Module 4: Coping with Multiple Predictors

Multidimensional Kernel Methods

STAT/BIOSTAT 527, University of Washington
Emily Fox
May $16^{\text {th }}, 2013$

Kernel Density Estimation

- Kernel methods are often used for density estimation (actually, classical origin)
- Assume random sample

- Choice \#1: empirical estimate?

$$
\hat{p}=\frac{1}{n} \sum \delta_{x_{i}}
$$

- Choice \#2: as before, maybe we should use an estimator

- Choice \#3: again, consider kernel weightings instead

Kernel Density Estimation

- Popular choice $=$ Gaussian kernel \rightarrow Gaussian KDE

$$
\begin{aligned}
& \hat{p}=\frac{\hbar}{n} \sum_{i=1}^{n} \phi_{1}\left(x-x_{0}\right) \\
& =\left(\hat{p} \otimes \phi_{i}\right)(x)
\end{aligned}
$$

From Hastie, Tibshirani, Friedman book

Multivariate KDE

- $\ln 1 d$

$$
\hat{p}\left(x_{0}\right)=\frac{1}{n \lambda} \sum_{i=1}^{n} K_{\lambda}\left(x_{0}, x_{i}\right)
$$

- In R^{d}, assuming a product kernel,

$$
\hat{p}\left(x_{0}\right)=\frac{1}{n \lambda_{1} \cdots \lambda_{d}} \sum_{i=1}^{n}\left\{\prod_{j=1}^{d} K_{\lambda_{j}}\left(x_{0 j}, x_{i j}\right)\right\}
$$

lots of params to choose

- Typical choice $=$ Gaussian RBF \rightarrow Gaussian KDE

$$
e^{-\frac{\left\|x_{0}-x\right\|}{\lambda}}
$$

Multivariate KDE

$$
\hat{p}\left(x_{0}\right)=\frac{1}{n \lambda_{1} \cdots \lambda_{d}} \sum_{i=1}^{n}\left\{\prod_{j=1}^{d} K_{\lambda_{j}}\left(x_{0 j}, x_{i j}\right)\right\}
$$

- Risk grows as $O\left(n^{-4 /(4+\mathrm{d})}\right) \not \&$ increase very rapidly w / d
- Example: To ensure relative MSE <0.1 at 0 when the density is a multivariate norm and optimal bandwidth is chosen

- Always report confidence bands, which get wide with d

Multivariate KDE Example

- Data on 6 characteristics of aircraft (Bowman and Azzalini 1998)
- Examine first 2 principle components of the data
- Perform KDE with independent kernels

Multivariate KDE Example

- Data on 6 characteristics of aircraft (Bowman and Azzalini 1998)
- Examine first 2 principle components of the data
- Perform KDE with independent kernels - width matters a lot

2 bandwidths to select

Module 4: Coping with Multiple Predictors

Regression Trees Overview

- An alternative adaptive regression technique
\square Conceptually simple
\square Powerful
- Partition the covariate space into regions and then fit a simple model in each (e.g., constant)

Recursive Binary Partitions

- To simplify the process and interpretability, consider recursive binary partitions
- Described via a rooted tree
\square Every node of the tree corresponds to split decision
\square Leaves contain a subset of the data that satisfy the conditions
- all conditions on path from root to leaf
- think of pinball falling to leaf

Recursive Binary Partitions

- Start with a list of d-dimensional points.

Recursive Binary Partitions

- Split the points into 2 groups by:

\square Choosing dimension d_{j} and value t_{j} (methods to be discussed...)
\square Separating the points into $x_{i d_{j}}>t_{j}$ and $x_{i d_{j}}<=t_{j}$.

Recursive Binary Partitions

- Consider each group separately and possibly split again (along same/different dimension).
\square Stopping criterion to be discussed...

Recursive Binary Partitions

 (along same/different dimension).
Stopping criterion to be discussed...is region as well

Recursive Binary Partitions

- Continue splitting points in each set
\square creates a binary tree structure
- Each leaf node contains a list of points satisfying all

Resulting Model

Basis Expansion Interpretation

- Equivalent to a basis expansion

$$
f(x)=\sum_{m=1}^{M} \hat{\tau}_{\beta_{m} h_{m}(x)}^{\text {indicators }} \text { on regions }
$$

- In this example:

$$
\begin{aligned}
& h_{1}\left(x_{1}, x_{2}\right)=I\left(x_{1} \leq t_{1}\right) I\left(x_{2} \leq t_{2}\right) \\
& h_{2}\left(x_{1}, x_{2}\right)=I\left(x_{1} \leq t_{1}\right) I\left(x_{2}>t_{2}\right) \\
& h_{3}\left(x_{1}, x_{2}\right)=I\left(x_{1}>t_{1}\right) I\left(x_{1} \leq t_{3}\right) \\
& h_{4}\left(x_{1}, x_{2}\right)=I\left(x_{1}>t_{1}\right) I\left(x_{1}>t_{3}\right) I\left(x_{2} \leq t_{4}\right) \\
& h_{5}\left(x_{1}, x_{2}\right)=I\left(x_{1}>t_{1}\right) I\left(x_{1}>t_{3}\right) I\left(x_{2}>t_{4}\right) \\
& r e d u c e d ~ t e n s o r ~ p r o d u c t ~ s p l i n e ~ \\
& w
\end{aligned} \text { step fen basis }
$$

Questions on Building the Tree

- Which variable should we split on? d_{j}
- What threshold value should we consider? t;
- When should we stop the process?
could run until I dos. at each leaf, but overfit

