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Some Comments on C, 

Bell Laboratories 

Murray Hill, New Jersey 


We discuss the interpretation of Cp-plots and show how they can be calibrated in 
several ways. We comment on the practice of using the display as a basis for formal 
selection of a subset-regression model, and extend the range of application of the device 
to encompass arbitrary linear estimates of the regression coefficients, for example Ridge 
estimates. 

Linear Regression 
Selection of Variables 
Ridge Regression 

Suppose that we have data consisting of n observations on each of k + 1variables, 
namely k independent variables x1 , . . . , x, and one dependent variable, y. Write 
20 = I, x(l X (k + 1)) = (xo , 2, , . . .  , x,), y(n X 1) = (yl, . . .  , y J T ,  X(n X 
(k + 1)) = (xu,).A model of the form 

where 

is to be entertained,+ with the residuals el . . . en being regarded (tentatively) as 
being independent random variables with mean zero and unknown common 
variance a'. The x's are not to be regarded as being sampled randomly from some 
population, but rather are to be taken as fixed design variables. We suppose that 
the statistician is interested in choosing an estimate @ = (f i ,  , . . . ,b,),  with the 
idea that for any point x in the general vicinity of the data a t  hand, the value 

will be a good estimate of q(x). In particular he may be interested in choosing 
a "subset least-squares" estimate in which some components of 6 are set a t  zero 
and the remainder estimated by least squares. 

The Cp-plot is a graphical display device that helps the analyst to examine his 
data with this framework in mind. Consider a subset P of the set of indices K' = 

(0, 1, 2, . . . , k ) ; let Q be the complementary subset. Suppose the number of 
elements in P, Q are IP( = p, I & (  = q, so that p + q = k + 1. Denote by Qp the 
vector of estimates that is obtained when the coefficients with subscripts in P 

+ If P O is absent the development is entirely similar. We assume throughout that X has rank 
k 	+ 1. 
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662 C. L. MALLOWS 

are estimated by least squares, the remaining coefficients being set equal to zero; i.e. 

where Xi is the (Ptloore-Penrose) generalized inverse of Xp , which in turn is 
obtained from X replacing the columns having subscripts in Q by columns of 
zeroes. (Thus X; has zeroes in the rows corresponding to Q, and the remaining 
rows contain the matrix (zBZp)-'Z,T where Zp is obtained from X by deleting 
the columns corresponding to Q). Let RSSp denote the corresponding residual 
sum of squares, i.e. 

RSSP = C (9, - xu8p)Z 

For any such estimate B p  , a measure of adequacy for prediction is the "scaled 
sum of squared errors" 

the expectation of which is easily found to be 

where Vp , Bp are respectively "variance" and "bias" contributions given by 

and @, is @ mith the elements corresponding to P replaced by zeroes, and M p  = 

xx, = xpx, = zp(z,TZp)-'z,T . 
The Cp statistic is defined to  be 

where 8' is an estimate of a'. Clearly (as has been remarked by Kennard (1971)), 
Cr is a simple function of RSSp , as are the multiple correlation coefficient defined 
by 1 - Rj = RSSp/TSS (where TSS is the total sum of squares) and the "ad- 
justed" version of this. However the form (3) has the advantage (as has been 
shown by Gorman and Toman (1966), Daniel and Wood (1971), and Godfrey 
(1972)) that since under the above assumptions 

C p  is an estimate of E ( J p ) ,  and is suitably standardized for graphical display, 
plotted against p. Graphical presentation of the various regression sums of squares 
themselves against p was advocated by Watts (1965). For k not too large it is 
fvasiblc ([4], [5], [19]) to compute and display all the 2k'1 values of Cp ; for larger 
values one can use algorithms of [2], [8], [14] to compute only the more interesting 
(smaller) values. 

In  sect& 2 we describe some of the configurations that can arise; in section 3 
we provide some formal calibration for the display and in section 4 comment on 
the practice of using it as a basis for formal selection. The approach is extended 
in section 5 to handle arbitrary linear estimates of the regression coefficients. 

