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Kernel Density Estimation 
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n  Kernel methods are often used for density estimation 
(actually, classical origin) 

n  Assume random sample 

n  Choice #1: empirical estimate? 

n  Choice #2: as before, maybe we should use an estimator 

n  Choice #3: again, consider kernel weightings instead 
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Kernel Density Estimation 
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n  Popular choice = Gaussian kernel  à Gaussian KDE 
208 6. Kernel Smoothing Methods

Systolic Blood Pressure (for CHD group)
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FIGURE 6.13. A kernel density estimate for systolic blood pressure (for the
CHD group). The density estimate at each point is the average contribution from
each of the kernels at that point. We have scaled the kernels down by a factor of
10 to make the graph readable.

we can produce, as shown in the plot, estimated pointwise standard-error
bands about our fitted prevalence.

6.6 Kernel Density Estimation and Classification

Kernel density estimation is an unsupervised learning procedure, which
historically precedes kernel regression. It also leads naturally to a simple
family of procedures for nonparametric classification.

6.6.1 Kernel Density Estimation

Suppose we have a random sample x1, . . . , xN drawn from a probability
density fX(x), and we wish to estimate fX at a point x0. For simplicity we
assume for now that X ∈ IR. Arguing as before, a natural local estimate
has the form

f̂X(x0) =
#xi ∈ N (x0)

Nλ
, (6.21)

where N (x0) is a small metric neighborhood around x0 of width λ. This
estimate is bumpy, and the smooth Parzen estimate is preferred

f̂X(x0) =
1

Nλ

N∑

i=1

Kλ(x0, xi), (6.22)

From Hastie, Tibshirani, Friedman book 

Multivariate KDE 
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n  In 1d  

n  In Rd, assuming a product kernel, 

n  Typical choice = Gaussian RBF 

p̂(x0) =
1

n�

nX

i=1

K�(x0, xi)

p̂(x0) =
1

n�1 · · ·�d

nX

i=1

8
<

:

dY

j=1

K�j (x0j , xij)

9
=

;
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Multivariate KDE 
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n  Risk grows as O(n-4/(4+d)) 
n  Example: To ensure relative MSE < 0.1 at 0 when the density is 

a multivariate norm and optimal bandwidth is chosen 

n  Always report confidence bands, which get wide with d 

p̂(x0) =
1

n�1 · · ·�d

nX

i=1

8
<

:

dY

j=1

K�j (x0j , xij)

9
=

;

Multivariate KDE Example 
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n  Data on 6 characteristics of aircraft (Bowman and Azzalini 1998) 
n  Examine first 2 principle components of the data 
n  Perform KDE with independent kernels 

2012 Jon Wakefield, Stat/Biostat 527

library(sm)

library(rpanel)

library(rgl)

provide.data(airpc)

pc3 <- cbind(Comp.1[Period==3],Comp.2[Period==3])

par(mfrow=c(1,2))

sm.density(pc3,display="slice")

points(pc3[,1],pc3[,2])

sm.density(pc3,display="image")

#

par(mfrow=c(1,1))

sm.density(pc3)

sm.density(pc3,hmult=0.5)

sm.density(pc3,hmult=2)
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Figure 80: Two-dimensional estimate for the aircraft data.
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Multivariate KDE Example 
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n  Data on 6 characteristics of aircraft (Bowman and Azzalini 1998) 
n  Examine first 2 principle components of the data 
n  Perform KDE with independent kernels 2012 Jon Wakefield, Stat/Biostat 527
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Figure 81: Two-dimensional estimate for the aircraft data.
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Figure 82: Two-dimensional estimate for the aircraft data.
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Figure 81: Two-dimensional estimate for the aircraft data.
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Figure 82: Two-dimensional estimate for the aircraft data.
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Figure 83: Two-dimensional estimate for the aircraft data.
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Classification and Regression Trees

If the aim is classification the only changes in the algorithm

concern the criteria for splitting nodes and pruning the tree.

