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Recursive Binary Partitions
* JEE

m To simplify the process and
interpretability, consider
recursive binary partitions

E—

m Described via a rooted tree
Every node of the tree
corresponds {0 Split-decisian
Leaves contain a subset of the

ata that satisfy the conditions
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Resulting Model
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m Model the response aW|th|n W
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Figures from Hastie, Tibshirani, Friedman book
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Basis Expansion Interpretation
" JEE
m Equivalent toabaS|s expansion X<t

f(z) = Zﬁm A"\,,éx

/\ V\A\ b L)

m |n this example:

hl(ﬂfl x2) = I(xy < t1)I(x2 < t2) = (W
ho(x1,22) = I(x1 < t1)I(xg > t2) Ri  Rs

hs(z1,x2) = I(x1 > t1)1 (1 < t3)

ha(x1,20) = I(x1 > t1)I(x1 > t3)(z2 < ty)

hs(z1,x2) = I(x1 > t1)I(x1 > t3)[ (29 > t4)

Ve lucu; Tansor Pfoc\uO‘L spline w/ stey C,,/\ loss13
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Choosing a Split Decision
" JEE

m Starting with all of the data, consider

A
splitting on variable j at point s ')"\,Q s R ()’,S)
m Define v
Ri(j,s) ={z | x; < s} %o ° . .
Ry(j,s) ={z | z; > s} 3 Sod®
m Our objective is oo o * ﬁz
. 2 . ° .
s [oin 2. Ly o in 2 (ichS) o7 o
)18 b\ X«ik‘)ﬁ) 62 XQ(K[(‘\IS) . o:.. ) .

m For any (j, s) thei |nner minimization is solved by

Bz vy \/ |x: ¢ Rl )
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Cost-Complexity Pruning

" JEE
m Searching over all subtrees and selecting using AIC or CV is not
possible since there is an exponentially large set of subtrees

K 160\( ok Pﬁﬂﬂ-‘(%&( RSS ingxexd

m Define a subtree 1" C Iy to be any tree obtalged by pruning 1
Prene = ollapse an \nob!/'\A ho

and T = & of leaf nades e To
et — R
i = 1oneks] SIS

Pm = ’lwg éz:\ ~
v Qm (T) =\ Z / ’/SM\ g %2 <ty

m We examine-g‘ omﬁTexny criterion 42 13
T e L
Z N Qm (1) + )‘|T| eu‘”‘ Je 5|iQR4

m=1
©Emily Fox 2013 6




Cost-Complexity f’runing

m #
W% b O WD T

@ COAT) = D nmQu(T) + AT
m=1

Successively collapse the internal node that
produces smallest increase in RSS X1 <t

Zn Nm QI"&)

iy
= 9

m Can find using weakest link pruning "P_‘
I

Continue until at single-node (root) tree Xo<to X1sts
Produces a finite sequence of subtrees,
which must contain 17\ <
See Breiman et al. (1984) or Ripley (1996) R Ry Rs
SN
m Choose A via5=on10-fold CV — »
Ry Rs

m Final tree:
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Issues
" JEE—
m Unordered categorical predictors

With unordered categorical predictors with q possible values, there are
29-1-1 possible choices of partition points to consider for each variable

Prohibitive for large g
Can deal with this for binary y...will come back to this in “classification”

m Missing predictor values...how to cope?
Can discard
Canfill in, e.g., with mean of other variables
With trees, there are better approaches
-- Categorical predictors: make new category “missing”
-- Split on observed data. For every split, create an ordered list of
“surrogate” splits (predictor/value) that create similar divides of the data.
When examining observation with a missing predictor, when splitting on
that dimension, use top-most surrogate that is available instead
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" JEE
m Binary splits f\o
Could split into more regions at every node \D .
However, this more rapidly fragments the data leaving insufficient data and

subsequent levels
Multiway splits can be achieved via a sequence of binary splits, so binary

splits are generally preferred /\ 0\
> < o

m [nstability
Can exhibit high variance
Small changes in the data = big changes in the tree