The approach can also be extended to handle multivariate response data and 
to dcxl mith an arbitrary weight function L U ( X )  in factor-space, describing a region 
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of interest different from that indicated by the configuration of the data currently 
to hand. I n  each case, the derivation is exactly parallel to that given above. I n  
the former case, one obtains a matrix analog of C, in the form $-'.RSS, -

(n - 2p ) I  where 2 is an estimate of the residual covariance matrix, and RSS, 
is Z(y, - x , @ , ) ~ ( ~ ,- xu@,). One or more measures of the "size" of C, (such as 
the trace, or largest eigenvalue) can be plotted against p. In  the latter case, with 
the matrix A = (A,,) defined by A,, = J x,z,zo(x)dx,one arrives a t  a statistic 
of the form 

where V i +  = trace (A(x~x)- ' ) ,  V%= trace (h(X;X,)-), and we can plot C: 
against V ;  . This reduces to  the Cp-plot when A = XTX.If interest is concentrated 
a t  a single point x, we have A = xxT, and the statistic is equivalent to that 
suggested by Allen (1971); his equation (9) = t2(C;3.- x(XTx)-'xT). 

From ( 2 ) ,  (3), (4) we see that if 6, = 0, so that the P-subset model is in fact 
completely appropriate, then R S S p  w (n - p ) ~ 2and Cp E p. If 6' is taken as 
RSSK+/c,-k-ll , then CK+ = jK'j = lc + 1 exactly. Sotice that if P*is a ( p  + 1) 
elemcsnt subset which contains P ,  then 

where SS is the on[>-d.f. contribution to the regression sum of squares due to the 
(p  + 1)-th variable, so that SS/k2 is a t; statistic that could be used in a stepwise 
testing algorithm. If the additional variable is unimportant, i.e. if the bias con- 
tribution Bp - Bp, is small, then E(SS) % 6' and so 

E(Cp* - Cp) z 1. 

Rlantel (1970) has discusscd the use of stepwise procedures, and how they 
behave in the face of various patterns of corrc,lation amongst the independent 
variablcs. I t  is illuminating to consider how patterns similar to  those hc describes 
would show up on a C,-plot. 

First, suppose the indcpcndcnt variables arc not highly correlated, that @ = 6 ,  , 
and that every non-zcbro clement of @ is large (relative to the standard error of 
its least-squares estimate.). Then the Cp-plot will look something like Figure 1 
(drawn for the cascl p = lc - 2, K' - P = {I ,2, 3 ) ) .  Notice the approximately 
linear diagonal configuration of points corresponding to the nell-fitting subsets 
of variables. 

Xow, suppose s, , s, , s,are highly correlated with each other, with each being 
about oclually corrclatod with y. Then any two of these variables, but not all three, 
can b~ d(,l(~ted from thc model without much effect. I n  this case the relevant points 
on the PI.-plot will look somclthing l i k ~  Figure 2a, if no other variables are of 
importance, or like Figure. 2b if some othm subset P is also nc~dcd .  (In all these 
examplcs we arcb assuming that tho constant tcrm P,, is always needed). Notice 
that now thc diagonal pattern is incomplete. In  an i1ltc3rmcdiatc case, when r ,  , 
s, , s, have modcratr correlations, a picture intr,rm~diate bctwccn Figures 1 and 
2b nil1 be obtained. 
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Thirdly, suppose z, , z, are individually unimportant but jointly are quite 
effective in reducing the residual sum of squares; suppose some further subset 
P of variables is also needed. Mantel gives an explicit example of this behavior. 
Figure 3 shows the resulting configuration in the case IPI = k - 4. 

Notice that even if C i p  2 ,  is the smallest C,-value for subsets of size p + 2, 
there might be subsets P{ , P i  , (not containing P )  with IP:l = p or p + 1 that 
gave smaller values of Cp than those for P, j P ,  11, j P ,  2 ) .  I n  this case an upward 
stepwise testing algorithm might be led to include variables in these subsets and 
so not get to the subset {P,1, 2 ) .  Mantel describes a situation where this would 
happen. 