For regression we used the residual sum of squares within each

node as the impurity measure Qj(T ), defined in (112), within

(113), but this is not suitable for classification.

For a node j, j = 1, ..., J , representing a region Rj with nj

observations estimate the node specific probabilities as

p̂jk =
1

nj

∑

i:xi∈Rj

I(yi = k)

for k = 0, 1, ..., K − 1. This is simply the proportion of class k

observations in node j. Any observations that fall into node j are

classified to class

k(j) = arg maxk p̂jk,

the majority class in node j.
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Regression Trees Overview 
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n  An alternative adaptive regression technique 
¨  Conceptually simple 
¨  Powerful 

n  Partition the covariate space into regions and then fit a simple 
model in each (e.g., constant) 

n  How to partition? 

12.7 Regression Trees 617
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Fig. 12.7 Hierarchical binary tree partition of the Œx
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; x
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ç space.

difficulty. The partition in Figure 12.7 is generated by the algorithm illustrated in the
form of a “tree” in Figure 12.8 (notice that trees are usually shown as growing down
the page). We describe in detail how this partition is arrived upon.

The terminology we use is graphical. Decisions are taken at nodes and the root
of the tree is the top node. The terminal nodes are the leaves and covariate points

Recursive Binary Partitions 
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n  To simplify the process and 
interpretability, consider 
recursive binary partitions 

n  Described via a rooted tree 
¨  Every node of the tree 

corresponds to split decision 
¨  Leaves contain a subset of the 

data that satisfy the conditions 
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Recursive Binary Partitions 

Pt x1 x2 

1 0.00 0.00 
2 1.00 4.31 
3 0.13 2.85 
… … … 

n  Start with a list of d-dimensional points. 

11 ©Emily Fox 2013 

Recursive Binary Partitions 

Pt x1 x2 
1 0.00 0.00 
3 0.13 2.85 
… … … 

x1 >.5	



Pt x1 x2 
2 1.00 4.31 
… … … 

YES	

NO	



n  Split the points into 2 groups by: 
¨  Choosing dimension dj and value tj (methods to be discussed…) 

¨  Separating the points into         > tj and         <= tj. 

12 ©Emily Fox 2013 

xidj
xidj
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Recursive Binary Partitions 

x1 >.5	



Pt x1 x2 
2 1.00 4.31 
… … … 

YES	

NO	



n  Consider each group separately and possibly split again 
(along same/different dimension). 
¨  Stopping criterion to be discussed… 

Pt x1 x2 
1 0.00 0.00 
3 0.13 2.85 
… … … 

13 ©Emily Fox 2013 

Recursive Binary Partitions 

Pt x1 x2 
3 0.13 2.85 
… … … 

x1 >.5	



Pt x1 x2 
2 1.00 4.31 
… … … 

YES	

NO	



Pt x1 x2 
1 0.00 0.00 
… … … 

x2 >.1	



NO	

 YES	



n  Consider each group separately and possibly split again 
(along same/different dimension). 
¨  Stopping criterion to be discussed… 

14 ©Emily Fox 2013 
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Recursive Binary Partitions 

n  Continue splitting points in each set  
¨  creates a binary tree structure 

n  Each leaf node contains a list of points 

15 ©Emily Fox 2013 

Resulting Model 

n  Model the response as constant within each region 

16 ©Emily Fox 2013 

306 9. Additive Models, Trees, and Related Methods
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FIGURE 9.2. Partitions and CART. Top right panel shows a partition of a
two-dimensional feature space by recursive binary splitting, as used in CART,
applied to some fake data. Top left panel shows a general partition that cannot
be obtained from recursive binary splitting. Bottom left panel shows the tree cor-
responding to the partition in the top right panel, and a perspective plot of the
prediction surface appears in the bottom right panel.
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f(x) =
MX

m=1

�mI(x 2 Rm)
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Basis Expansion Interpretation 

n  Equivalent to a basis expansion 

n  In this example: 