Errors in Ehe top split propagates all the way down

Bagging averages many trees to reduce variance .. - mprg lﬂey

m Inference
Hard...need to account for stepwise search algorithm
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Issues
" JEEE—

m Lack of smoothness
Fits piecewise constant models...unlikely to believe this structure
MARS address this issue (can view as modification to CART)

~ .
~\aker ’((I\\S [&k\,\m,
m Difficulty in capturing additive structure

Imagine true structure is )(,if,
y = Bil(x1 <t1)+ Pal(wa < ta) + ¢ ek ety
No encouragement to find this structure l

- \,,,,rA wlo sufficrent dota

- Lhig ig Jus\- wi 1 AU:hVL Chosse same 59'7'('
effects. Warder ko LopPen o Loth sides
of notice w/ morg .
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Multiple Adaptive Regression Splines
* JEE
m MARS is an adaptive procedure for regression

Well-suited to high-dimensional covariate spaces

focus 0 s

m Can be viewed as: v~ CirsX
Generalization of step-wise linear regression
Modification of CART

m Consider a basis expansion in terms of piecewise linear basis
functions (linear splines)

’(L& g i |
(sz)* U re»é:f'; ) ;f E (t—a)s | @—t)s
({' - )Q X . é ] 1
\ llﬁ 0.0 02 0.4 T 06 0.8 10
se < )
P(ectn)‘ / KV\D{' @ From Hastie, Tibshirani, Friedman book
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Multiple Adaptive Regression Spllnes
" S (B

m Take knots at all observed X;j

C = {(r; — g (¢ - )} 477

= /
If all locations are unique, then 2*n*d basis functions
Treat each basis functlon as a function on x, just varying with x;

ho () = X - f\ for exw‘?‘C

m The resulting model has the form
M
.CE) = BO + Z Bmhm(x) LBE- o&“’cks
m=1 ~ o
\ L W
e

m Built in a forward stepwise manner in terms of this basis
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MARS Forward Stepwise

" JEEE
m Given a set of h,,, estimation of 3,,, proceeds as with any linear
basis expansion (i.e., minimizing the RSS)

is
How do we choose the set of h,,,? bas!

1. Start with ho(z) =1 and M=0 t)/

2. Consider product of all h,, in current model with reflected pairs in C
-- Add terms of the form

5M+1he( J(@j =)+ + Barv2he(z)(t — x5)+ L\t M
- —
hh“ bml are est- 1sing LS & Al pthes ktims in mode

-- Select the one that decreases the training error most
3. Increment M and repeat
4. Stop when preset M is hit
5. Typically end with a large (overfit) model, so d del

-- Remove term with smallest increase in RSS

-- Choose model based on generalized CV
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MARS Forward Stepwise Example

T)\T;
. At th;j&t&age.-ad%mk(«) .
Billws — )4 + Bt —xy)1 rites
of

with the optlmal pair being

/J. (X‘t X’ll)-\ A 51()(12')(7,)—\- ,
m Add pair to the model and then consider including a pair/like

Bahm(2)(xj — )4 + Bahm (2)(t — ;)4
with chgices for h,, being: A\ 2

ho(#)=) 3

\f(,s, (¥3- YD ._\o‘y

hl(xy (%7- %)+ O\
) vt

" (onS.\
¥
\L\L 't(«”'\ (Y\ Yf\ )4 (. 17 F|gure from Hastie, Tibshirani, Friedman book
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MARS Forward Stepwise

m n pictures...

