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Recursive Binary Partitions 
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n  To simplify the process and 
interpretability, consider 
recursive binary partitions 

n  Described via a rooted tree 
¨  Every node of the tree 

corresponds to split decision 
¨  Leaves contain a subset of the 

data that satisfy the conditions 

Figures from Andrew Moore kd-tree tutorial 



2 

Resulting Model 

n  Model the response as constant within each region 

3 ©Emily Fox 2013 
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FIGURE 9.2. Partitions and CART. Top right panel shows a partition of a
two-dimensional feature space by recursive binary splitting, as used in CART,
applied to some fake data. Top left panel shows a general partition that cannot
be obtained from recursive binary splitting. Bottom left panel shows the tree cor-
responding to the partition in the top right panel, and a perspective plot of the
prediction surface appears in the bottom right panel.
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f(x) =
MX

m=1

�mI(x 2 Rm)

306 9. Additive Models, Trees, and Related Methods

|

t1

t2

t3

t4

R1

R1

R2

R2

R3

R3

R4

R4

R5

R5

X1

X1X1

X2

X
2

X
2

X1 ≤ t1

X2 ≤ t2 X1 ≤ t3

X2 ≤ t4

FIGURE 9.2. Partitions and CART. Top right panel shows a partition of a
two-dimensional feature space by recursive binary splitting, as used in CART,
applied to some fake data. Top left panel shows a general partition that cannot
be obtained from recursive binary splitting. Bottom left panel shows the tree cor-
responding to the partition in the top right panel, and a perspective plot of the
prediction surface appears in the bottom right panel.

Figures from Hastie, Tibshirani, Friedman book 

Basis Expansion Interpretation 

n  Equivalent to a basis expansion 

n  In this example: 
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f(x) =
MX

m=1

�mhm(x)

h1(x1, x2) = I(x1  t1)I(x2  t2)

h2(x1, x2) = I(x1  t1)I(x2 > t2)

h3(x1, x2) = I(x1 > t1)I(x1  t3)

h4(x1, x2) = I(x1 > t1)I(x1 > t3)I(x2  t4)

h5(x1, x2) = I(x1 > t1)I(x1 > t3)I(x2 > t4)
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Choosing a Split Decision 
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n  Starting with all of the data, consider  
splitting on variable j at point s 

n  Define 

n  Our objective is 

n  For any (j, s), the inner minimization is solved by 

R1(j, s) = {x | xj  s}
R2(j, s) = {x | xj > s}

Cost-Complexity Pruning 

©Emily Fox 2013 6 

n  Searching over all subtrees and selecting using AIC or CV is not 
possible since there is an exponentially large set of subtrees 
à 

n  Define a subtree   to be any tree obtained by pruning 
 
and 

n  We examine a complexity criterion 

T ⇢ T0 T0
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|T | =
nm =

�̂m =

Qm(T ) =

C�(T ) =

|T |X

m=1

nmQm(T ) + �|T |
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Cost-Complexity Pruning 
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n  Can find using weakest link pruning 
¨  Successively collapse the internal node that 

produces smallest increase in RSS 

¨  Continue until at single-node (root) tree 
¨  Produces a finite sequence of subtrees, 

which must contain  
¨  See Breiman et al. (1984) or Ripley (1996) 

n  Choose λ via 5- or 10-fold CV 
n  Final tree:  
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C�(T ) =

|T |X

m=1

nmQm(T ) + �|T |

T�

Issues 
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n  Unordered categorical predictors 
¨  With unordered categorical predictors with q possible values, there are 

2q-1-1 possible choices of partition points to consider for each variable 
¨  Prohibitive for large q 
¨  Can deal with this for binary y…will come back to this in “classification” 

n  Missing predictor values…how to cope? 
¨  Can discard 
¨  Can fill in, e.g., with mean of other variables 
¨  With trees, there are better approaches 

