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On the LASSO and its Dual 
Michael R. OSBORNE, Brett PRESNELL, and Berwin A. TURLACH 

Proposed by Tibshirani, the least absolute shrinkage and selection operator (LASSO) 
estimates a vector of regression coefficients by minimizing the residual sum of squares 
subject to a constraint on the 11-norm of the coefficient vector. The LASSO estimator 
typically has one or more zero elements and thus shares characteristics of both shrinkage 
estimation and variable selection. In this article we treat the LASSO as a convex pro- 
gramming problem and derive its dual. Consideration of the primal and dual problems 
together leads to important new insights into the characteristics of the LASSO estimator 
and to an improved method for estimating its covariance matrix. Using these results we 
also develop an efficient algorithm for computing LASSO estimates which is usable even 
in cases where the number of regressors exceeds the number of observations. An S-Plus 
library based on this algorithm is available from StatLib. 

Key Words: Convex programming; Dual problem; Partial least squares; Penalized re- 
gression; Quadratic programming; Regression; Shrinkage; Subset selection; Variable se- 
lection. 

1. INTRODUCTION 
Consider the usual linear regression setting with data (xi,, ..., i,m Yi), i = 1,... 

n, where the xij's are the regressors and yi is the response for the ith observation. In 
this situation, ordinary least squares regression finds the linear combination of the xij's 
that minimizes the residual sum of squares. However, if m is large or if the regressor 
variables are highly correlated, then the variances of the least-squares coefficient estimates 
may be unacceptably high. Standard methods for addressing this difficulty include ridge 
regression and, particularly in cases where a more parsimonious model is desired, subset 
selection. 

As an alternative to standard ridge regression and subset selection techniques, Tib- 
shirani (1996) proposed the "least absolute shrinkage and selection operator" (LASSO), 
which minimizes the residual sum of squares under a constraint on the 11-norm of the 
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coefficient vector. Thus, the LASSO estimator solves the optimization problem 

n / m \ 

minimize Y - Zxij/3j (l.a) 

subject to 
m 

E ii < t (l.lb) 
j=1 

for some t > 0. If t is greater than or equal to the 11-norm of the ordinary least squares 
estimator, then that estimator is, of course, unchanged by the LASSO. For smaller values 
of t, the LASSO shrinks the estimated coefficient vector towards the origin (in the L1 
sense), typically setting some of the coefficients equal to zero. Thus, the LASSO combines 
characteristics of ridge regression and subset selection and promises to be a useful tool 
for variable selection. 

Though the optimization problem (1.1) is easily stated, solving it numerically is not 
a trivial exercise. The algorithm proposed by Tibshirani (1996) is adequate for moderate 
values of m, but it is not the most efficient possible. Of course, the effect of an inefficient 
algorithm is greatly magnified when techniques such as cross-validation and the bootstrap 
are used to choose an appropriate value of t (Tibshirani 1996) or to estimate standard 
errors. Moreover, Tibshirani's algorithm is particularly inefficient when m is large and 
it is not usable at all when m > n. This can be a rather severe practical limitation, 
since problems in which the number of variables is of the same or larger order than the 
number of observations occur frequently in areas such as chemometrics, where partial 
least squares (Brown 1993; Haagen, Bartholomew, and Deistler 1993) is often employed. 
In fact, our own interest in the LASSO was initially motivated by the problem of knot 
selection for regression splines (see Osborne, Presnell, and Turlach 1998), which can be 
formulated as a variable selection problem with m > n. 

In this article, we treat (1.1) as a convex programming problem and derive the dual 
optimization problem. By considering simultaneously the primal problem and its dual, 
we develop an efficient algorithm for calculating the LASSO estimator which is also 
applicable in the case that m > n [an S-Plus library based on this algorithm is available 
from StatLib at Carnegie Mellon University (http://lib.stat.cmu.edu/S/lasso2)]. This ap- 
proach also yields new insight into the LASSO by providing an exact characterization 
of the solution(s) of (1.1). In the case m < n, this characterization suggests an estimator 
of the covariance matrix of the LASSO estimator different from the one proposed by 
Tibshirani (1996). 

We shall concentrate on the optimization problem (1.1). A closely related optimiza- 
tion problem is 

1m n m ) m 
minimize2 - x , 3j + A jl . (1.2) 

1: i=1 j=l j=l 

Problems (1.1) and (1.2) are equivalent; that is, for a given A, 0 < A < oo, there exists a 
t > 0 such that the two problems share the same solution, and vice versa. Optimization 
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problems like (1.1) are usually referred to as constrained regression problems while (1.2) 
would be called a penalized regression. Chen, Donoho, and Saunders (1999) proposed 
to use 11-penalized regression in the context of wavelet regression. They use a primal- 
dual log-barrier interior point algorithm to solve (1.2). Sardy, Bruce, and Tseng (2000, 
pp. 361-379 of this issue) propose another algorithm that is based on block coordinate 
relaxation techniques. 

A possible generalization of (1.1) is to change the constraint (l.lb) to 
m 

E Wl1 < t for some a > 1. 
j=l 

This was investigated by Fu (1998) (see also Frank and Friedman 1993), Fu (1998) also 
proposed an alternative algorithm to solve (1.2). However, his algorithm is again not 
applicable if m > n as it starts from the unconstrained least-squares solution of (l.la). 

The rest of this article is structured as follows. Section 2 derives the dual of (1.1) 
and discusses the relationship between the primal and dual problems. Section 3 discusses 
further theoretical properties of the LASSO estimator, including existence and uniqueness 
of solutions and the number of nonzero entries in the estimator. Section 4 examines the 
estimation of standard errors and proposes a new approach to this problem based on the 
duality results of Section 2. Further technical details concerning standard error estimation 
are given in the Appendix. Section 5 develops a new and efficient algorithm to calculate 
the LASSO estimator. Section 6 applies this algorithm to an example from Tibshirani 
(1996), and various standard error estimates are also compared in the context of this 
example. 