(wﬂx \
From
Hastie,
Tibshirani,
2 Friedman
book

©Emily Fox 2013 15

Why MARS?
" JEE

m Why these piecewise linear basis functions?
Ability to operate locally
= When multiplied, non-zero only over small part of the input space
= Resulting regression surface has local components and only
where needed (spend parameters carefully in high dims)
Computations with linear basis are very efficient
= Naively, we consider fitting n reflected pairs for each input x;
- O(n?) operations
= Can exploit simple form of piecewise linear function

= Fit function with rightmost knot. As knot moves, basis functions
differ by 0 over the left and by a constant over the right
- Can try every knot in O(n)
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Why MARS?
" JE—

m Why forward stagewise?
Hierarchical in that multiway products are built from terms already in model
(e.g., 4-way product exists only if 3-way already existed)
Higher order interactions tend to only exist if some of the lower order
interactions exist as well R—

Avoids search over exponentially large space

m Notes:
Each input can appear at most once in a product...Prevents formation of
higher-order powers of an input
Can place limit on order of interaction. That is, one can allow pairwise
products, but not 3-way or higher.
Limit of 1 - additive model
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Connecting MARS and CART
* JEE—

s MARS and CART have lots of similarities

m Take MARS procedure and make following modifications:
Replace piecewise linear with step functions

T 3 5 50
When a model term is involved in a multiplication by a candidate term, X
replace it by the mteractlon and is not available for further interaction , JAV‘

o

Then, MARS forward procedure = CART tree-growing algorith
Multiplying a step function by a pair of reflected step function

= split node at the step
@’-———. © /_J\
" *

N
"""" ‘\g{?)f/q N

2nd restriction > oﬁe may not be split more than orvceb(blnary tree

K MARS doesn’t force tree structure - can capture additive effects

- ©Emily Fox 2013 — 18




What you need to know
* JEEE

m Regression trees provide an adaptive regression method

Fit constants (or simple models) to each region of a partition

Relies on estimating a binary tree partition
Sequence of decisions of variables to split on and where
Grown in a greedy, forward-wise manner
Pruned subsequently

Implicitly performs variable selection

MARS is a modification to CART allowing linear fits
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Readings
" JE
m Wakefield — 12.7
m Hastie, Tibshirani, Friedman —9.2.1-9.2.2,9.2.4, 9.4
m Wasserman — 5.12
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Module 4: Coping with Multiple Predictors

A Short Case Study

STAT/BIOSTAT 527, University of Washington
Emily Fox
May 21st, 2013
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Rock Data
= JEE

m 48 rock samples from a petroleum reservoir
m Response = permeability

m Covariates = area of pores, perimeter, and shape

o &P . o® 0 °
z S ot 2ol PWHET
E ,OB.M ° g o coenn.n '
3 ° 3
g g
g g
T T T T ™ -—— T T T
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g i s g0 F
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Eol ® Wasserman
e book
o 00
K]

™~ ﬁﬁ_L
0 200 400 600 800 1200
shape
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Generalized Additive Model
" JEE
m Fita GAM:
permeability = f;(area) + fo(perimeter) + f3(shape) +

1000 2000 3000 4000 501 01 perimeter \/l',
e et L
\ / Al 5‘*"\ C kot

m/— /
From

o Wasserman
book

9

8
Iogp rmeal hlty

log permeability

T

log permeability

T T T T T T T
0 200 400 800 800 1000
shape
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GAM vs. Local Linear Fits
" DI

m Comparison to a 3-dimensional local linear fit
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Projection Pursuit
= (01 Ta) = 0t ) fon(0n2)

m Applying projection pursuit with M = 3 yields m=1 "‘
wy = (.99,.07,.08)7, wy = (.43,.35,.83)7, wy = (.74, —.28,—.61)7 Vi
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Regression Trees
" JEE—
m Fit a regression tree to the rock data
m Note that the variable “shape” does not appear in the tree
;-_:7 nte .‘W\?of'\'ﬁr\*"

area < 1403

area < 1068 '—— area < 3967——|

area < 3967 peri < .1949
peri < .1991 I I I
1 1
7.746 8.407 8.678 8.893 8.985 8.099 8.339

From Wasserman book
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Module 5: Classification

A First Look at
Classification: CART

STAT/BIOSTAT 527, University of Washington
Emily Fox
May 21st, 2013

\
. x o>
Regression Trees  rgen
. C

m So far, we have assumed continuous responses y and looked at
regression tree models:

f@) =Y @mw € Ry)

Figures from Hastie, Tibshirani, Friedman book
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Classification Trees
= JEE

m What if our response y is categorical and our goal is
classification?