-- Categorical predictors: make new category “missing” 
-- Split on observed data.  For every split, create an ordered list of 
“surrogate” splits (predictor/value) that create similar divides of the data.  
When examining observation with a missing predictor, when splitting on 
that dimension, use top-most surrogate that is available instead 
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Issues 
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n  Binary splits 
¨  Could split into more regions at every node 
¨  However, this more rapidly fragments the data leaving insufficient data and 

subsequent levels 
¨  Multiway splits can be achieved via a sequence of binary splits, so binary 

splits are generally preferred 

n  Instability 
¨  Can exhibit high variance 
¨  Small changes in the data à big changes in the tree 
¨  Errors in the top split propagates all the way down 
¨  Bagging averages many trees to reduce variance 

n  Inference 
¨  Hard…need to account for stepwise search algorithm 

 

Issues 

©Emily Fox 2013 10 

n  Lack of smoothness 
¨  Fits piecewise constant models…unlikely to believe this structure 
¨  MARS address this issue (can view as modification to CART) 

n  Difficulty in capturing additive structure 
¨  Imagine true structure is 

¨  No encouragement to find this structure 

y = �1I(x1 < t1) + �2I(x2 < t2) + ✏
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Multiple Adaptive Regression Splines 
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n  MARS is an adaptive procedure for regression 
¨  Well-suited to high-dimensional covariate spaces 

n  Can be viewed as: 
¨  Generalization of step-wise linear regression 
¨  Modification of CART 

n  Consider a basis expansion in terms of piecewise linear basis 
functions (linear splines) 
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FIGURE 9.9. The basis functions (x− t)+ (solid orange) and (t− x)+ (broken
blue) used by MARS.

As an example, the functions (x− 0.5)+ and (0.5− x)+ are shown in Fig-
ure 9.9.

Each function is piecewise linear, with a knot at the value t. In the
terminology of Chapter 5, these are linear splines. We call the two functions
a reflected pair in the discussion below. The idea is to form reflected pairs
for each input Xj with knots at each observed value xij of that input.
Therefore, the collection of basis functions is

C = {(Xj − t)+, (t−Xj)+} t ∈ {x1j , x2j , . . . , xNj}
j = 1, 2, . . . , p.

(9.18)

If all of the input values are distinct, there are 2Np basis functions alto-
gether. Note that although each basis function depends only on a single
Xj , for example, h(X) = (Xj − t)+, it is considered as a function over the
entire input space IRp.

The model-building strategy is like a forward stepwise linear regression,
but instead of using the original inputs, we are allowed to use functions
from the set C and their products. Thus the model has the form

f(X) = β0 +
M∑

m=1

βmhm(X), (9.19)

where each hm(X) is a function in C, or a product of two or more such
functions.

Given a choice for the hm, the coefficients βm are estimated by minimiz-
ing the residual sum-of-squares, that is, by standard linear regression. The
real art, however, is in the construction of the functions hm(x). We start
with only the constant function h0(X) = 1 in our model, and all functions
in the set C are candidate functions. This is depicted in Figure 9.10.

At each stage we consider as a new basis function pair all products of a
function hm in the model set M with one of the reflected pairs in C. We
add to the model M the term of the form

β̂M+1h!(X) · (Xj − t)+ + β̂M+2h!(X) · (t−Xj)+, h! ∈M,

From Hastie, Tibshirani, Friedman book 

Multiple Adaptive Regression Splines 

©Emily Fox 2013 12 

n  Take knots at all observed xij 

¨  If all locations are unique, then 2*n*d basis functions 
¨  Treat each basis function as a function on x, just varying with xj 

n  The resulting model has the form 

n  Built in a forward stepwise manner in terms of this basis 

C = {(xj � t)+, (t� xj)+}

hm(x) =

f(x) = �0 +
MX

m=1

�mhm(x)
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MARS Forward Stepwise 

©Emily Fox 2013 13 

n  Given a set of hm, estimation of       proceeds as with any linear 
basis expansion (i.e., minimizing the RSS) 

n  How do we choose the set of hm? 

