observations is not valid, since these may be taken into
account quite rigorously, as apparently realized by Reinsch [11], by taking the
mean of each set of repeated observations and setting the relative weight of
each data point appropriately.

Our method also provides the diagonal elements of the influence matrix
which may be used, as indicated in Wahba [19], to provide confidence in-
tervals for the smoothed data values. The method depends on being able to
calculate the central 2m+1 bands of the inverse of an (n—m)x(n—m) sym-
metric, positive definite, (2m+ 1)-banded matrix in order m?n operations.

2. Mathematical Preliminaries

A model for which the polynomial smoothing spline is applicable goes as
follows. Let x, <...<Xx, be a set of n ordered points on a finite interval and let
V1» ---» ¥, be a corresponding set of noisy observations given by

yi=g(x)+e (i=1,...,n) (2.1)

where g is a suitably smooth, but unknown, function and the ¢; are random
errors satisfying
E(ei)=0’
E(g;e)=0 for i%*j, (2.2)

E(e?)=w?q?

where E denotes expectation. The w; are known positive constants while the
value of 6% may or may not be known. A polynomial spline function of degree
2m—1 (m an integer =1) arises (see [3, 11-13]) as the unique real valued
function f, with absolutely continuous (m— 1)-st derivative and square integra-
ble m-th derivative, which minimizes

p Zn: [,Vi"'f.(xi)]z_*_ Tw(f(m))z dx 2.3)

i=1 Ww;

where p is positive. Here f™ denotes the mth derivative of f and p controls
the amount of smoothing of the data. Let f, denote the function minimizing
(2.3). According to [12], (see [17] for a slightly different development involving
B-splines) the mth derivative of f, may be expressed as

=Y oM, 24)

i=1
where M, are the minimum support splines of Curry and Schoenberg [2]. The
coefficients c=(cy, ..., C,_m)" and a=( fo(x1)s ey fp(x,,))T uniquely determine f,.
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They can be obtained from the linear system

(G"W?G+pH)c=pGTy (2.5)
1
a=y—; W2Gc (2.6)

where y=(yy, ..., y,)", W=diag(w,, ..., w,), and H and G* W2G are symmetric,
positive definite band matrices of bandwidth 2m—1 and 2m+1 respectively.
The elements of H are given by

hj= | M;M;dx (2.7

and G is an (m-+1)-banded, lower triangular, n x (n —m) matrix with elements in
the ith column given by the coefficients of the mth order divided differences
based on x;, ..., X; .

Let the coefficient matrix of (2.5) be denoted by
B,=(G"W?G+pH). (2.8)

The influence matrix associated with the smoothing spline f,, is the unique nxn
symmetric matrix A4, satisfying

a=A4,y. (2.9)
From (2.5), (2.6), (2.8) we have
y—a=WZGB;1GTy (2.10)
so that
I~AP=W2GB;‘GT. (2.11)

The total, squared, weighted residual is given by
F(p)=|W-'(I-4,)y|*>=IIWGB,'G"y|* (2.12)

where ||.|| denotes the usual L?-norm in n dimensional Euclidean space.

The algorithm of Reinsch [11, 12] uses repeated rational Cholesky decom-
positions of the coefficient matrix B, for different values of p in order to
determine the value of p (and the smoothing spline f,) such that the residual
F(p)=S, where S is a non-negative number no greater than F(0). Reinsch
suggests that S should be approximately no? when o2 is known, but leaves
open the question of how to determine S when ¢ is unknown. Reinsch’s [11]
algorithm for the case m=2 requires approximately 30n operations to calculate
F(p), of which only 1671 need to be performed again to calculate F(p) for each
different value of p. Here one operation consists of one multiplication (or
division) and one addition (or subtraction).

Wahba [18] has indicated that Reinsch’s suggestion when ¢? is known
leads to systematic oversmoothing and Craven and Wahba [1] show that it is
preferable to choose p in order to minimize an unbiased estimate of the
expected true mean square error given by
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TP:% W= —A4,)y|*—Qc*/n) Tr(I-A,)+c? (2.13)

where Tr denotes the trace. Moreover, when ¢? is unknown, Craven and
Wahba [1] show that p may be chosen to minimize the generalized cross
validation (GCV) given by

1
W= A,y
V= (2.14)

’ [% Tr(I—-Ap)]z

since the minimizer of V, is asymptotically the same as the minimizer of T,.
Practical minimization of either T, or V, therefore requires efficient calculation
of F(p)=|W-'(I—-A,)yl* and of Tr(I—A,).