17 ©Emily Fox 2013 
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f(x) =
MX

m=1

�mhm(x)

h1(x1, x2) = I(x1  t1)I(x2  t2)

h2(x1, x2) = I(x1  t1)I(x2 > t2)

h3(x1, x2) = I(x1 > t1)I(x1  t3)

h4(x1, x2) = I(x1 > t1)I(x1 > t3)I(x2  t4)

h5(x1, x2) = I(x1 > t1)I(x1 > t3)I(x2 > t4)

Questions on Building the Tree 

n  Which variable should we split on? 
n  What threshold value should we consider? 
n  When should we stop the process? 

18 ©Emily Fox 2013 
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Building the Tree 
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n  Assume the partition (R1,…RM) is given 
n  If criterion is to minimize RSS, then 

n  How do we find the partition (R1,…RM) ? 
¨  Finding the optimal tree that minimizes RSS is generally computationally 

infeasible 
¨  Consider a greedy algorithm instead 

f(x) =
MX

m=1

�mI(x 2 Rm)

�̂m =

Choosing a Split Decision 
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n  Starting with all of the data, consider  
splitting on variable j at point s 

n  Define 

n  Our objective is 

n  For any (j, s), the inner minimization is solved by 

R1(j, s) = {x | xj  s}
R2(j, s) = {x | xj > s}
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Choosing a Split Decision 
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n  For each splitting variable j, finding 
the optimal s can be done efficiently 
¨  Why?  

n  Max of d(n-1) partitions to consider 
n  So, determining (j,s) is feasible 

min
j,s

2

4
X

xi2R1(j,s)

(y
i

� �̂1)
2 +

X

xi2R2(j,s)

(y
i

� �̂2)
2

3

5

�̂1 = avg(yi | xi 2 R1(j, s))

�̂2 = avg(yi | xi 2 R2(j, s))

Choosing a Split Decision 
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n  Conditioning on the best split just found, we recurse on 
each of the two regions 

n  Repeat on all resulting regions 

n  When do we stop recursing? 
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How Large of a Tree? 
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n  Large tree, like partitioning until each node has one observation 
à  

n  Small tree à  

n  Tree size is a tuning parameter that governs model complexity 
¨  Optimal tree size should be chosen adaptively from the data 

n  Stopping criterion 
¨  Stop when decrease in RSS due to a split falls below some threshold 

¨  Stop when a minimum node size (e.g., 5) is reached.  Go back and prune. 

Cost-Complexity Pruning 
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n  Searching over all subtrees and selecting using AIC or CV is not 
possible since there is an exponentially large set of subtrees 
à 

n  Define a subtree   to be any tree obtained by pruning 
 
and 

n  We examine a complexity criterion 

T ⇢ T0 T0
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|T | =
nm =

�̂m =

Qm(T ) =

C�(T ) =

|T |X

m=1

nmQm(T ) + �|T |
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Cost-Complexity Pruning 
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n  For a given λ, want to find        to minimize   

n  Tuning parameter λ governs tradeoff between 
tree size and goodness of fit to the data 
¨  Large λ à  
¨  λ = 0 à  
 

n  For each λ, can show that there is a 
unique smallest subtree   
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C�(T ) =

|T |X

m=1

nmQm(T ) + �|T |

T� ⇢ T0 C�(T )

T�

Cost-Complexity Pruning 
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n  Can find using weakest link pruning 
¨  Successively collapse the internal node that 

produces smallest increase in RSS 

¨  Continue until at single-node (root) tree 
¨  Produces a finite sequence of subtrees, 

which must contain  
¨  See Breiman et al. (1984) or Ripley (1996) 

n  Choose λ via 5- or 10-fold CV 
n  Final tree:  
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Comments on Regression Trees 
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n  Partition is not specified apriori, so regression trees provide a 
locally adaptive technique 

n  Effectively performs variable selection by discovering the 
relevant interaction terms 
¨  Implicit in the process 

n  In the construction, we are assuming that 
¨  Error terms are uncorrelated 
¨  Constant variance 