�m

1.  Start with                    and M=0 
2.  Consider product of all hm in current model with reflected pairs in C  

 -- Add terms of the form 
 
 

  
 -- Select the one that decreases the training error most 

3.  Increment M and repeat 
4.  Stop when preset M is hit 
5.  Typically end with a large (overfit) model, so backward delete 

 -- Remove term with smallest increase in RSS 
 -- Choose model based on generalized CV 

h0(x) = 1

�̂M+1h`(x)(xj � t)+ + �̂M+2h`(x)(t� xj)+

MARS Forward Stepwise Example 

©Emily Fox 2013 14 

n  At the first stage, add term of form 
 

 
with the optimal pair being 

n  Add pair to the model and then consider including a pair like 
 
 
with choices for hm being: 
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X1
X2

h(X1, X2)

FIGURE 9.11. The function h(X1, X2) = (X1 − x51)+ · (x72 −X2)+, resulting
from multiplication of two piecewise linear MARS basis functions.

that produces the largest decrease in training error. Here β̂M+1 and β̂M+2

are coefficients estimated by least squares, along with all the other M + 1
coefficients in the model. Then the winning products are added to the
model and the process is continued until the model set M contains some
preset maximum number of terms.

For example, at the first stage we consider adding to the model a function
of the form β1(Xj − t)+ + β2(t −Xj)+; t ∈ {xij}, since multiplication by
the constant function just produces the function itself. Suppose the best
choice is β̂1(X2 − x72)+ + β̂2(x72 −X2)+. Then this pair of basis functions
is added to the set M, and at the next stage we consider including a pair
of products the form

hm(X) · (Xj − t)+ and hm(X) · (t−Xj)+, t ∈ {xij},

where for hm we have the choices

h0(X) = 1,

h1(X) = (X2 − x72)+, or

h2(X) = (x72 −X2)+.

The third choice produces functions such as (X1 − x51)+ · (x72 − X2)+,
depicted in Figure 9.11.

At the end of this process we have a large model of the form (9.19). This
model typically overfits the data, and so a backward deletion procedure
is applied. The term whose removal causes the smallest increase in resid-
ual squared error is deleted from the model at each stage, producing an
estimated best model f̂λ of each size (number of terms) λ. One could use
cross-validation to estimate the optimal value of λ, but for computational

�1(xj � t)+ + �2(t� xj)+

�̂M+1h`(x)(xj � t)+ + �̂M+2h`(x)(t� xj)+

�3hm(x)(xj � t)+ + �4hm(x)(t� xj)+

Figure from Hastie, Tibshirani, Friedman book 
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MARS Forward Stepwise 
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n  In pictures… 

9.4 MARS: Multivariate Adaptive Regression Splines 323
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FIGURE 9.10. Schematic of the MARS forward model-building procedure. On
the left are the basis functions currently in the model: initially, this is the constant
function h(X) = 1. On the right are all candidate basis functions to be considered
in building the model. These are pairs of piecewise linear basis functions as in
Figure 9.9, with knots t at all unique observed values xij of each predictor Xj.
At each stage we consider all products of a candidate pair with a basis function
in the model. The product that decreases the residual error the most is added into
the current model. Above we illustrate the first three steps of the procedure, with
the selected functions shown in red.

From 
Hastie, 

Tibshirani, 
Friedman 

book 

Why MARS? 
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n  Why these piecewise linear basis functions? 
¨  Ability to operate locally 

n  When multiplied, non-zero only over small part of the input space 
n  Resulting regression surface has local components and only 

where needed (spend parameters carefully in high dims) 
¨  Computations with linear basis are very efficient 

n  Naively, we consider fitting n reflected pairs for each input xj  
à O(n2) operations 

n  Can exploit simple form of piecewise linear function 
n  Fit function with rightmost knot.  As knot moves, basis functions 

differ by 0 over the left and by a constant over the right  
à Can try every knot in O(n) 
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Why MARS? 

