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Kernel Density Estimation
* JEE
m Kernel methods are often used for density estimation
(actually, classical origin)
;:A

m Assume random sample X\,m) )(n ~ V A

?
m Choice #1: empirical estimate? '?’ Ln Z gx‘; ] ” ml | | |

m Choice #2: as before, maybe we should use an estimatoL A
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m Choice #3: again, consid ightings instead
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Kernel Density Estimation
" JEE

m Popular choice = Gaussian kernel - Gaussian KDE
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From Hastie, Tibshirani, Friedman book
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Multivariate KDE
" N
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m In RY assuming a product kernel, Xé@
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Multivariate KDE
"
Pxo) = ﬁ i {ﬁ[K,\j (IOj,ﬂfij)}
m Risk grows as O(n-4/(4+d>)z_ ]_incfmu Vo fa\fllll/ w/ ‘l

m Example: To ensure relative MSE < 0.1 at 0 when the density is
a multivariate norm and optimal bandwidth is chosen
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m Always report confidence bands, which get wide with d
refleces LGy of  oroblem
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Multivariate KDE Example
" S

m Data on 6 characteristics of aircraft (Bowman and Azzalini 1998)
m Examine first 2 principle components of the data
m Perform KDE with independent kernels
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Multivariate KDE Example

" JEE
m Data on 6 characteristics of aircraft (Bowman and Azzalini 1998)

m Examine first 2 principle components of the data \
. mMmeders a st
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m Perform KDE with independent kern
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Regression Trees Overview
" JEE
m An alternative adaptive regression technique

Conceptually simple
Powerful

m Partition the covariate space into regions and then &t asimple

model in each (e.g., constant Loligne WAl
(e : o cu?cs “‘np&xfﬁl
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m How to partition?
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Recursive Binary Partitions
" JEE
m To simplify the process and

interpretability, consider
recursive binary partitions .

T— o

m Described via a rooted tree .
Every node of the tree
corresponds {0 split-decisi
Leaves contain a subset of the

ata that satisfy the conditions

- a“ (oh&if\"oy\s on
poth Erom root o leaf

- think of pinbal)
A\l:ngv’r& \eof
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Recursive Binary Partitions

" JEE
(Yﬂl)(n)
%o * ° Pt | x, X,
o 1 | 0.00 | 0.00 ()5‘)\/‘)
. . ‘. 2 [1.00 [ 431 | 1y
se e ¢ 3 043/ 285 ('?’\M
24 ummpl&
m Start with a list of d-dimensional points.
Recursive Binary Partitions
" JEE
) e’ . NO /‘\YES
oo.o * Pt X | X2 Pt X,
. . 1 |f0.00\ 0.00| [ 2 (1.00)431
e 3 [\0.13) 2.85
[— —_— “Ut'- .
X, ¢ % q 7% A); \ (‘l )
m Split the points into 2 groups by: g= 09

Choosing dimension d;’and value {; (methods to %e discussed...)
Separating the points into T;q; >t and Zid<=1{;
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Recursive Binary Partitions

m Consider each group separately and possibly split again

(along same/different dimension).
Stopping criterion to be discussed...
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Recursive Binary Partitions

t’oo\ o0 o

m Consider each group separately and possibly split again
(along same/different dimension).
Stopping criterion to be discussed...
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Recursive Binary Partitions
" S
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m Continue splitting points in each set
creates a binary tree structure ”
Each leaf node contains a list of points satisfying o
n i i poi tisty ? L the

ndikio "
('ogm,e, o thar et
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Resulting Model
0 Wt._m

X1 <ty
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Xo < X3
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X2 <tg
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Ra ’ ta
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Ry

Ry
& Ry Rs X1 ’ !
m Model the response as constant within W
M-es‘
f(z) = Z BmI(z € Ry,)

m=1
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Basis Expansion Interpretation
" JEEE

m Equivalent to a basis expansion Xi<u
Z Bm ('9 '6 X X < t3
1 G
" \“A\ (ﬂ’\\‘
m In this example: X2 <ty

’R_l. Ra R3
hl(l‘l,x'g) =1 I i) < tg) — (W

(o1 < 1)
ho(z1,29) = I(xy < t1)I(z2 > t2) Ri R
hs(x1,x0) = I(x1 > t1)I(x1 < t3)
ha(z1,22) = I(x1 > t1) (1 > t3) (22 < t4)
hs(x1,xe) = I(x1 > t1)I (1 > t3)I (22 > t4)
o bueed ansr wa\w“ spline o,/ step beh \°“5‘5
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Questions on Building the Tree
" JE
= Which variable should we split on? A')

m What threshold value should we consider? -
m When should we stop the process?

(om‘t& run unkil [ dos. ok (_aak |uc6
but Gverfit
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Building the Tree
" JEEE
f(x) = Z @I(w € Ry,)

m Assume the partition (R,,...R)) is given
m [f criterion is to minimize RSS, then

B = ﬁv(j(‘/; \ X;e&}

m How do we find the partition (R,,...Ry) ?