2. CONVEX DUALITY AND THE LASSO 
To fix notation, let y = (yl,..., yn)T denote the vector of observed responses, let 

X = (xl,... ,xm) be the n x m-matrix with the vector xj = (Xl,j,... Xn,j)T E Rn as 
jth column, and let A = XTX. We assume that X has maximal rank. Let A/(X) C Rm 
denote the null space of X and let /3 be a solution to the unconstrained least squares 
problem. Of course, if m < n, then .A(X) = {0} and 3? = A-lXTy is unique. If 
m > n, then A/(X) has dimension m - n, 3?0 is not unique, and X(P? + r7) = y holds 
for any 7 e A/(X). But in either case we may define 

to= mi II 3?+pll1, 
77 EA/(X) 

where II[P/11 = Em ,_ 1 i / denotes the 11 norm on Rm. Note that to is unique even though 
in the case m > n there may be several 7r's that attain to. Since the LASSO is equivalent 
to ordinary least squares when t > to, we assume in the sequel that t < to. 

The optimization problem (1.1) can be rewritten as 

minimize f(/) (2.la) 

subject to 

(g ) > o, 
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where 

1T f(3) = (y-X/3)T(y -X /) = rr, (2.2) 2 2 

and 
m 

9( = - E \ Z i. (2.3) 
i=l 

Here r = r(/3) is the vector of residuals corresponding to 3 and g(/) is implicitly a 
function of t, which is treated as fixed in the present discussion. 

Since f is continuous and the region of feasible 3 vectors is compact, a solution to 
(2.1) is guaranteed to exist. Furthermore, since t < to, all the critical values of f occur 
outside the feasible region and any solution /* of (2.1) must lie on its boundary; that 
is, 11P* Ii1 = t. Because g is a concave function, the region of feasible values defined by 
(2. b) is convex, and since f is a convex function, it is clear that the solution set of 
(2.1) is convex. If m < n, then our assumption on X ensures that f is strictly convex, in 
which case the solution is unique. These facts are summarized in the following theorem. 

Theorem 1. (Existence and uniqueness) If t < to, then the following hold: 
(a) If m < n, then a unique solution /* of (1.1) exists and 11/3* l = t. 
(b) If m > n, then a solution /3* of (1.1) exists and 11/* t11 = tfor any solution. If /3 

and /2* are both solutions of (1.1), then po3* + (1 - p)/32 is also a solution for all 
<p< 1. 

Treating (2.1) as a convex programming problem (Nash and Sofer 1996, p. 21), the 
Lagrangian is 

?(3, A) = f(3) - Xg(/). (2.4) 

If we define 

* (3) = sup ?(,, A), (2.5) 
X>O 

then 

r*(1)= { f(/) if 9g(3) >O 
c0 if g(/() < 0. 

Hence, minimizing L *(3) is equivalent to solving (2.1). In convex programming theory, 
(2.1) or the equivalent problem of minimizing L*(/3) are called the primal problem and 
f(/3) is called the primal objective function. 

For A > 0 the dual objective function is defined to be 

?, (A) = inf (/3, A), (2.6) 

and the dual problem is 

maximize ?, (A). 
A>O 
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If we fix A > 0, then L?(/, A) is a convex function in 3 and ?(/, A) -- oo as II|11 -I oo. 
Hence, ?(., A) has at least one minimum and 3 minimizes L(/3, A) if and only if the 
m-dimensional null-vector 0 is an element of the subdifferential OdLC(3, A) (Osborne 
1985, p. 23). In the current problem, the subdifferential is given by (Osborne 1985, 
p. 20) 

oa(c(, A) -XTr + Av, 

where v = (vl,..., vm)T is of the following form: vi = 1 if i > 0, vi = -1 if fi < 0, 
and vi E [-1, 1] if 3i = 0. Thus, if 3 minimizes ?C(/, A) for a given value of A, then 

0 = -XTr + Av, (2.8) 

for some v of the form described above and r = r(3) = y - X3. 
The form of v implies that vT7 = I1/ 11 and thus it follows from (2.8) that if 

minimizes ?(/, A), then A = FTX/I11 P i. Alternatively, if /3 f 0, which is the case 
whenever t > 0 by Theorem 1, then Ilvlloo = 1 and it follows, again from (2.8), that A 
can also be calculated as A = IlXTrl . Using these two expressions for A we find that 

L, (A) = ?( A) -= r-T- (t -I i) 

-T--TX tTX 
2 11P311 

l-YT - 

= _yT T- ~TA _ txr T1 

Y= Ty - AP- tlXTrl. 2 2 

If we define 

h(/3) - Y y- 1 TA - t 

-h() = -1 Y - A- X 1 (2.9) 
h() - _1TA - t XTrll,, (2.9) 

then h(/3) = h(f3) for any 3 for which 0 E 9?(/3, A), and the dual function can be 
written as 

L*(A) -= L(f, A) = h(/3) = h(/) for any 3 for which 0 E 0p3LC(, A). (2.10) 

In the sequel, we shall use h(f3) as a generic notation for either h(/3) or h(/3), and 
statements about h(/3) will hold for both. However, note that in general h(/3) = h(/3). 

Remark 1. Tibshirani (1996) noted that (1.1) can be written as a quadratic 
programming problem. The dual function h(/3) was originally found by the authors 
while deriving the dual problem of this quadratic programming problem. 