To derive bench marks for more formal interpretation of C,-plots, we assume 
that the model (1) is in fact exactly appropriate, with the residuals e, . . . e, being 
independent and Normal (0, u2). Suppose k2 is estimated by RSS,+/v where v = 

n - k - 1, the residual degrees of freedom. We do not of course recommend that 
the following distributional results be used blindly without careful inspection of the 
empirical residuals y, - d(x,),i = 1, . . . , 7 ~ .However, they should give pause 
to workers who arc tempted to assign significance to quantities of the magnitude 
of a few units or even fractions of a unit on the Cp scale. 
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FIGURE Variables 1 ,2 ,3 ,are highly explanatory also highly correlated. 2a-Cp-plot: 

First, notice that the increment Cp. - Cp (in (5) above) is distributed as 2 - I: , 
where the t-statistic t ,  is central if @ = @,.. In  this case this increment has mean 
and variance of approximately 1 and 2 respectively. Similarly, 

where q = k + 1 - p and the F statistic is central if Q = Q, ; thus if v is large 
compared with q this increment has mean and variance approximately q and 2q 
respectively. The variance of the slope of the line joining the points (p, C,), 
(lc + 1, k + 1) is thus 2/q, so that the slope of a diagonal configuration such as 
is shown in Figure 1will vary considerably about 45". The following tables (derived 
from (6)) give values of C, - p that will be exceeded with probability a when 
the subset P is in fact adequate ( i t .  when @ = @, so that @, = O ) ,  for the cases 
v = n - Ic - 1 = 30, co . The value tabulated is q(K,,(a) - 1). 

For comparing two Cp-values corresponding to subsets P, P' with P A P' = B, 
P = A U B, P' = A' U B, it  is straightforward to derive the results, valid under 
the null hypothesis that each of P and P' is an adequate subset, 

E(Cp - C p r jX IPJ - IP'J = J A J- JA'I 

TTar(C, - Cp.) z2 ( J A J+ / A ' /  - 2R2) 

where R2 is the sum of squares of the canonical correlations between the sets of 
variables X A  and X,,, after partialling out the variables X ,  . (Thus if lBI = 
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FIGURE Same as 2a except that variables in P are also explanatory. 2b-Cp-plot: 

jPl - 1,Var (C, - C,,) = 4(1  - p 2 )  where p is the partial correlation coefficient 
P A A ' . B ) . ~  

We now use the Scheffk confidence ellipsoid to  derive a different kind of result. 
Let us writ'e oT = ( p o  , 3:) for the least-squares estimate of pT = (0,, Q:),  and 
let 

XTX = mT] , D. = D - -1 mmT.II; 
n 

m D 

Then the Scheffi: 100& confidence ellipsoid for the elements of @ ,  is the region 

Sa = { @ K  : ( Q K  - o K ) T D K ( @ K  - 0,) < kt+'FaJ (7) 

where Fais the upper 100a% quantile of the F distribution on k, n - k - 1degrees 
of freedom. 

Yotice that Sacan be written 

where SXis a fixed ellipsoid centered a t  the origin: 

S: = ( y  : y T D K y< IcF,). 

+ Srikantan (1070) has proposed the average, rather than the sum, of the squared canorlical 
correlatiorls as an overall measure of association. This measure has the property that its value is 
changed when a new variable, completely rlncorrelated with all the previous ones, is added to one 
of the sets of variates. 
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FIGURE3-Cp-plot: Two variables that jointly are explanatory but separately are not. 

Let P-, Q be any complementary subsets of K, P = (0, P-1. 
The following lemma is proved in the Appendix. 

Lemma The follo~ving statements arc equivalent: 
(i) The region S ,  intersects the coordinate hyperplane H p  = ( QK : Q ,  = 01, 

(ii) The projection of S ,  onto the H ,  hyperplane contains the origin, 
(iii) The subset least squares estimate $, = (b, , $,-) has 8,- in S ,  , 
(iv) Cp < 2 p  - k - 1 + k F ,  , 
(v) RSSp - RSS,+ < ka2F, . 

Now consider any hypothesis that specifies the value of Q K  , and the corre- 
sponding 100ayo acceptance region 

(clearly P(oKE To; / 0:) is in fact equal to a ;  this is just the confidence property 
of the Scheff6 ellipsoid (7)). Starting from this family of acceptance regions for 
hypotheses that specify QK completely, a natural acceptance region for a composite 
hypothesis of the form 0,  = 0 is given by the union of all regions Tg;for values 
of e i  such that @,0 = 0; the reasoning is that the hypothesis @, = 0 cannot he 
rejected if there is any 6,  with 0,  = 0 that is acceptable according to the cor- 
responding test in the family, i.e. if there is any e,  with e,  = 0 lying within the 
confidence ellipsoid S ,  . By the Lemma, the corresponding acceptable subsets 
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{O,P-}are just those that have 