©Emily Fox 2013 17 

n  Why forward stagewise? 
¨  Hierarchical in that multiway products are built from terms already in model 

(e.g., 4-way product exists only if 3-way already existed) 
¨  Higher order interactions tend to only exist if some of the lower order 

interactions exist as well 
¨  Avoids search over exponentially large space 

n  Notes: 
¨  Each input can appear at most once in a product…Prevents formation of 

higher-order powers of an input 
¨  Can place limit on order of interaction.  That is, one can allow pairwise 

products, but not 3-way or higher.   
¨  Limit of 1 à additive model 

Connecting MARS and CART 

©Emily Fox 2013 18 

n  MARS and CART have lots of similarities 

n  Take MARS procedure and make following modifications: 
¨  Replace piecewise linear with step functions 

¨  When a model term hm is involved in a multiplication by a candidate term, 
replace it by the interaction and is not available for further interaction 

n  Then, MARS forward procedure = CART tree-growing algorithm 
¨  Multiplying a step function by a pair of reflected step functions 

= split node at the step 

¨  2nd restriction à node may not be split more than once (binary tree) 

n  MARS doesn’t force tree structure à can capture additive effects 
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What you need to know 

n  Regression trees provide an adaptive regression method 

n  Fit constants (or simple models) to each region of a partition 

n  Relies on estimating a binary tree partition 
¨  Sequence of decisions of variables to split on and where 
¨  Grown in a greedy, forward-wise manner 
¨  Pruned subsequently 

n  Implicitly performs variable selection 

n  MARS is a modification to CART allowing linear fits 

©Emily Fox 2013 19 

Readings 

n  Wakefield – 12.7 
n  Hastie, Tibshirani, Friedman – 9.2.1-9.2.2, 9.2.4, 9.4 
n  Wasserman – 5.12 

©Emily Fox 2013 20 
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A Short Case Study 
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Rock Data 

©Emily Fox 2013 22 

n  48 rock samples from a petroleum reservoir 
n  Response = permeability 
n  Covariates = area of pores, perimeter, and shape 

From 
Wasserman 

book 
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Generalized Additive Model 

©Emily Fox 2013 23 

n  Fit a GAM: 
permeability = f1(area) + f2(perimeter) + f3(shape) + ✏

From 
Wasserman 

book 

GAM vs. Local Linear Fits 

©Emily Fox 2013 24 

n  Comparison to a 3-dimensional local linear fit 

From 
Wasserman 

book 
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f(x1, . . . , xd) = ↵+
MX

m=1

fm(wT
mx)

Projection Pursuit 

n  Applying projection pursuit with M = 3 yields 
w1 = (.99, .07, .08)T , w2 = (.43, .35, .83)T , w3 = (.74,�.28,�.61)T

From 
Wasserman 

book 

Regression Trees 

©Emily Fox 2013 26 

n  Fit a regression tree to the rock data 
n  Note that the variable “shape” does not appear in the tree 

From Wasserman book 
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A First Look at 
Classification: CART 

 
STAT/BIOSTAT 527, University of Washington 

Emily Fox 
May 21st, 2013 

©Emily Fox 2013 

Module 5: Classification 

27 

Regression Trees 

n  So far, we have assumed continuous responses y and looked at 
regression tree models: 

28 ©Emily Fox 2013 
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f(x) =
MX

m=1

�mI(x 2 Rm)
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Figures from Hastie, Tibshirani, Friedman book 
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Classification Trees 
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n  What if our response y is categorical and our goal is 
classification? 

n  Can we still use these tree structures? 
n  Recall our node impurity measure 

¨  Used this for growing the tree 

¨  As well as pruning 

n  Clearly, squared-error is not the right metric for classification 

Q
m

(T ) =
1

n
m

X

xi2Rm

(y
i

� �̂
m

)2

min
j,s

2

4
X

xi2R1(j,s)

(y
i

� �̂1)
2 +

X

xi2R2(j,s)

(y
i

� �̂2)
2

3

5

C�(T ) =

|T |X

m=1

nmQm(T ) + �|T |

Classification Trees 
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n  First, what is our decision rule at each leaf? 
¨  Estimate probability of each class given data at leaf node: 

 
¨  Majority vote: 

 

p̂mk =

k(m) =
Figures from Andrew Moore kd-tree tutorial 
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Classification Trees 