Remark 2. By the same arguments as above the solution of (1.2) must fulfill (2.8). 
This leads to an interesting observation concerning the choice of smoothing parameter in 
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I1-penalized regression versus 12-penalized regression (ridge regression). In 12-penalized 
regression, one typically observes that 3 -+ 0 as A - oc, but for any finite A all entries 
in /3 are nonzero. By way of contrast, in l'-penalized regression we see from (2.8) that 
as soon as A > IIXTylIoo is chosen, 3 = 0 is a solution of (1.2). To see this note that 
if 3 = 0, then r = y and if we choose v = XTy/A, then (2.8) holds and v is of the 
required form; that is, each of its components has an absolute value less than or equal 
to one. Thus, if in 1l-penalized regression the "smoothing" parameter A is to be chosen 
adaptively-for example, by cross-validation-then the search for the optimal parameter 
can be conveniently restricted to the interval from zero to IIXTyII. 

The existence of a finite solution to the dual problem is guaranteed by Theorem 3. 
If A is such a solution and L,(A) = (/3, ~), then ?,(A) = h(P) = h(p). However, 
if p,3 is a maximizer of h(/3), where the maximum is taken over all /3 E Rm, then p/ 
is not necessarily a feasible point for the primal problem; that is, it is not guaranteed 
that II| Il <t t. In fact, if m > n, it can be shown that a global maximizer P3 of h(/3) 
exists with II /* ,I < t but that the 11 norm of the global maximizer p3 of h(/3) is strictly 
greater than t. 

In many cases, efficient algorithms for solving optimization problems can be devel- 
oped by using the relationship between the primal and dual problems. This is also the 
case for solving (1.1). In the following, we give some results concerning the relationship 
between the primal problem (2.1) and its dual (2.7). The first result follows directly from 
the definitions of C* and CL and is known as weak duality (see, e.g., Nash and Sofer 
1996, chap. 14.8). 

Theorem 2. (Weak Duality) If 3* is a solution of (1.1) and A is a solution of the 
dual problem (2.7), then L*(A) < ?*(/3*); that is, h(P) < f(/3*), where / satisfies 

, (A) = L(, X). 
A direct consequence of this theorem is that f(/*) > h(/3*) for all solutions of 

(1.1). It is desirable that equality hold at solutions of (1.1), since this would allow us to 
use the dual gap f(/3) - h(/3) to test for solution of (1.1). The discussion in Nash and 
Sofer (1996, chap. 14.8) indicates that this is true if (and only if) there is some point 
(/*, A*) that satisfies the saddle-point condition 

?(*, A) < ?(/*, A*) < ?(A, A*) (2.11) 

for all 3 E ]Rm and A > 0. The next theorem shows that for this problem such points 
exist. Here, the Lagrange multiplier A corresponding to 3 is A = rTXp3/l11/3l, as defined 
after (2.8). 

Theorem 3. (Strong Duality) If /3* is a solution of (1.1) and A* is the Lagrange 
multiplier corresponding to /3*, then A* is a solution of the dual problem (2.7) and 
?*(A*) = ?(P/*, A*). It follows that the optimal primal and dual function values are 
equal; that is, h(/*) = f(/3*). 

Proof: Following Osborne (1985, p. 34) we define the perturbation function to be 

v(z)= inf f(/3). 
f{f:g9(3)>z} 

By Lemma 1.6.2 of Osborne (1985), v(z) is a convex function with effective domain 
dom(v) = (-oo,t]. Since 0 lies in the interior of dom(v), v(z) is stable at z = 0 
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(Osborne 1985, p. 15). The theorem now follows from Theorem 1.6.2(iv) of Osborne 
(1985). ? 

Since the dual function (2.6) is concave, any extreme in (0, oo) is a maximum and 
all maxima take the same value. Hence, as a consequence of Theorems 2 and 3, if A > 0 
is a solution for the dual problem with L?,(A) = L(3, ), and if / is primal feasible, 
then 3 is a solution to the primal problem. 

3. CHARACTERISTICS OF SOLUTIONS 
3.1 UNIQUENESS 

The following definitions are useful for proving properties of solutions of (1.1) when 
m > n. If ,* is a solution of (1.1), then we define V(/*) to be the collection of all 
vectors e of the form ei = 1 if P3 > 0, ei = -1 if 3 < 0, and ei equals either -1 or 1 
if 3* = 0. If 3* has 1 < m entries equal to zero, then V(/3*) = {e,..., ek} is a set of 
k = 21 vectors, and we let E denote the k x m matrix whose ith row is eT. Note that 
llelll = m and /*Te = t < to for each e E V(3*). Thus, 

t-e e =0 for all e E V(3*), m 

that is, p* lies on the intersection of all the hyperplanes that have 11-distance t from the 
origin and one of the e E V(/3*) as normal vector. 

Suppose now that m > n and that pt is also a solution of (1.1), and let 7 = 3t - /*. 
It follows from Theorem 1 that /* + prj is also a solution for all 0 < p < 1 and 
that 113* + pr\111 = t. Since Ily - XP112 must be constant across solutions, a standard 
argument then shows that r] E A/(X). Moreover, the condition 1/3* + prlll = t implies 
that r7Te < 0 for all e E V(3*). To see this, first note that llblll > bTw for any 
m-vectors b and w with llwl|l < 1. Thus, if rTe > 0 for some e E V(/3*), then 
11* +prlli >? (P* +p7r)Te = t+pr7Te > t for 0 < p < 1, a contradiction. Geometrically, 
this argument reflects the fact that in moving from p* to a new solution, we must either 
stay on all the hyperplanes in which /* lies, or, if we move off any of these hyperplanes, 
we must move in a direction r7 for which (P* + pq)Te < t for those e that define the 
hyperplanes that we leave. 

If we take C(3*) to be the convex cone defined by 

C(/*) = {x E : xTe < 0 for all e EV(/*)}, 

then the above discussion can be summarized by the following theorem. 
Theorem 4. 3* is a unique solution of (1.1) if and only if C(3*) n f(X) = {0}, 

where 0 is the m-dimensional null vector. 
Note that the condition of the theorem is trivially fulfilled if m < n since we assume 

X to have full rank. Although this theorem gives a necessary and sufficient condition 
for the existence of a unique solution, the condition is difficult to verify in practice. The 
results of Section 2 enable us to develop a more useful condition. 