The algorithm suggested in [1], which has been implemented in subroutine
ICSSCV of [10] for the case m=2, first calculates the singular value decom-
position of WGH~*, after which F(p) and Tr(I —A,) may be calculated in
approximately 3n operations for each value of p. This method avoids the
explicit solution of Eq.(2.5) which involves the potentially ill-conditioned ma-
trix B,. However, the singular value decomposition requires order n® oper-
ations and approximately n® storage locations and is therefore impracticable
for large values of n.

Utreras [15] has presented an approximate method for calculating Tr(I
—A,) in 2n operations for the special case when the data points are equally
spaced and uniformly weighted. We show how to calculate Tr(I—A4,) in the
general case, from the rational Cholesky decomposition of B, in just (m+ 1)2n
operations. Since this decomposition of B, may also be used, as in [11], to
calculate F(p), this leads to an efficient order m?n algorithm for evaluating, and
minimizing, either 7, or V.

3. The Main Result

The proposed method depends on the following theorem for obtaining the
central bands of the inverse of a banded matrix. Several authors have devel-
oped recursive formulae appropriate for this problem, notably [6-9] and [14].
We follow one of the earliest and simplest approaches as described in [7, 14].
Note that the method described in [9] differs from the others in not requiring
a Cholesky factorization.

Theorem 3.1. Let B be a (2m+ 1)-banded, n x n matrix product of the form
B=UTD-'U 3.1

where D is a diagonal matrix with positive diagonal elements and U is a real.
unit upper triangular matrix of bandwidth m+ 1. Then the central 2m+1 bands
of B~' may be obtained from (3.1) by performing 3(m—1)m(m+1)+(n—m)m(m
+1) operations.
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Proof. Let B-'=(b,)";,_;, U=(u;)",_, and D=diag(d,, ..., d,). Since B~!
symmetric, it is sufficient to calculate the upper m+1 bands of B~! whose
elements are given by

b,
Following [7, 14] we have

(i=1,...,n; k=0, ..., min(m, n—i)) (3.2)

itk

B-'=DU-T+(I-U)B !, (3.3)

which may be easily obtained from (3.1). Since DU~ is lower triangular and
U is (m+1)-banded, unit upper triangular, this gives rise to the following
recurrence formulae for the upper triangular elements of B~ 1,

min(m,n—i)
Ei,i+l= “Z ui,i+k5i+k,i+l (1>0) (3.4)
k=1
and
min(m,n—1i)
Eii=di— Z ui,i+15i,i+1- (3.5)
=1

For each i formula (3.4) expresses b, ,,,, for each I=1,...,min(m, n—i), in

terms of elements of the ith row of U and previously calculated elements
biixir: (k>0), in min(m, n—i) operations. Formula (3.5) then expresses b;; in
terms of elements of the ith rows of D and U, and elements calculated by (3.4),
also in min (m, n—i) operations. In particular, for the first step of the procedure,
we have b,,=d,. The total number of operations for the whole procedure is
then easily seen to be given by

m—1

Y k(k+1)+n—mymm+1)=4(m—1)mm+1)+@m—m)ymm+1).
k=0

Remarks. The elements b;;,b; ;. 1, ..., b; ;, » may overwrite the storage locations
for d;, u; ;,,...,u;;,, respectively using just one additional storage location,
prov1ded that formula (3.5) is used to progressively update d; to b, as each
bli +1 18 calculated. It is computationally more straightforward however, to
provide m additional storage locations to temporarily store the elements
Uiis1s-or U, .. The elements of each additional upper band of B~' may be
simi]arly calculated using formula (3.4), each element requiring exactly m
Operatlons The complete upper triangle of B~! may therefore be calculated in
3(m m—1)m(m+1)+4(n—m)m(n+m+ 1) operations. Since every n x n matrix has
bandwidth no greater than 2(n—1)+1, the method may also be applied to full
matrices, giving an operation count of 3(n—1)n(n+1). This is the same as for
the standard method which takes advantage of the triangularity of U (see
p.3.16 of [4]).