Building the Tree

$$
f(x)=\sum_{m=1}^{M} \beta_{m} I\left(x \in R_{m}\right)
$$

- Assume the partition $\left(R_{1}, \ldots R_{M}\right)$ is given
- If criterion is to minimize RSS, then

$$
\hat{\beta}_{m}=\operatorname{avg}\left(y_{i} \mid x_{i} \in R_{m}\right)
$$

- How do we find the partition $\left(R_{1}, \ldots R_{M}\right)$?
\square Finding the optimal tree that minimizes RSS is generally computationally infeasible
Consider a greedy algorithm instead

Choosing a Split Decision

- Starting with all of the data, consider splitting on variable j at point s
- Define

$$
\begin{aligned}
& R_{1}(j, s)=\left\{x \mid x_{j} \leq s\right\} \\
& R_{2}(j, s)=\left\{x \mid x_{j}>s\right\}
\end{aligned}
$$

- Our objective is
$\min _{j, S}\left[\min _{\beta_{1}} \sum_{x_{i} \in R_{1}(j, s)}\left(y_{i}-\beta_{1}\right)^{2}+\min _{\beta_{2}} \sum_{x_{i} \in R_{i}(j, s)}\left(y_{i}-\beta_{2}\right)^{2}\right]$

- For any (j, s), the inner minimization is solved by

$$
\hat{\beta}_{k}=\operatorname{avg}\left(y_{i} \mid x_{i} \notin R_{k}(j, s)\right) \quad k=1,2
$$

Choosing a Split Decision

- Max of $d(n-1)$ partitions to consider
- So, determining (j, s) is feasible

Choosing a Split Decision

- Conditioning on the best split just found, we recurse on each of the two regions
- Repeat on all resulting regions
- When do we stop recursing?

How Large of a Tree?

- Large tree, like partitioning until each node has one observation \rightarrow overfit (var)
- Small tree \rightarrow miss key features (bias)
- Tree size is a tuning parameter that governs model complexity
\square Optimal tree size should be chosen adaptively from the data
- Stopping criterion
\square Stop when decrease in RSS due to a split falls below some threshold Shortsighted. Splits lated could be very good.Stop when a minimum node size (e.g., 5) is reached. Go back and prune.

Cost-Complexity Pruning

- Searching over all subtrees and selecting using AIC or CV is not possible since there is an exponentially large set of subtrees \rightarrow look at penalized RSS instead
- Define a subtree $T \subset T_{0}$ to be any tree obtained by pruning T_{0} prune = collapse an internal node
and $|T|=\#$ of leaf nodes
$n_{m}=\left|\left\{x_{i} \in R_{m}\right\}\right|$
$\hat{\beta}_{m}=\frac{1}{n_{m}} \sum_{i i \in R_{m}} y_{i}$
$Q_{m}(T)=\frac{1}{n_{m}} \sum_{x_{i} \in R_{m}}\left(y_{i}-\hat{\beta}_{m}\right)^{2}$
- We examine an complexity criterion

$$
C_{\lambda}(T)=\sum_{m=1}^{|T|} n_{m} Q_{m}(T)+\lambda|T|
$$

Cost-Complexity Pruning

$$
C_{\lambda}(T)=\underbrace{\sum_{m=1}^{|T|} n_{m} Q_{m}(T)}_{m \text { penalty }}+\lambda|T|
$$

- For a given λ, want to find $T_{\lambda} \subset T_{0}$ to minimize $C_{\lambda}(T)$
- Tuning parameter λ governs tradeoff between $X_{1} \leq t_{1}$, tree size and goodness of fit to the data
\square Large $\lambda \rightarrow$ small trees
$\square \lambda=0 \rightarrow$ To full tree
- For each λ, can show that there is a unique smallest subtree T_{λ}

Cost-Complexity Pruning

Sequence:

$$
\underset{c o l}{ } C_{\lambda}(T)=\sum_{m=1}^{|T|} n_{m} Q_{m}(T)+\lambda|T|
$$

- Can find using weakest link pruning
\square Successively collapse the internal node that produces smallest increase in RSS

$$
\sum_{m} n_{m} Q_{m}(T)
$$

\square Continue until at single-node (root) tree
\square Produces a finite sequence of subtrees, which must contain T_{λ}
\square See Breiman et al. (1984) or Ripley (1996)

- Choose λ via 5 - or 10 -fold $\mathrm{CV} \rightarrow \hat{\lambda}$
- Final tree: $T_{\hat{\lambda}}$

λ

Comments on Regression Trees

- Partition is not specified apriori, so regression trees provide a locally adaptive technique
- Effectively performs variable selection by discovering the relevant interaction terms
- Implicit in the process recall reduced tensor product...
- In the construction, we are assuming that
\square Error terms are uncorrelated
\square Constant variance \rightarrow RSS is the right metric

Example: Prostate Cancer

- Fit binary regression tree to log PSA with splits based on eight covariates
- Grow tree with condition of at least 3 observation per leaf
- Results in a tree with 27 splits
- Run weakest-link pruning for each candidate λ, with λ chosen according to CV

Issues

- Unordered categorical predictors
\square With unordered categorical predictors with q possible values, there are $2^{q-1}-1$ possible choices of partition points to consider for each variableProhibitive for large q
\square Can deal with this for binary $y . .$. will come back to this in "classification"
- Missing predictor values...how to cope?
\square Can discard
\square Can fill in, e.g., with mean of other variablesWith trees, there are better approaches
-- Categorical predictors: make new category "missing"
-- Split on observed data. For every split, create an ordered list of "surrogate" splits (predictor/value) that create similar divides of the data. When examining observation with a missing predictor, when splitting on that dimension, use top-most surrogate that is available instead

Readings

- Wakefield - 12.7
- Hastie, Tibshirani, Friedman - 9.2.1-9.2.2, 9.2.4, 9.4
- Wasserman - 5.12