Suppose again that P* and Pt are both solutions of (1.1). Then arguing as before, 

7 = 3t - 3* E A(X) =* X3 = Xt = XTr* = XTrt. 
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This means that the vector XTr is constant across solutions of (1.1). Let a = {il,..., ip} 
be the set of indexes for which I(XTr)i3j = IIXTrlloo for j = 1,...,p. Since every 
solution of (1.1) must satisfy (2.8), it follows that if / is a solution, then 3i = 0 for all 
i ? a. Hence, if /* and 3t are solutions, then ri = 0 for all i ? o. This leads to the 
following theorem. 

Theorem 5. Let /* be a solution of (1.1). Denote by X, the n x p-matrix whose 
jth column is the ijth column of X, j = 1,..., p, and let E, denote the corresponding 
submatrix of E, the matrix formed by the vectors in V(/3*). Then /* is a unique solution 
if and only if there exists no 7y 0 satisfying 

E,7 < 0, (3.1a) 

X,y = 0. (3.lb) 

Given Theorem 5, it is often easy to verify whether a solution 3* is unique when 
m > n. Assume, for example, that any n x n-submatrix of X has full rank. Then 
after calculating a solution to (1.1) with the algorithm to be proposed in Section 5, we 
determine o. If the number of elements of a is less than or equal to n, then the solution 
is unique, since in this case (3.lb) holds only for y = 0. Otherwise we must check for 
a nontrivial solution of (3.1). 

3.2 THE NUMBER OF NONZERO COEFFICIENTS 

If m > n and 3* is not a unique solution, then there exists a vector r E JA(X) 
such that rTie < 0 for all e E V(/*). But the "interesting" directions are those 77 E 
./(X) for which riTe = 0 for all e E V(/*); that is, r E ./V(E). If we move along 
such a direction, from 3* to /t, until we reach (at least) one other hyperplane that 
defines the m-dimensional 11-sphere of radius t, then 3t will have at least one fewer 
nonzero components than 3*; that is, IV(/*)I < IV(/t)l. Hence, as long as there exists 
1 E A/(E) n A/(X), ri f 0, we can move from /* along r1 to a solution /t which has 
fewer nonzero entries than /3*. From the results proven below it follows that E has full 
rank if 3* is a vertex of the m-dimensional 11-sphere of radius t. Hence, this iterative 
process will end at the latest when a vertex is reached. 

On the other hand, if r7 E A(X) is such that 77 E C(/*) and 7Te < 0 for at least one 
e E V(/3*), then the number of nonzero entries of /* increases, at least initially, as we 
move along ri. If we move along such a direction from /* to Pt we cannot guarantee that 
V(3t) will contain more vectors than V(/3*). This discussion motivates the following 
definition. 

Definition 1. A solution /3* of(1.) is called regular if J(E) n A(X) = {0}. 
Note, that a unique solution of (1.1) is also a regular solution in the sense of this 

definition since Af(E) C C(/3*). From the discussion preceding the definition it is also 
clear that we can find at least one regular solution if (1.1) has multiple solutions. To 
obtain a bound for the number of nonzero elements a regular solution may have, we 
define C(/3*)? to be the polar cone of C(/3*), 

C(P*) = {y Rm yTx < 0 for all xEC(/3*)}. 
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The polar cone C(/3*)?? of C(P*)? is again C(P1*) and the vectors e E V(,3*) are 
generators of C(/*)?; that is, 

C(f*)? = {y E m y = Aiei, Ai >_ , i = ,...,k 

(Rockafellar 1970, chap. 14). Note that the dimension of a convex cone containing 0 is 
defined to be the dimension of the smallest subspace containing it. 

Lemma 1. The following results hold: 
(a) The rank of E is l+ 1; that is, V(/3*) contains 1+ 1 linearly independent vectors. 

Furthermore, E is irreducible; that is, no row of E is a positive linear combination 
of other rows, and the origin is also not a positive linear combination of rows of 
E. 

(b) The dimension of C(3*)? is I + 1. 
(c) The dimension of C(3*) is m. 
Proof: (a): Set = {il ..., il}, where /*3 = 0 for j = 1,..., 1. Take the following 

I + 1 vectors: for k = 1,..., 1, let ek E V(3*) have elements eik,k = -1 and ei,k= 1 
for j = 1,..., k - 1,k + 1,...,1, and let e1+l E V(3*) have elements ei,l+l = 1 
for j = 1,..., I1. It is easy to verify that these I + 1 vectors are linearly independent 
and that every other vector in V(3*) can be written as a linear combination of these 
vectors. This proves that E has rank I + 1. Assume that there exist Aj > 0 and indexes 
kj, j = 1,..., p, such that Ei=l Ajekj is equal either to ek for some k ? {kl,..., kp}, 
or to the origin. Since 11/3* l = t, there exists at least one io with /30 5 0 and the ioth 
components of all e C V(/3*) are either all equal to 1 or all equal to -1. Thus, E =l Aj 
is equal to 1 if EP=l Ajekj = ek or 0 if P =l Ajekj = 0. The latter case leads directly 
to a contradiction. In the former case, since all the components of both ek and ekj, 
j = 1,... ,p, have absolute value 1, it is clear that we must have ekji = eki for all 
j = 1,..., p and i = 1,..., m. But this contradicts the fact that the e in V(/3*) are all 
distinct. Hence, E is irreducible. 

(b): The smallest subspace that contains C(/3*)? is (Rockafellar 1970, p. 15) 

C(/*)? - C(/*)o = {x E Rm :x = X1-2 and xl,x2 E C(/3)?}. 

Hence, the dimension of C(3*)? is I + 1, the number of linearly independent vectors in 
V(O*). 