Example: Prostate Cancer 

©Emily Fox 2013 28 

n  Fit binary regression tree to log PSA with splits based on 
eight covariates 

n  Grow tree with condition of at least 3 observation per leaf 

n  Results in a tree with 27 splits 

n  Run weakest-link pruning for each candidate λ, with λ chosen 
according to CV  
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Example: Prostate Cancer 
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n  Compare results to LASSO 
¨  lcavol most “important” 
¨  Then lweight and svi 

12.7 Regression Trees 625

|lcavol< 2.462

lcavol< −0.4786

lweight< 3.689

svi< 0.5

0.6017
n=9

1.927
n=35

3.267
n=3

2.712
n=29

3.765
n=21

Fig. 12.11 Hierarchical regression tree for the prostate cancer data. At each leaf we give the esti-
mated mean response and the number of observations.

pair of linear truncated line segments, which we have already seen used as building
blocks for splines in Section 11.2.1. The collection of basis functions is

f .xl � t /C; .t � xl /C; t 2 fx1l ; :::; xnlg; l D 1; :::; k g : (12.19)

If all of the covariates are distinct there are 2nk basis functions in total.
The model is of the form

f .x/ D ˇ0 C
J
X

j D1

ǰ hj .x/

where each hj .x/ is a particular reflected pair from the collection (12.19) or a prod-
uct of two or more pairs. To select bases functions, forward stagewise is used (Sec-
tion 4.8.1). At a particular step suppose we have functions hl .x/, l D 1; :::; L in the
current model. We then add the term of the form

bˇLC1hl .x/ ⇥ .xl 0 � t /C CbˇLC2hl .x/ ⇥ .t � xl 0/C

624 12 Nonparametric Regression with Multiple Predictors
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Fig. 12.10 Cross-validation score versus complexity, as measured by tree size (top axis) and im-
provement in R2 (bottom axis).

h1.x/ D I.lcavol < �0:4786/

h2.x/ D I.lcavol < �0:4786/ ⇥ I.lweight < 3:689/ ⇥ I.svi < 0:5/

h3.x/ D I.lcavol < �0:4786/ ⇥ I.lweight < 3:689/ ⇥ I.svi > 0:5/

h4.x/ D I.lcavol < �0:4786/ ⇥ I.lweight � 3:689/

h5.x/ D I.lcavol � 2:462/:

In terms of assigning a prediction to a new observation with covariates x, we simply
read down the tree in Figure 12.11.

12.7.2 Multiple Adaptive Regression Splines

We briefly describe the multiple adaptive regression splines (MARS) algorithm that
combines stepwise linear regression with a spline/tree model; MARS was intro-
duced in Friedman (1991). MARS overcomes the discreteness of the regression
trees fitted model by using piecewise linear basis functions of the form .xj � t /C
and .t �xj /C for j D 1; :::; k; these are known as a reflected pair. Here, xj refers to
a generic covariate, and t to an observed value of that covariate. Hence, we have a

Issues 
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n  Unordered categorical predictors 
¨  With unordered categorical predictors with q possible values, there are 

2q-1-1 possible choices of partition points to consider for each variable 
¨  Prohibitive for large q 
¨  Can deal with this for binary y…will come back to this in “classification” 

n  Missing predictor values…how to cope? 
¨  Can discard 
¨  Can fill in, e.g., with mean of other variables 
¨  With trees, there are better approaches 

-- Categorical predictors: make new category “missing” 
-- Split on observed data.  For every split, create an ordered list of 
“surrogate” splits (predictor/value) that create similar divides of the data.  
When examining observation with a missing predictor, when splitting on 
that dimension, use top-most surrogate that is available instead 
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Readings 

n  Wakefield – 12.7 
n  Hastie, Tibshirani, Friedman – 9.2.1-9.2.2, 9.2.4, 9.4 
n  Wasserman – 5.12 
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