We now proceed to the calculation of Tr(I—A p)- Firstly, one may form the
rational Cholesky decomposition of the (n—m) x (n m) matrix B, in approxi-
mately (m+ 1)(m+2)n operations, giving

B,=UD;'U, (3.6)
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where D, and U, satisfy the conditions of Theorem 3.1. The central 2m+1
bands of B;l may therefore be calculated from (3.6) in no more than m(m+1)n
operations. Using (2.11) above and an elementary property of the trace, we

have
Tr(I—Ap)=Tr(GT w2 GB;‘). 3.7

Since the (n—m) % (n—m) matrix GT W2G is symmetric and (2m + 1)-banded, it
is easy to see that Tr(I—A,) may be calculated from G” W2G and the central
2m+1 bands of B, ! in no more than (m+ 1)n operations. Thus Tr(I —A,) may
be calculated from (3.6) in no more than (m+1)*n operations. The terms of
(3.7) may be rearranged to give

Tr(I-A4,)= Tr((Bp—pH)B;l)
=n—m—pTr(HB,") (3.8)

which may be calculated in n fewer operations since H is (2m— 1)-banded, but
this formula cannot be used in general since all accuracy is lost as p ap-
proaches co and p Tr(HB, 1) approaches n—m. It is however quite accurate for
small values of p.

The matrix B, becomes ill-conditioned for small values of p, or when the
data points are very unequally spaced, leading to loss of accuracy in the
calculation of the Cholesky decomposition. This problem can be alleviated if,
instead of forming the Cholesky decomposition of B,, one performs a QR
factorization of the (2n—m) x (n —m) matrix

WG
Z= [p*R]

where RTR is the Cholesky factorization of H, in the manner described by
Eldén [5] at the expense of approximately 4 times as many operations. We will
further investigate more accurate ways of calculating Tr(I—A4,) and F(p) else-
where.

Finally, note that the diagonal elements of A, which can be used to
provide confidence intervals for the smoothed data values (see [19]), may be
calculated using (2.11) and the central 2m+1 bands of B, ! in (m+1)(m+2)n
operations.

4. Numerical Results

An algorithm based on the algorithm of Reinsch [11] and Theorem 3.1 above,
for determining the cubic smoothing spline f, and its generalized cross vali-
dation V, (or its true mean square error estimate T,) for each p now goes as
follows:
(i) Compute H, G" W2G and GTy.
(i) Compute the rational Cholesky decomposition of Bp=(GT W?2G+pH).
(i) Compute u from B,u=G"y using (i), (ii).
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(iv) Compute v=WGu and F(p)=0"v (see (2.12)).
(v) Compute the central 5 bands of B, ! using (ii) and Theorem 3.1.
(vi) Compute Tr(I —A,)=Tr(G" W>GB, ") using (i), (v).

(vii) Compute ¥, (or T,) using (iv), (vi).

(viii) Compute a=y—Wv, c=pu and the remaining coefficients of f, (see
[117).

If V, or T, is to be minimized then step (i) need only be performed once.
Steps (i1), ..., (vii) may then be repeated in a global search for the optimal value
of p, after which step (viii) may be performed. Steps (i) and (viii) require
approximately 21n operations while the repeated steps (ii), ..., (vii) require a
total of approximately 25n operations.

The above algorithm was implemented in double precision on a VAX 750
computer without floating point hardware in standard FORTRAN V. The
search method employed to minimize V, was the same as that used for the
approximate method of Utreras [15] as implemented in subroutine ICSSCV of
[10]. Average execution times for our algorithm and for the double precision
versions of the algorithms of Utreras [15] and Craven and Wahba [1], as
implemented in [10], are presented in Table 1. The order n property of our
algorithm is clear. Its execution times are almost the same as those for the
approximate method of Utreras [15]. They are dramatically less than the times
for the original Craven and Wahba [1] algorithm. Times for our procedure
when applied to non-equally spaced, non-uniformly weighted data are similar
to those for equally spaced, uniformly weighted data as given in Table 1.
Source code for this procedure may be obtained from the authors on request.

Table 1. Execution times in seconds for the proposed algorithm and for the algorithms of Utreras
[15] and Craven and Wahba [1]

Number of data points Proposed algorithm Utreras Craven and Wahba
50 4 4 179

100 11 11 1,358

200 25 24 10,474

400 53 50 -

800 108 104 -
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