(c): The proof follows Meyer (1999) and is based on the fact that E is irreducible. 
If the dimension of C(/*) is less than m, then there exists a vector v 0 such that 
vTx = 0 for all x e C(*3). But then both v and -v must be in C(3*)?, contradicting 
the fact that the origin is not a positive linear combination of rows of E. ? 

Theorem 6. If m > n and 3* is a regular solution of (1.1), then /* has at most n 
nonzero entries. 

Proof: Let /* be a regular solution with I zero and m - I nonzero components. 
Then, by Lemma 1, A/(E) is a (m - 1 - 1)-dimensional subspace of IRt and .'(E) n 
A/(X) = {0} by definition. Of course, X is assumed to have full rank, so that .A(X) 
has dimension m- n. 

Now consider the one-dimensional space S = {r : 71= A, A IR}, where e = 
=l ej has entries ei = 1 if 3i > 0, i = -1 if 3 < 0 and ei = 0 if 3i = 0. It k jlj I a nrise i r 
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is clear that eTe = m- I > 0 for all e E V(/3*), so that S n J/(E) = {0}. But also 
S n A/(X) = {0}, since otherwise, for A > 0 sufficiently small, /3* - A would be a 
solution of (1.1) with 11 norm less than that of p*, contradicting Theorem 1. Since S, 
/V(E), and JA(X) can span at most IRm, it follows that (m -1 - 1) + (m - n) + 1 < m, 
or, equivalently, m - < n. O 

4. STANDARD ERRORS OF LASSO ESTIMATES 
If 3* is a solution of (1.1), then it must satisfy (2.8). In Section 3.1 we showed 

that XTr does not depend on the particular solution /* and hence the same is true for 
v = XTr/llXTrll in (2.8). Combining this with the fact that A = rTX0*/I113*1 it 
follows from (2.8) that 

XTy (A+ *1 iXTr (XTr)(XTr)) /* = (A+W)/, (4.1) 

where W is a rank-i matrix. Let In denote the n x n identity matrix and write 

A+W=XT ( + I( *I lHXTrll rr) X. 

This shows that the rank of A + W is equal to the rank of X and thus equal to the rank 
of A. Hence, if m < n, then the covariance matrix of the estimates may be approximated 
by 

var(/*) = (A + W)-lA(A + W)-l2, (4.2) 
where b2 is an estimate of the error variance. 

This should be contrasted with the suggestion of Tibshirani (1996, p. 272) that: 
An approximate closed form estimate may be derived by writing the penalty E I /3j as 

/ 32/l, I 1 Hence, at the lasso estimate ,3*, we may approximate the solution by a ridge 
regression of the form /3t = (XTX + 1tW-)-IXTy where W is a diagonal matrix with 
diagonal elements P3* I, W- denotes the generalized inverse of W and / is chosen so that 

E P/3j = t. The covariance matrix of the estimates may then be approximated by 

(XTX + W- )-XTX(XTX + AW-)-1 2, (7) 
where a2 is an estimate of the error variance. 

(The quoted section has been slightly altered to fix a typographical error and to agree 
more closely with our notation.) We claim that this formula does not yield an appropriate 
estimate of the covariance matrix of /*. To support this claim, in Appendix A we show 
that while both (4.2) and (7) can be motivated via sequences of "smooth" approximations 
to (1.1), the sequence of approximations leading to (7) breaks down as the original 
problem (1.1) is approached. 

Tibshirani (1996) also noted that (7) "gives an estimated variance of 0 for predictors 
with /j = O." We agree with Tibshirani (1996) that this is inappropriate, and we note 
that (4.1) yields a positive standard error for all coefficient estimates. Nevertheless, 
since the distribution of individual LASSO coefficient estimates will typically have a 
condensation of probability at zero, they may be far from normally distributed. This 
suggests that summarizing uncertainty by standard errors may not be appropriate and is 
a topic that deserves further investigation. In Section 6 these issues are examined further 
in the context of a reanalysis of the prostate cancer data from Tibshirani (1996). 
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5. ALGORITHMS 
In this section we derive two algorithms for calculating solutions of (1.1). The first 

algorithm is based on the duality theory described in Section 2 and can be used to 
compute the LASSO estimator in any setting. The second algorithm is a simple one for 
the orthogonal design case only. 

5.1 THE GENERAL CASE 

The iterative algorithm that we propose to solve (1.1) is based on local linearization 
of (2.2) about the current value of /. At each step the ith component of 3 is nonzero if 
and only if i E a, where the index set a is updated at various stages of the algorithm. 

Let P represent the permutation matrix that collects the nonzero components of 3 in 
the first Ial components and write / = pT (0)). Let 0, = sign(/3) have entry 1 if the 
corresponding entry in 3,a is positive and -1 otherwise. At each step of the algorithm 3 
must be feasible for (1.1); that is, OT/T < t. This is ensured by our algorithm when the 
initial set a and p3 are chosen appropriately as in the following. 

To obtain the next iterate from the current /, we solve what amounts to a local 
linearization of (1.1) about the current 3: 

minimize f(/ + h) (5.la) h 

subject to 

T(1/ + h,) < t and h = T( h ). (5.lb) 

If the constraint is active, then the Karush-Kuhn-Tucker conditions (Nash and Sofer 
1996, p. 450) for this problem can be written as 

h, = (XTX) '(XT(Y - X,/,) - ,), 

where 
T 0XT X,)-T , 

Al. Move to the first new zero component in direction h; that is, find the smallest y, 
0 < -y < 1, and corresponding k E a such that 0 = ,3k + yhk and set /3 = + -yh. 

A2. There are now two possibilities. (1) First set Ok = -Ok and recompute h by again 
solving (5.1) with the new P and 0a. If h so computed is a descent direction 
compatible with the revised 0o, then let 3t = 3 + h and proceed to the next 
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stage of the algorithm. (2) Otherwise update a by deleting k, resetting pa and 
0, accordingly (they are both feasible) and recompute h for the revised problem 
(5.1). 