We state the property formally: 
A subset P = (0,P - }  satisfies (9) if and only if thrre is some vector of coeffi- 

cients @ having = 0 that lies within the ScheffB ellipsoid (7), i.e. if and only 
if there is some vector of this form that  is accepted by the corresponding test 
with acceptance region of the form (8). 
As an example, consider the 10-variable data studied by Gorman and Toman 

(1966). Taking a = 0.10, k = 10, v = 25, we find that among the 58 subsets for 
which Gorman and Toman computed Cp-values, there arc 39 that satisfy (9), 
in number 7, 13, 9, 10 with p = 7, 8, 9, 10 respectively. This result gives little 
support to  the view that this set of data is sending a clear message regarding the 
relative importance of the variables under consideration. 

n'otice that if the true coefficient vector @*has @*,, = 0, then Pr  {for all P 
containing P*, Cp 5 2p - k - 1 + lcF,] 2 a, with equality only if p* = 1 (i.e. 
P* = (01). This property of the procedure is not completely satisfying since it 
is not an equality; also the form of the boundary in the Cp-plot is inflexible. In  
theory, one way of getting a better result is the following. Given any subset P *  
and a sequence of constants c ,  , c,  , . . . , ck (and the matrix D,) one could compute 
the probability Pr  {for all P containing P*, Cp < cP}; this probability depends 
on c, , . . .  , ck , P *  and DK , but not on any other parameters. One could then 
adjust cI , . . . , ck so as to  make the minimum of this probability over all choices 
of P *  (or possibly only over all choices with p* > some p,,) equal to some desired 
level a .  The computation would presumably be done by simulation. 

Starting from the Scheff6 ellipsoid, Spjgtvoll (1972) has developed a multiple- 
comparison approach that provides confidence intervals for arbitrary quadratic 
functions of the unknown regression parameters, for example Bp - Bp,  for two 
subsets P, P'. 

hIany authors have studied the problem of giving formal rules for the selection 
of predictors; Kennedy and Bancroft (1971) give many references. Lindley (1968) 
presents a Bayesian formulation of the problem. The discussion in section 3 above 
does not lend any support to the practice of taking the lowest point on a Cp-plot 
as defining a "best" subset of terms. The present author feels that the greatest 
value of the device is that it helps the statistician to examine some aspects of 
the structure of his data and helps him to recognize the ambiguities that confront 
him. The device cannot be expected to provide a single "best" equation when the 
data are intrinsically inadequate to support such a strong inference. 

To make these remarks more precise and objective, me shall compute (in a 
special case) a measure of the performance to  be expected of the rule "choose the 
subset that minimizes Cp , and fit it by least-squares". We shall use as a figure 
of merit of an arbitrary estimator $(x) the same quantity as was used in setting 
up the Cp-plot, namely the sum of predictive squared errors 

We can handle in detail only the case of orthogonal regressors, and so now assume 

XTX = nI. In  this case we see from ( 5 )  that Cp is minimized when P contains 
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just those terms for which t: > 2,  where t ,  = & b,/8 is the t-statistic for the j-th 
regression coefficient, and b,  is the least squares estimate, b,  = Zxu,y,/n. Thus 
in this case the "minimize Cp" rule is equivalent to a stepmise regression algo- 
rithm in which all critical t-values are set a t  v2 and &' is kept a t  the full-equation 
value throughout. 

Now let us assume that n is sufficiently large that variation in & can be ignored; 
then to , t l  , . . . , tk  will be independent Normal variables with unit variances and 
with means 7, , . . . , rkwhere r ,  = 4;@,/&. Let d(t) be the function that equals 
0 for It1 < v2,and equals 1 otherwise, then J for the "minimum-Cp subset least 
squares'' estimate can be written 

which reduces to 

Hence 

where m(r) = E((u+ 7)d(u + T) - T)' (where u is a standard Normal variable), 
and is the function displayed in Figure 4 (labelled "16%11, since Pr  (lul > 142)= 

0 1 2 3 4 5 6 7 
STANDARDIZED REGRESSION COEFFICIENT, T 

FIGURE4 3 - f u n c t i o n s  
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.1573). If  the constant term is always to  bc included in the selected subset, the 
corresponding result is 

Notice that the function VZ(T) is less than 1 only for 171 < .78, and rises to a 
maximum value of 1.65 a t  171 = 1.88. I t  exceeds 1.25 for 1.05 < 171 < 3.05. 