Finding the optimal tree that minimizes RSS is generally computationally
infeasible

Consider a greedy algorithm instead
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Choosing a Split Decision
" JEE—

m Starting with all of the data, consider
splitting on variable j at point s

)
‘S‘\/S3 < K‘z,(') /S)

m Define
Ri(j,s) ={z|z; <s} % ¢ . .
Ra(j,s) = {o | 2 > s} s |
m Our objective is oo o * }Sl ’
mn [ min 2 (‘/;’ﬁ\\l + Min Z(\/"&f} . o' ) )
1S LBy xeRiig) R I

m For any (j, 5), the inner minimization is solved by

/§K> 0\\13 (\/4 I X, ¢ RJS/S)\ k:‘,z
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Choosing a Split Decision

min Z (yi — B1)? +

J,s )
z;€R1(4,s) x; €

B = avg(y; | 2 € Ri(j, 5))
B = avg(y; | 2 € Ra(j, 5))

m For each splitting variable j, finding
the optimal s can be done efficiently
Why?
-starg ~t one f"}
- 0%} onl clhannges when S
Pases on okS
-upbate xo £, B, 1$00) .
m Max of d(n-1) partitions to consider

m So, determining (j,s) is feasible
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R2(jas)
.| obs. c[“?’(:
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Choosing a Split Decision

m Conditioning on the best split just found, we recurse on

each of the two regions
m Repeat on all resulting regions

m When do we stop recursing?
< —
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How Large of a Tree?
" JEEE
m Large tree, like partitioning until each node has one observation

> ovegic ()

= Smalltree > misg ke,\f Czabt@_g (hies)
m Treesizeis a tuning garameter that governs model complexity
Optimal tree size should be chosen adaptively from the data

m Stopping criterion
Stop when decrease in RSS due to a split falls below some threshold

Stop when a minimwode size (e.g., 5) is reached. Go back)rmrune.
2

1’.*"\/ how
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Cost-Complexity Pruning
" S

m Searching over all subtrees and selecting using AIC or CV is not
possible since there is an exponentially large set of subtrees

K 160\( ok \Oﬁﬂﬂ-‘(%ﬂ! RSS ingxexd

m Define a subtree 1" C Iy to be any tree obtaiged by pruning 1
prene = ollapse an inderaal nooe

ar.]g‘ |T’ =4 oC lza.f ancs Xlgtl: To
¥ o \‘i%é?mﬁ\
- of m A i . %/
(‘-N ?_QQ ~ o ‘; = 1S t3)
\ m_’v‘ry;ézn( R N
Qm (T) = _‘, z?? \1'\ ’ﬂﬂ‘\ Xo <ty
= We examine & complexity criterion Rl R Ry (W
|T'|
CA(T) = D 1 Qu(T) + AT "o
m=1
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Cost-Complexity Pruning

" JEE
IT| e f’""‘o‘u_\f
CA(T) = ) nnQum(T) + A[T|
m\:j-/\,a; bus’ (,,4\0"3

m Foragiven A, want to find T C Ty to minimize C\(T)

m Tuning parameter A governs tradeoff between i<t
tree size and goodness of fit to the data
Large A > Small trees

A=0> Ty Cull bvee

X2 < ta X1 < tg]

m For each A, can show that there is a

unique smallest subtree T’ fofe T (W

©Emily Fox 2013 25

3%{0”\6@ .

Cost-Complexity Pruning - 5
o W" My

LASe
@23 ONT) = Y 1 @u(T) + AIT!
m=1

m Can find using weakest link pruning

Successively collapse the internal node that
produces smallest increase in RSS X1 <t

Zr\ Nm Qw@ |

Continue until at single-node (root) tree Xo<tz Xi<ts

Produces a finite sequence of subtrees,
which must contain T’

See Breiman et al. (1984) or Ripley (1996) b R m Xz <ty
N
m Choose A via 5- or 10-fold CV — X (W
m Final tree: T; Ri  Rs
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Comments on Regression Trees
* JE—
m Partition is not specified apriori, so regression trees provide a
locally adaptive technique

m Effectively performs variable selection by discovering the

relevant interaction terms J o
Implicit in the process (@Lﬁ“ (‘l&MMJ dngoc Pr’ we e

m In the construction, we are assuming that
Error terms are uncorrelated > RSS is '&[’\Q Y'\‘A]Lk Me‘f';C

Constant variance
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Example: Prostate Cancer
* JEE——
m Fit binary regression tree to log PSA with splits based on
eight covariates
m Grow tree with condition of at least 3 observation per leaf

m Results in a tree with 27 splits

m Run weakest-link pruning for each candidate A, with A chosen
according to CV
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Example: Prostate Cancer

m Compare results to LASSO loavolg 2.462
Icavol most “important”
Then Iweight and svi

Icavol< +-0.4786

hi(x) = I(lcavol < —0.4786) ) Iweflghty: 3.689
ha(x) = I(lcavol < —0.4786) x I(lweight < 3.689) x I(svi < 0.5)
h3(x) = I(Icavol < —0.4786) x I(lweight < 3.689) x I(svi > 0.5) svi40.5 212
ha(x) = I(Icavol < —0.4786) x I(Iweight > 3.689) n=29
hs(x) = I(lcavol > 2.462).

07 ) ) 1.927 3.267
—e— [cavol n=35 n=3
—o— Iweight
e - Mk —6—age
\'\ —6—loph
05 \wl . —e—svi

x VA

os [ASSD

5 10 15 2o 25
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n=21

29

Issues

m Unordered categorical predictors

With unordered categorical predictors with q possible values, there are

29-1-1 possible choices of partition points to consider for each variable
Prohibitive for large g
Can deal with this for binary y...will come back to this in “classification’

m Missing predictor values...how to cope?
Can discard
Canfill in, e.g., with mean of other variables

With trees, there are better approaches
-- Categorical predictors: make new category “missing”
-- Split on observed data. For every split, create an ordered list of

“surrogate” splits (predictor/value) that create similar divides of the data.

When examining observation with a missing predictor, when splitting o
that dimension, use top-most surrogate that is available instead
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Readings

m Wakefield — 12.7

m Hastie, Tibshirani, Friedman — 9.2.1-9.2.2,9.2.4, 9.4

m \Wasserman — 5.12
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