A3. Iterate until a sign feasible at is obtained. 
Once a sign feasible ft is obtained, we can test optimality by verifying (2.8). Cal- 

culate 

Vt = XTrt/IXT rtKloc = P T( 

where rt = y- X/t. By construction (vt)i = Oi for 1 < i < I1 and if-1 < (Vt)i < 1 
for 1 < i < m- cr1, then ft is a solution of (1.1). Otherwise, we proceed as follows. 

B 1. Determine the most violated condition; that is, find s such that (vt)s has maximal 
absolute value. 

B2. Update ur by adding s to it and update t/3 by appending a zero as its last element 
and Oc by appending sign(vt)s. 

B3. Set P = /t, solve (5.1) and iterate. 

Remark 3. Justification of the calculations in case that ft is not sign feasible. 
First note that if the current 3 is optimal for the restricted problem (5.1), then this portion 
of the algorithm is skipped. Otherwise, h is a descent direction, so that the objective f is 
reduced in the next step. Thus, there can be no cycling and the procedure must converge. 
This procedure must be finite, since there are only finitely many possible configurations 
of a. Since convergence of the process would otherwise be contradicted, the final 3 must 
be sign feasible. 

Remark 4. Justification of the calculations in the case that /t is sign feasible. 
If ft is not optimal for (1.1), then the augmented vector (%3t) is also suboptimal for 
the augmented problem (5.1) with u updated by adding s and 0% augmented to (0). 
Hence the solution, say (h<), of the augmented problem will be a descent direction for 
the augmented problem and, as long as primal feasibility is maintained, for (1.1). The 
latter fact implies that the algorithm as a whole must converge and requires only that we 
choose 0Q properly. 

To justify our choice of Os, note that (5.2) implies bpO -= XTrt. Since (h^) is a 
descent direction for the augmented problem, we have 

0 >-(rt)T (Xr xS) (h )= -(rt)TXeh- (rt)Txshs 

-_i(oTh, + (vt)shs). (5.3) 

On the other hand, feasibility for (5.1) requires that 

OTfho + Osh, < . (5.4) 

Multiplying (5.4) by ,u and adding (5.3) yields 

0 > (0 - (v)s)hs. 
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Now since I(vt)sl > 1, we see that choosing Os - sign((vt)s) yields sign(h,) = Os. 
But this implies that the linearized constraint for the augmented problem is equivalent 
to the norm constraint for small enough displacements in the direction (hf); that is, 

OT(/t + phf) + pOshs < t is equivalent to 1l3t + p (hI) i t < t for small p > 0. This 
in turn ensures that primal feasibility is maintained in the algorithm. 

Remark 5. Solving (5.1). The solution to (5.1) is readily and efficiently computed 
at each stage of the algorithm by maintaining a QR factorization of X,. This factorization 
can easily be updated and downdated whenever ac is changed. 

Remark 6. Starting the iteration. The iteration can be started from 3 = 0 and 
a = 0, with the first component to add to a being determined as in part B of the 
algorithm. Starting from this end of the problem has two advantages: 

* it emphasises building up the optimal ca by starting from a small base rather than 
by pruning a large one which could be ill conditioned; 

* it permits the computation to proceed while at the same time building up the 
factorizations mentioned in Remark 5. 

If the LASSO estimate is to be calculated for several values of t, say tl < t2 < ... < tk, 
then we first solve for tl starting with 3 = 0 and a = 0. For all further values of ti, we 
take as starting point the solution for ti-l. This situation occurs if t is to be chosen by, 
say, generalized cross-validation (Tibshirani 1996). 

Remark 7. Advantages over Tibshirani's algorithms. Remark 6 already suggests 
the primary advantages of the current algorithm over that proposed by Tibshirani (1996). 
Whereas our algorithm starts from a small base to build up the optimal solution, the 
Tibshirani algorithm starts at the solution of the unconstrained problem. If m > n, then 
Tibshirani's approach is infeasible, and if m is large (but not larger than n), then it 
is inefficient for small to medium sized values of t, as most of the LASSO coefficient 
estimates will typically be equal to zero. Similarly, if the LASSO estimate is to be 
calculated for several ordered values of t, then our algorithm allows the solution at ti-1 
to be used as a starting point when calculating the solution at ti. 

Remark 8. Connection to 11-penalized regression. If m < n, then the algorithm 
proposed by Fu (1998) can be used to solve (1.2). Algorithms that can be used if m 
may be larger then n are discussed, within the specific context of wavelet regression, 
by Chen et al. (1999) and Sardy et al. (2000). In principle, our algorithm can also be 
used to solve (1.2). In this case it would be necessary to find that value of t for which 
the corresponding Lagrange multiplier is equal to the smoothing parameter A in (1.2). 
This could be done within a further loop, either by performing a grid search or using a 
Newton-Raphson algorithm. Note, that since the solution of (1.1) for a value t = t' is 
a convenient starting point for our algorithm if the bound is changed to t" > t', even a 
grid search can be implemented efficiently. 

Remark 9. Connection to other subset selection techniques. The way our al- 
gorithm calculates the solution to (1.1) illustrates interesting connections between the 
LASSO and other well-known subset selection techniques. To see this, assume that the 
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regressor variables are centered and rescaled to have (sample) mean zero and (sample) 
variance one. With this standardization, the ith entry of XTr is proportional to the (sam- 
ple) correlation between the ith regressor variable and the vector of residuals. Thus, at 
each stage, the index added to the set a is the index of the variable that has maximal 
correlation with the residual vector (of the constrained subproblem (5.1)). This is not 
dissimilar to forward variable selection (Miller 1990, chap. 3.2). However, whenever an 
index is added to a we have to solve a new subproblem (5.1) and while solving this 
new problem it may happen that the indexes of some variables are deleted from a. Thus, 
backward deletion is, practically, "built into" the LASSO and one could argue that it 
rather behaves like stepwise regression (Miller 1990, chap. 3.3). However, the LASSO is 
driven by an overarching optimality criterion, while the more ad hoc stepwise regression 
procedure is not. Osborne, Presnell, and Turlach (in press) developed a homotopy method 
in which the constraint t becomes the homotopy parameter and which can be used to 
obtain a complete characterization of all solutions for 0 < t < to. This approach gives 
further insight into the relationship between the LASSO and stepwise regression. 