We reiterate that in this case of orthogonal regressors mith n very large, the 
"minimum Cr" rule is equivalent to a stepwise regression algorithm mith all 
critical levels set a t  15.73%. Also shown in Figure 4 are the m-functions corre-
sponding to several other critical levels; when all k + 1 terms are infallibly included 
(the "full-1.s." rule), m(7) = 1 for all 7, so that E(J , , , ,  , , ) = k + 1. We see 
that the "minimum Cp" rule will give a smaller value for E ( J ) than the "full-1.s." 
rule only nhen rather more of the true regression coefficients satisfy 171 < .78 
than satisfy 171 > 1; in the worst case with IT,^ = 1.88 for j = 1, . . . , k, E ( J )  
for the "minimize Cp" rule is 165% of that for the "full-1.s." rule. Similarly for 
rrjection rules with other critical levels; in particular, a rule mith a nominal level 
of 57, (two tailed) gives an E ( J )  a t  worst 2467, of that of the "full-1.s." rule. 

Thus using the "minimum Cp" rule to select a subset of terms for least-squares 
fitting cannot be rc~commended universally. Sotice however that by examining 
the Cp-plot in the light of the distributional results of the previous section one 
can see whether or not a single best subset is uniquely indicated; the ambiguous 
cases where the "minimum Cp" rule will give bad results are exactly those where 
a large number of subsets are close competitors for the honor. With such data 
no selection rule can be expected to perform reliably. 

We now extend the Cp-plot device to handle general linear estimators. With 
the same set-up as in the Introduction, consider an estimate of the form 

where i j  is the mean i j  = Zy,/r~, and L is a k X n matrix of constants. We shall 
assume that L1, = = (1, 1, . . . , 1)) so that a change in the origin 
of measurement of y affects only b,, and not 1, , . . . , bk . Examples of estimators 

1:(where0 

of this class are: full least-squares; subset-least-squares; and Bayes estimates 
under multinormal specifications with a multinormal prior, a special case of which 
is the class of "Ridge" estimates advocated by Hoerl and Kennard (1970a, b), 
(see also Theil (1963), section 2.3): 

where f is a (small) scalar parameter (Hoerl and Iiennard used k), and in this 
section me are writing X for the n X k matrix of independent variables, which 
we are now assuming have been standardized to  have zero means and unit variances. 
Thus I ZX = 0,  diag (XTX) = I. 

As a measure of adequacy for prediction we again use the scaled summed mean 
square error, which in the present notation is 
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and which has expectation 

where 

IfL = 1 + t r  (XTXLLT) 

BL = @3(LX - I ) ~ x ~ X ( L X- I )@K. 

The sum of squares about the fitted regression is 

RSSL = / / y- yl,  - X 6 L / 2  

xhich has expectation 

E(RSS L) = 8'Vz + BL 

where 

V2 = 11 - 1 - 2 tr  (XL) + tr ( x T x ~ L T ) .  

Thus we have an estimator of E ( J  L)l namely 

CL = ;T 
1 

RSSL - n + 3 + 2 t r  (XL). (12) 

By analogy with the C p  development, we propose that values of C L  (for various 
choices of L) should be plotted against values of VL . Xotice that when L is a 
matrix corresponding to subset least squares, C , VL reduce to Cp , p respectively. 

For computing values of C L  , VL for Ridge estimates ( l l ) ,  the following steps 
can be taken. First, find H (orthogonal) and A = diagonal ( A ,  , A, , . . . , A,) so 
that XTX = H T n H .  Compute z = HXTy. Then 

Is A,
tr  (XL) = ---

t = ,  f + A, 

Figure 5 gives the resulting plot for the set of 10-variable data analyzed by 
Gorman and Toman (1966) and by Hoerl and Kennard (1970b). Shown are (p, C,) 
points corresponding to various subset-least-squares estimates and a continuous 
arc of (VL , CL)  points corresponding to Ridge estimates with values of f varying 
from zero a t  (11, 11) and increasing to the left. For this example, Hoerl and Ken- 
nard (1970b) suggested that a value of f i11 the interval (0.2, 0.3) would "un- 
doubtedly" give estimated coefficients "closer to Q arid more stable for prediction 
than the least-squares coefficients or some subset of them". On the other hand 
from Figure 5 one would be inclined to suggest a value off  nearer to .02 than to 0.2. 