©Emily Fox 2013 31 

n  How do we measure node impurity for this fit/decision rule? 
¨  Misclassification error: 

¨  Gini index: 

¨  Cross-entropy or deviance: 

Figures from Andrew Moore kd-tree tutorial 

Classification Trees 

©Emily Fox 2013 32 

n  How do we measure node impurity for this fit/decision rule? 
¨  Misclassification error (K=2): 

¨  Gini index (K=2): 

¨  Cross-entropy or deviance (K=2): 

9.2 Tree-Based Methods 309
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FIGURE 9.3. Node impurity measures for two-class classification, as a function
of the proportion p in class 2. Cross-entropy has been scaled to pass through
(0.5, 0.5).

impurity measure Qm(T ) defined in (9.15), but this is not suitable for
classification. In a node m, representing a region Rm with Nm observations,
let

p̂mk =
1

Nm

∑

xi∈Rm

I(yi = k),

the proportion of class k observations in node m. We classify the obser-
vations in node m to class k(m) = argmaxk p̂mk, the majority class in
node m. Different measures Qm(T ) of node impurity include the following:

Misclassification error: 1
Nm

∑
i∈Rm

I(yi != k(m)) = 1− p̂mk(m).

Gini index:
∑

k "=k′ p̂mkp̂mk′ =
∑K

k=1 p̂mk(1− p̂mk).

Cross-entropy or deviance: −
∑K

k=1 p̂mk log p̂mk.
(9.17)

For two classes, if p is the proportion in the second class, these three mea-
sures are 1 − max(p, 1 − p), 2p(1 − p) and −p log p − (1 − p) log (1− p),
respectively. They are shown in Figure 9.3. All three are similar, but cross-
entropy and the Gini index are differentiable, and hence more amenable to
numerical optimization. Comparing (9.13) and (9.15), we see that we need
to weight the node impurity measures by the number NmL

and NmR
of

observations in the two child nodes created by splitting node m.
In addition, cross-entropy and the Gini index are more sensitive to changes

in the node probabilities than the misclassification rate. For example, in
a two-class problem with 400 observations in each class (denote this by
(400, 400)), suppose one split created nodes (300, 100) and (100, 300), while
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n  Impurity measures 
¨  Misclassification error: 

¨  Gini index: 

¨  Cross-entropy or deviance: 

n  Comments: 
¨  Differentiability 
¨  Sensitivity to changes in node probabilities 

¨  Often use Gini or cross-entropy for growing tree, and misclass. for pruning 
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FIGURE 9.3. Node impurity measures for two-class classification, as a function
of the proportion p in class 2. Cross-entropy has been scaled to pass through
(0.5, 0.5).

impurity measure Qm(T ) defined in (9.15), but this is not suitable for
classification. In a node m, representing a region Rm with Nm observations,
let

p̂mk =
1

Nm

∑

xi∈Rm

I(yi = k),

the proportion of class k observations in node m. We classify the obser-
vations in node m to class k(m) = argmaxk p̂mk, the majority class in
node m. Different measures Qm(T ) of node impurity include the following:

Misclassification error: 1
Nm

∑
i∈Rm

I(yi != k(m)) = 1− p̂mk(m).

Gini index:
∑

k "=k′ p̂mkp̂mk′ =
∑K

k=1 p̂mk(1− p̂mk).

Cross-entropy or deviance: −
∑K

k=1 p̂mk log p̂mk.
(9.17)

For two classes, if p is the proportion in the second class, these three mea-
sures are 1 − max(p, 1 − p), 2p(1 − p) and −p log p − (1 − p) log (1− p),
respectively. They are shown in Figure 9.3. All three are similar, but cross-
entropy and the Gini index are differentiable, and hence more amenable to
numerical optimization. Comparing (9.13) and (9.15), we see that we need
to weight the node impurity measures by the number NmL

and NmR
of

observations in the two child nodes created by splitting node m.
In addition, cross-entropy and the Gini index are more sensitive to changes

in the node probabilities than the misclassification rate. For example, in
a two-class problem with 400 observations in each class (denote this by
(400, 400)), suppose one split created nodes (300, 100) and (100, 300), while
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n  Impurity measures 
¨  Misclassification error: 

¨  Gini index: 

¨  Cross-entropy or deviance: 

n  Other interpretations of Gini index: 
¨  Instead of majority vote, classify observations to class k with prob. 