5.2 THE ORTHOGONAL DESIGN CASE 

In the orthogonal design case A is a diagonal matrix and we assume without loss 
of generality that A = Im, where of course m < n. Tibshirani (1996) noted that in this 
case the solution to (1.1) is given by 

si = sign (0?) max (0, 1?l - ), = 1, . ,m, (5.5) 

where the /?'s are the solution to the unconstrained problem (1.1a) and - is chosen so 
that Z I\il = t. Using this relationship the LASSO estimator can be calculated easily 
and we give a simple algorithm for this purpose. 

Letting (1/3? - -y)+ be the positive part of (1/3o - y), we first note that 
m m m 

i=l i=l i=l 
m m = IO I ( < ) + I ( pI > y) 

i=l i=1 
K 

= Ebi + (m-K), 
i=l 

where bl < ... < bm are the ordered values of 1|31,..., I/3 I and K = max{i : bi < }. 
Since t < to, clearly K < m and bK < 7 < bK+l. Let co = 0 and cj = -1I bi + 
bj(m- j) for j = 1,...,m, so that 0 = co < cl < .. < cm = to. Then 

0 < K = max{i : ci < to - t}, 

which is easily computed, and 

-Y (to - t)- bi (m -K). 
I z==l J -/K) 
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6. AN EXAMPLE 
In this section we reanalyze the prostate cancer data used by Tibshirani (1996). These 

data come from a study by Stamey et al. (1989) that examined the correlation between 
the level of prostate specific antigen and a number of clinical measures in men who 
were about to receive a radical prostatectomy. The regressor variables are log(cancer 
volume) (lcavol), log(prostate weight) (Iweight), age, log(benign prostatic hyperplasia 
amount) (lbph), seminal vesicle invasion (svi), log(capsular penetration) (lcp), Gleason 
score (gleason), and percentage Gleason scores 4 or 5 (pgg45). 

Following Tibshirani (1996), we standardized each regressor such that it had (sample) 
mean zero and (sample) variance one. This standardization allows us to incorporate an 
intercept term whose parameter is not part of the penalty. That is, we are fitting the 
model 

minimize (y - a - XT/3)T(y- a - XT3) such that I||I3 < t. (6.1) o 2 

Here y is the response variable, log(prostate specific antigen) (lpsa), and X is built 
from the (standardized) regressors mentioned earlier. Due to the standardization we have 
immediately (see also Tibshirani 1996) 

1 n 
a=- E i - Y. 

n i=1 

Hence, after calculating a we may standardize y such that y = 0 and thus transform 
problem (6.1) into (2.1). 

Tibshirani (1996) presented results for the case t = sll0?0ll = .8114, where 3? is 
the result from an unconstrained least-squares fit and s = .44 was chosen by generalized 
cross-validation. We used the algorithm described in Section 5 to fit (6.1) with t = .8114, 
obtaining the parameter estimates given in Table 1. These estimates are identical to those 
given by Tibshirani (1996) and reproduced by the software made available by Tibshirani 
at the Statlib archive at Carnegie Mellon University (http://lib.stat.cmu.edu). 

Remark 10. There is an error in Tibshirani's routine that evaluates the GCV. The 
routine only centers and standardizes the regressors but neglects to center the response 
variable. Hence the residual sum of squares for the GCV function is wrongly calculated. 
If this error is corrected, then the optimal s given by GCV is s = .78. To find these 
optimal values the GCV function is evaluated on a grid of 10 values evenly spaced 
between 0 and 1. 

We found it difficult to reproduce the standard error estimates given by Tibshirani 
(1996). By examining Tibshirani's programs we found, first, that he searched for / only 
on the interval [0,2] and that for these data , = 2 was chosen. Second, before calculating 
W- = diag(1/l/3*l), all the zero entries of /3* are somewhat arbitrarily set to 10-11. 
Using these two facts, we were able to reproduce his standard errors, given in Table 1 in 
the column labeled / = 2. These standard errors were also reproduced by Tibshirani's 
software and, except for the standard error of lcavol, are the same as those given by 
Tibshirani (1996, tab. 2). 

However, calculating /t = (XTX + LW-)-' XTy with A = 2 we found that 
II/tlll = 1.1075, indicating, not surprisingly, that A = 2 is not the correct value of the 
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Table 1. Coefficient and Standard Error Estimates for the Prostate Cancer Example 

Estimated standard errors 

Using (7) with 
Estimated Tibshirani's W- Moore-Penrose W- 

Predictor Coefficients Using (4.2) ,i = 2 ,u = 17.892 M = 17.892 

intcpt 2.4784 .0719 .0719 .0719 .0719 
Icavol .5588 .1008 .0789 .0536 .0610 
Iweight .0970 .0812 .0602 .0245 .0233 
age .0000 .0789 .0000 .0000 .0812 
Ibph .0000 .0801 .0000 .0000 .0779 
svi .1556 .0969 .0713 .0312 .0302 
Icp .0000 .1245 .0000 .0000 .1044 
gleason .0000 .1136 .0000 .0000 .1111 
pgg45 .0000 .1226 .0000 .0000 .1232 

Lagrange multiplier. Indeed, the correct value for enforcing the constraint 1lit Ill = .8114 
is , = A = -lXTrlloo = 17.892. Using this value and Tibshirani's method for estimating 
the covariance matrix of 3t yields the values given in the corresponding column of 
Table 1. 