> , 4+ of
\/e { temail’, lgpam i = 10, li / clesse S
Rors qunerolly, ¢ 16, - 61:-7\ = Z\/m./kg

m Canwe stlll use these tree structures? eS/
m Recall our node impurity measure

T X ol 883
Qm (T) n— Z ( Yi — Bm)z lD /05\61‘ "
Used this for growing the treﬁleR“ eR (1\ '/ Ny Q'l(f\

U;.HSH Z (yi — 51) Z (yi — 82)2
" |wi€R13,s) @i €R2(J,5)
. IT|
As well as pruning

=D nnQu(T) + AT
m=1

m Clearly, squared-error is not the right metric for classification

©Emily Fox 2013
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Classification Trees

/\
T %

I P S 4 cs’ o cs’ Jo)
2T EvE . E
N L ok
=0 % Pmsig ) fefm)z )
m First, what is our decision rule at each leaf?

Estimate probablllty of each class given data at leaf node:
ﬁmk - Z. 1 - k\

M
Xie
Majority vote: Qm

k(m) = (g mox P

Figures from Andrew Moore kd-tree tutorial
30

©Emily Fox 2013

15



Classification Trees
= JEEE

L A

i s s P2 NN
.jq%;_.: IEELV-CV-CED N

m How do we measure My for this f|t/deC|S|on rule? 0,.,(1)
[ Misclassification error: | (\/ :,\l-lc("‘\ ) = P"“‘("‘)
QM QGE"\ .n e¥: I

[ Gini index:
ZZ- Pmk Pml‘ Z. Pmk (l” PMK)
01 Cross-entropy o&dewance A

— Z fmv. 0 Prk

ksl Figures from Andrew Moore kd-tree tutorial
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" JEEE
L] d L] b L] °
.: J ; q
. ° ® 2 From
o .- ° b Hastie,
8 Tibshirani,
L] L] .
< . ~ Friedman
® <7 book
(J // \
b /.\. 0.0 0.2 0.4 06 0.8 10

m How do we measure node impurity for this f|t/deC|S|on rule?

N
0 Misclassification error (}L_Z) ‘_, MAX( e, - P \ P P:&P“ N

o Giniindex (K=2): 9 & (- P)

01 Cross-entropy ordequce (K=2): "P‘oﬁP - (( ‘o 3(0%“"? 3
lavgesr  at l | " . loks of u.nc,e/-l*o.m‘(f
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Notes on Impurity Measures

m Impurity measures
Misclassification error 1 = Pmk(m)

Gini index: mek(l pmk)

00 01 02 03 04 os
L L L L L

T T
06 08 1.0

Cross-entropy or dewance — Z Pmi log p pmk From Hastie, Tibshirani,
1 Friedman book
s Comments: L) &3
Differentiability ~(>i~' * €(0SS —antyez * g"?/p“ ,‘,pﬂ
Sensitivity to changes in node probabllltles (" - . AN v"/
RO B tuth £ miscluss. = O v g V0
'-JQO | PP y \[ 6 0.( V\‘,L

o Yoo

e e L5, %
oo - 10| ‘% 300 ) .0
22 S S asdess £0.28 N stless= 0

Often use Gini or cross-entropy for growing tree, and misclass. for pruning

an
©Emily Fox 2013 €oN w y
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Notes on Impurity Measures

m Impurity measures
Misclassification error 1- ﬁmk(m)

Gini index: mek pmk‘)

00 01 02 03 04 os
L L L L L

T T T
00 02 04

T T T
06 08 1.0

Cross-entropy or dewance — E Pk log ﬁmk From Hastie, Tibshirani,

Friedman book

~
m Other interpretations ofWP”k oPprox pamic’

Instead of majority vote, classify o ations to cl k with prob. pmk

breor = 2.2, Pla) 2 0D P A < k) Llkt?)