¨  Code each observation as 1 for class k and 0 otherwise 
n  Variance: 

n  Summing over k gives the Gini index 
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(0.5, 0.5).

impurity measure Qm(T ) defined in (9.15), but this is not suitable for
classification. In a node m, representing a region Rm with Nm observations,
let

p̂mk =
1

Nm

∑

xi∈Rm

I(yi = k),

the proportion of class k observations in node m. We classify the obser-
vations in node m to class k(m) = argmaxk p̂mk, the majority class in
node m. Different measures Qm(T ) of node impurity include the following:

Misclassification error: 1
Nm

∑
i∈Rm

I(yi != k(m)) = 1− p̂mk(m).

Gini index:
∑

k "=k′ p̂mkp̂mk′ =
∑K

k=1 p̂mk(1− p̂mk).

Cross-entropy or deviance: −
∑K

k=1 p̂mk log p̂mk.
(9.17)

For two classes, if p is the proportion in the second class, these three mea-
sures are 1 − max(p, 1 − p), 2p(1 − p) and −p log p − (1 − p) log (1− p),
respectively. They are shown in Figure 9.3. All three are similar, but cross-
entropy and the Gini index are differentiable, and hence more amenable to
numerical optimization. Comparing (9.13) and (9.15), we see that we need
to weight the node impurity measures by the number NmL

and NmR
of

observations in the two child nodes created by splitting node m.
In addition, cross-entropy and the Gini index are more sensitive to changes

in the node probabilities than the misclassification rate. For example, in
a two-class problem with 400 observations in each class (denote this by
(400, 400)), suppose one split created nodes (300, 100) and (100, 300), while

p̂mk
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Classification Tree Issues 
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n  Unordered categorical predictors 
¨  With unordered categorical predictors with q possible values, there are 

2q-1-1 possible choices of partition points to consider for each variable 
¨  For binary (0-1) outcomes, can order predictor classes according to 

proportion falling in outcome class 1 and then treat as ordered predictor 
n  Gives optimal split in terms of cross-entropy or Gini index 

¨  Also holds for quantitative outcomes and square-error loss…order 
predictors by increasing mean of the outcome 

¨  No results for multi-category outcomes 

n  Loss matrix 
¨  In some cases, certain misclassifications are worse than others 

¨  Introduce loss matrix …more on this soon 
¨  See Tibshirani, Hastie and Friedman for how to incorporate into CART 

Classification Tree Spam Example 

n  Example: predicting spam 

n  Data from UCI repository  

n  Response variable: email  or  spam 
n  57 predictors: 

¨  48 quantitative – percentage of words in email that match a give word such 
as “business”, “address”, “internet”,… 

¨  6 quantitative – percentage of characters in the email that match a given 
character ( ; , [ ! $ # ) 

¨  The average length of uninterrupted capital letters: CAPAVE 
¨  The length of the longest uninterrupted sequence of capital letters: CAPMAX 
¨  The sum of the length of uninterrupted sequences of capital letters: CAPTOT 

©Emily Fox 2013 36 
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n  Used cross-entropy to grow tree and misclassification to prune 

n  10-fold CV to choose tree size 
¨  CV indexed by λ 
¨  Sizes refer to 
¨  Error rate flattens out 

around a tree of size 17  

From Hastie, Tibshirani, Friedman book 
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FIGURE 9.4. Results for spam example. The blue curve is the 10-fold cross-val-
idation estimate of misclassification rate as a function of tree size, with standard
error bars. The minimum occurs at a tree size with about 17 terminal nodes (using
the “one-standard-error” rule). The orange curve is the test error, which tracks
the CV error quite closely. The cross-validation is indexed by values of α, shown
above. The tree sizes shown below refer to |Tα|, the size of the original tree indexed
by α.