The corrected standard error estimates produced by (7) are quite small and are of 
course zero for those coefficients estimated to be zero. By comparison the standard 
errors calculated using (4.2) are all nonzero, and are considerably larger for all of the 
(constrained) nonzero coefficient estimates. 

It is also interesting to note that though the matrix W- chosen by Tibshirani is a 
generalized inverse of the matrix W, one might also consider using, for example, the 
Moore-Penrose inverse (see, e.g., Rao 1973, p. 26) in (7). The Moore-Penrose inverse 
places zero into those diagonal elements of W- which correspond to parameters that 
are estimated to be zero. The estimated standard errors that one obtains from (7) using 
p = 17.892 and the Moore-Penrose inverse are given in the last column of Table 1. In 
this case, not surprisingly, Il1tll = 1.2073 * t. 

The estimated standard errors for the parameter that are estimated to be zero yielded 
by (7) if the Moore-Penrose inverse is used are similar to those obtained from (4.2). 
However, the estimated standard errors for the nonzero parameter are much smaller. 
Those estimates are similar to those obtained by using Tibshirani's W-. Given these 
results and the discussion of Section 4 and the Appendix, we believe that (4.2) is the 
preferred way of estimating the standard errors of the LASSO estimates. 

APPENDIX A: SMOOTH APPROXIMATIONS OF THE LASSO 
In this section we concentrate on the case m < n and show how the optimiza- 

tion problem (2.1) can be approximated "smoothly." This is done by approximating the 
function g(3) by smooth functions. Hence, we are changing the manifold onto which 
the (unconstrained) ordinary least-squares estimator is projected from the 1l-sphere to a 
smooth, differentiable manifold. In the following calculations we also assume that the 
contraint is always enforced. Note that this is the case with probability arbitrarily close 
to one for large n since t < to. Otherwise, the distribution of /* would clearly be a 
mixture distribution. 
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The following analysis also motivates the covariance matrices discussed in Section 4. 
It is shown that the two matrices stem from different approximations; that is, from 
projections onto two different smooth manifolds. 

The first approximation is obtained as follows. Consider the family of densities 
of the form k(u) = c,(l - u2)+, where a > 0, c, is a normalization constant such 
that fk(u)du = 1 and (-)+ = max(.,0). With kc(u) = k(u/c)/c, set Xc(u) 
2 Jf_ kc(x) dx- 1 and let pc(u) = f cc(t) dt + c be the primitive of ic satisfy- 
ing pc(u) = lul for lul > c. Then [ul can be smoothly approximated by Pc(u) for small 
c, with the smoothness of the approximation being controlled by a (for a = 0 we ob- 
tain Huber's b and p functions). Hence, the first approximation that we consider is to 
minimize f(3) subject to 

m 

9c() = Ct-,p( > ? (I) 
j=i 

Another well-known approximation to the absolute function lul is V/u2 + c2 (see, 
e.g., Koch 1996). This leads to the second smooth approximation of the constraint (2. lb) 
by 

m 

C(13)=t-E /2 + C2 > 0. (II) 
j=- 

In what follows, any quantity associated with one of the smooth optimization prob- 
lems will be indicated by the subscript c. We shall use additional subscripts I and II, 
respectively, only if a distinction between the two approximations is necessary. However, 
it should be noted that for any value of c the values of these quantities depend on the 
approximation used. 

The function gc(.) is again concave and thus the region over which we minimize is 
convex. Since we assume that m < n and X has full rank, we are minimizing a strictly 
convex function over a convex region and a unique solution O3 to the smooth problem 
must exist. Since 9c(') -+ g(.) as c - 0, it is easy to show that 3 -* P3*, where 3* is 
the solution of (2.1). 

The Kuhn-Tucker conditions for the smooth problem are 

O =- XTr + AcVc, (A. 1) 

where the ith component of v* is 

1 if /3,i > c 
vC Iic= c(/c,i) if 1/3c,i < c Vc,II- , (A.2) 

-1 if /3* < -c 3c i + 

Note that Vc,I has a form similar to v in (2.8), whereas all components of Vc,II are 
strictly between -1 and 1. From the fact that * -- 3* as c -+ 0, it follows that 
rc -+ r* and, using (A.2), pc -v 1/ll*11|1. Thus, it follows from (A.1) that Ac = 
P*TXTr/(*TV*) -+ A and v* -* v. That is, all the quantities in (A.1) converge 
against their counterparts in (2.8) as c -+ 0. 
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However, if we look at the matrix equation for t3 induced by each approximation 
another picture emerges. For the first approximation, using calculations similar to those 
in Section 4, we obtain 

XTy= (A -+ TV IIXTr (XTr c)(XTr) ) X3,1 
= (A + Wc,I) (A.3) 

/c,i vc IlXrr loo 

Thus, we may approximate the variance matrix of P3,* by (see, among others, Gallant 
1987, chap. 3.7) 

(A + Wc,I)-I A (A + Wc,I)-1 a2. 

These two formulas are similar to (4.1) and (4.2) and converge against the quantities in 
those equations as c tends to zero. 

If we use the second approximation we obtain 

XTy = (A + AXcW,) C*,II, (A.4) 

where Wc,n = diag ( V/c i,i2 + c2 ) The resulting approximation for the covariance 
matrix of 3,nII is 

(A + A,Wc,I)-l A (A + AcWcI)-1 2 

which is of the form proposed in (7) of Tibshirani (1996). Note, however, that a problem 
arises in the approximation (A.4) as c tends to zero if the solution 3* has at least one 
zero entry. The matrix Wc,1I is nonsingular for all c > 0 but in this case its limit is 
singular and those elements on the diagonal of W-1 that correspond to the zero entries 
of /* are tending to infinity. In this sense the approximation "breaks down." The more 
regular behavior of the approximation (A.3) suggests the use of (4.2) in preference to 
(7) for estimating the covariance matrix of /3*. 
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