One obvious suggestion is to choose f to minimizc CLr  . Some insight into the 
effect of this choice can be gained as fo l lo~~s .  First consider the case of orthogonal 
regressors, and now assume XTX = I.  Notice that in this case our risk function 
E ( J )  is equivalent to the quantity xt_,~ ( y ,- p,)' used by Hoerl and Kennard 
(1970a). We may take H = I, so that z ,  = 1, , the least-squares estimate of P ,  . 
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FIGURE5-CL plot for Gorman-Toman data; subset ( C p )values and Ridge ( C L r )values. 

From (12) and (13) we sce that C L ris a minimum when f satisfies 

the adjusted estimates are then given by 

I t  is interesting that this set of estimates is of the form suggested by Stein (1960) 
for the problem of estimating regression coefficients in a multivariate Normal 
distribution. Jamcs and Stein (1961) showed that for Ic 2 3 the vector of estimates 
$** obtained by rcplacing the multiplier k in (14) by any number between 0 and 
2k - 4 has the property that E(J**) is less than the full-least-squares value 
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12 + I (see (lo)),  for all values of the true regression coefficients. Thus our "mini- 
mize C Lr ' l  rule dominates full least-squares for k 2 4. This result stands in interest- 
ing contrast to the disappointing result found above for the "minimize Cpl' rule. 

n'ow, consider the case of equi-correlated regressors, with XTx= I + p (11 - I). 
In  this case the least-squares estimate 8 of B = Zp,/k has variance l / k ( l  - p + kp), 
and the vector of deviations (8, - 8) has covariance matrix (I- k-'11 T) / ( l  - p). 
Thus when p is large, these deviations become very unstable. 

I t  is found that for p near unity, C L r  is minimized when f is near (1 - p)y, where 

The adjusted estimates are given approximately by 

Thus here the "minimize CLrI1 rule leads to shrinking the least-squares estimates 
towards their average. While the details have not been fully worked out, one 
expects that this rule will dominate full least-squares for k 2 5. 

I t  is a great personal pleasure to recall that the idea for the Cp-plot arose in 
the course of some discussions with Cuthbert Daniel around Christmas 1963. 
The use of the letter C is intended to do him honor. The device was described 
publicly in 1964 [16] and again in 1966 [17] (with the extensions described at the 
end of section 1 above) and has appeared in several unpublished manuscripts. 
Impetus for preparing the present exposition was gained in the course of delivering 
a series of lectures a t  the University of California at Berkeley in February 1972; 
their support is gratefully acknowledged. 

Proof of the Lemma 

The key to these results is the identity, true for any subset P that includes 0, 
i.e. P = (0, P-}, 

R S S p  RSS,+ = (@,- - @ , ) T ~ , ( @ p - - 8,) 

where g T  = (& , BE) is the vector of least-squarrs estimates of all the coefficients 
in the model, and ( P i  , 8;) is the vector of subset-least-squares estimates. From 
the form of S ,  (7) it now follows that (iii) 6,- is in S ,  if and only if (v) RSSp-RSS,+ 
< kb2F, , which is directly equivalent (if b2 = ItSS,+/n - k - 1) to (iv) Cp < 
271 - Ic - 1 + kF, . Clearly (iii) implies (i); to prove the converse we remark 
that for any vector Q T  = (Po  , 6:) with QK in the hyperplane H p  = ( Q, : Q, = 01, 
we have 

the cross-product term vanishing by definition of @, . 
Thus if any point of H, 
is in S ,  , Q p  must be. Finally, (i) is directly equivalent to (ii) by a simple geometrical 
argument. 
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To handle the case of non-orthogonal regressors, Sclove (1968) has suggested 
transforming to orthogonality before applying a shrinkage factor. A composite 
procedure with much intuitive appeal for this writer would be to use the C, plot 
or some similar device to identify the terms that should certainly be included 
(since they appear in all subsets that give reasonably good fits to the data), to fit 
these by least squares, and to adjust the remaining estimates by orthogonalizing 
and shrinking towards zero as in (14). 
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