However, if in addition the phrase hp occurs frequently, then this is likely
to be company business and we classify as email. All of the 22 cases in
the test set satisfying these criteria were correctly classified. If the second
condition is not met, and in addition the average length of repeated capital
letters CAPAVE is larger than 2.9, then we classify as spam. Of the 227 test
cases, only seven were misclassified.

In medical classification problems, the terms sensitivity and specificity
are used to characterize a rule. They are defined as follows:

Sensitivity: probability of predicting disease given true state is disease.

Specificity: probability of predicting non-disease given true state is non-
disease.

|T�|

Classification Tree Spam Example 

n  Resulting tree of size 17  

n  Note that there are 13 distinct covariates 
split on by the tree 
¨  11 of these overlap with the 16 significant 

predictors from the additive model 
previously explored 
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FIGURE 9.5. The pruned tree for the spam example. The split variables are
shown in blue on the branches, and the classification is shown in every node.The
numbers under the terminal nodes indicate misclassification rates on the test data.
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n  Resulting tree of size 17  

n  Note that there are 13 distinct covariates 
split on by the tree 
¨  11 of these overlap with the 16 significant 

predictors from the additive model 
previously explored 

n  Overall error rate (9.3%) is  
higher than for additive model 
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FIGURE 9.5. The pruned tree for the spam example. The split variables are
shown in blue on the branches, and the classification is shown in every node.The
numbers under the terminal nodes indicate misclassification rates on the test data.
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TABLE 9.3. Spam data: confusion rates for the 17-node tree (chosen by cross–
validation) on the test data. Overall error rate is 9.3%.

Predicted
True email spam

email 57.3% 4.0%
spam 5.3% 33.4%

can be viewed as a modification of CART designed to alleviate this lack of
smoothness.

Difficulty in Capturing Additive Structure

Another problem with trees is their difficulty in modeling additive struc-
ture. In regression, suppose, for example, that Y = c1I(X1 < t1)+c2I(X2 <
t2) + ε where ε is zero-mean noise. Then a binary tree might make its first
split on X1 near t1. At the next level down it would have to split both nodes
on X2 at t2 in order to capture the additive structure. This might happen
with sufficient data, but the model is given no special encouragement to find
such structure. If there were ten rather than two additive effects, it would
take many fortuitous splits to recreate the structure, and the data analyst
would be hard pressed to recognize it in the estimated tree. The “blame”
here can again be attributed to the binary tree structure, which has both
advantages and drawbacks. Again the MARS method (Section 9.4) gives
up this tree structure in order to capture additive structure.

9.2.5 Spam Example (Continued)

We applied the classification tree methodology to the spam example intro-
duced earlier. We used the deviance measure to grow the tree and mis-
classification rate to prune it. Figure 9.4 shows the 10-fold cross-validation
error rate as a function of the size of the pruned tree, along with ±2 stan-
dard errors of the mean, from the ten replications. The test error curve is
shown in orange. Note that the cross-validation error rates are indexed by
a sequence of values of α and not tree size; for trees grown in different folds,
a value of α might imply different sizes. The sizes shown at the base of the
plot refer to |Tα|, the sizes of the pruned original tree.
The error flattens out at around 17 terminal nodes, giving the pruned tree

in Figure 9.5. Of the 13 distinct features chosen by the tree, 11 overlap with
the 16 significant features in the additive model (Table 9.2). The overall
error rate shown in Table 9.3 is about 50% higher than for the additive
model in Table 9.1.

Consider the rightmost branches of the tree. We branch to the right
with a spam warning if more than 5.5% of the characters are the $ sign.

Classification Tree Spam Example 

What you need to know 

n  Classification trees are a straightforward modification to the 
regression tree setup 

n  Just need new definition of node impurity for growing and 
pruning tree 

n  Decision at the leaves is a simple majority-vote rule 
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Readings 

n  Wakefield – 10.3.2, 10.4.2, 12.8.4 
n  Hastie, Tibshirani, Friedman – 9.2.3, 9.2.5, 2.4 
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