N c‘ﬁ,CSIFI‘r &r\Akls
fAR Ulor o 2 PR ml-l
¢ 13 e ki P P
Code each observation as 1 for class k and 0 othervwse
= Variance: | ﬁﬂ"""se all Pmk [l’Pmk.)

= Summing over k gives the Gini index
©Emily Fox 2013
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Classification Tree Issues
= JEE

m Unordered categorical predictors

With unordered categorical predictors with q possible values, there are
249-1-1 possible choices of partition points to consider for each variable

For binary (0-1) outcomes, can order predictor classes according to
proportion falling in outcome class 1 and then treat as ordered predictor
= Gives optimal split in terms of cross-entropy or Gini index

Also holds for quantitative outcomes and square-error loss...order
predictors by increasing mean of the outcome

No results for multi-category outcomes

m Loss matrix

In some cases, certain misclassifications are worse than others
predicking o disease when disease

Introduce loss matrix ...more on this soon
See Tibshirani, Hastie and Friedman for how to incorporate into CART
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Classification Tree Spam Example
" JEE
m Example: predicting spam Leb‘/‘g"i Sa.f Y/ ()WH S

m Data from UCI repository _ ) \
m Response variable: email or spam
m 57 predictors:

48 quantitative — percentage of words in email that match a give word such
as “business”, “address”, “internet’,...

6 quantitative — percentage of characters in the email that match a given
character (;,[!$#)

The average length of uninterrupted capital letters: CAPAVE
The length of the longest uninterrupted sequence of capital letters: CAPMAX
The sum of the length of uninterrupted sequences of capital letters: CAPTOT
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Classification Tree Spam Example
" JEEE
m Used meyi&g:mu.ttee and misclassification to prune

m 10-fold CV to choose tree size
CV indexed by A >‘

Sizes refer to |T>\|
Error rate flattens out 43
around a tree of size 17 \
§27 ofro”
i 5
i T\I\ v
S IIIIII o EY - . _
- eV el of

0 10 ‘ 3‘0 4‘0
From Hastie, Tib Friedman book
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Classification Tree Spam Example
" JEE—

m Resulting tree of size 17

m Note that there are 13 distinct covariates
split on by the tree

ﬁ 11 of these overlap with the 16 significant 2"
predictors from the additive model é

previously explored
T

Fohe s freq., then Lmal] ﬁ%d; F“%*
(7} (ases Cb(f‘ é ﬁ% Eﬁ * From Hastie

\f wot, ond CAPAVESD. Tibshirani,

't‘/\(!\ 'SFAM /l DP * ﬁ"% lj;l Friedman book
' \o»“ ;5 *
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Classification Tree Spam Example
* JEE

m Resulting tree of size 17

m Note that there are 13 distinct covariates
split on by the tree

11 of these overlap with the 16 significant
predictors from the additive model
previously explored

m Overall error rate (9.3%) is @; ﬁ%

itive model /™= = e ’
Predicted #A\ ?% Eé' From Hastie,

True | email  spam Tibshirani,
email | 57.3%  4.0% \;ﬁ @g Friedman bool:fk
spam 5.3% 33.4% CART s not gre
s when small changt)
[epan]
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What you need to know
* JEE—
m Classification trees are a straightforward modification to the
regression tree setup

m Just need new definition of node impurity for growing and
pruning tree

m Decision at the leaves is a simple majority-vote rule
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Readings
" JE—
m Wakefield — 10.3.2, 10.4.2, 12.8.4
m Hastie, Tibshirani, Friedman —9.2.3, 9.2.5, 2.4
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