

Basis Expansion Interpretation

Equivalent to a basis expansion

$$f(x) = \sum_{m=1}^{M} \beta_m h_m(x) \int_{\text{on (20)}}^{X_2} f(x) dx$$

In this example:

$$\begin{array}{c} h_1(x_1,x_2) = I(x_1 \leq t_1)I(x_2 \leq t_2) \\ h_2(x_1,x_2) = I(x_1 \leq t_1)I(x_2 > t_2) \\ h_3(x_1,x_2) = I(x_1 > t_1)I(x_1 \leq t_3) \\ h_4(x_1,x_2) = I(x_1 > t_1)I(x_1 > t_3)I(x_2 \leq t_4) \\ h_5(x_1,x_2) = I(x_1 > t_1)I(x_1 > t_3)I(x_2 > t_4) \\ \text{reduced tensor product spline w/ Step Can basis} \end{array}$$

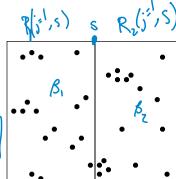
Choosing a Split Decision

- Starting with all of the data, consider splitting on variable j at point s
- Define

$$R_1(j,s) = \{x \mid x_j \le s\}$$

 $R_2(j,s) = \{x \mid x_j > s\}$

Our objective is

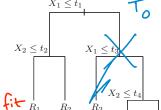


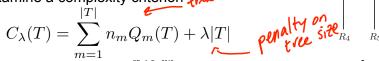
■ For any (*j*, *s*), the inner minimization is solved by

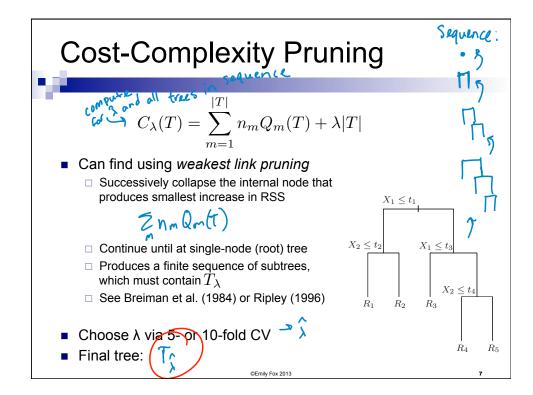
Cost-Complexity Pruning

- Searching over all subtrees and selecting using AIC or CV is not possible since there is an exponentially large set of subtrees > look at penalited RSS instead
- $\hbox{ Define a subtree } T\subset T_0 \hbox{ to be any tree obtained by pruning } T_0$

and |T| = # of leaf nodes $n_m = |\{\chi_i \in R_m\}|$ $\hat{\beta}_m = \lim_{n \to \infty} \sum_{i \in \mathbb{R}_n} \sum_{j \in \mathbb{R}_n}$







Issues

- Unordered categorical predictors
 - $\ \square$ With unordered categorical predictors with q possible values, there are 2^{q-1} -1 possible choices of partition points to consider for each variable
 - □ Prohibitive for large *q*
 - □ Can deal with this for binary *y*...will come back to this in "classification"
- Missing predictor values...how to cope?
 - Can discard
 - □ Can fill in, e.g., with mean of other variables
 - □ With trees, there are better approaches
 - -- Categorical predictors: make new category "missing"
 - -- Split on observed data. For every split, create an ordered list of "surrogate" splits (predictor/value) that create similar divides of the data. When examining observation with a missing predictor, when splitting on that dimension, use top-most surrogate that is available instead

©Emily Fox 201

Issues

Binary splits

- □ Could split into more regions at every node
- ☐ However, this more rapidly fragments the data leaving insufficient data and subsequent levels
- ☐ Multiway splits can be achieved via a sequence of binary splits, so binary splits are generally preferred

- Can exhibit high variance
- □ Small changes in the data → big changes in the tree
- □ Errors in the top split propagates all the way down
- □ Bagging averages many trees to reduce variance ... more ater

Inference

□ Hard...need to account for stepwise search algorithm

©Emily Fox 2013

Issues

Lack of smoothness

- ☐ Fits piecewise constant models...unlikely to believe this structure
- ☐ **MARS** address this issue (can view as modification to CART)

Clater this lecture

Difficulty in capturing additive structure

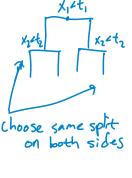
□ Imagine true structure is

$$y = \beta_1 I(x_1 < t_1) + \beta_2 I(x_2 < t_2) + \epsilon$$

□ No encouragement to find this structure

- hard w/o sufficient data

- this is just w/2 additive
effects. Harder to happen
or notice w/ more.

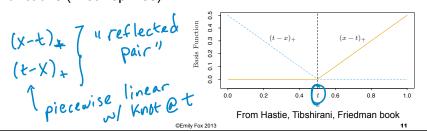


Multiple Adaptive Regression Splines

- MARS is an adaptive procedure for regression
 - □ Well-suited to high-dimensional covariate spaces

Can be viewed as:

- □ Generalization of step-wise linear regression
- Modification of CART
- Consider a basis expansion in terms of piecewise linear basis functions (linear splines)



Multiple Adaptive Regression Splines

Take knots at all observed
$$\mathbf{x}_{ij}$$

$$\mathcal{C} = \{(x_j - t)_+, (t - x_j)_+\}$$

- \Box If all locations are unique, then 2*n*d basis functions
- \Box Treat each basis function as a function on x, just varying with x_i

$$h_m(x) = (x_j - t)_+$$
 for example

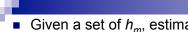
The resulting model has the form

Iting model has the form
$$f(x) = \beta_0 + \sum_{m=1}^M \beta_m h_m(x)$$

Built in a forward stepwise manner in terms of this basis

©Emily Fox 2013

MARS Forward Stepwise

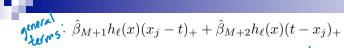


- Given a set of h_m , estimation of β_m proceeds as with any linear basis expansion (i.e., minimizing the RSS)
- How do we choose the set of h_m ?

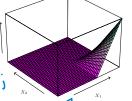
- Start with $h_0(x) = 1$ and M=0
- Consider product of all h_m in current model with reflected pairs in C -- Add terms of the form

- Increment M and repeat
- Stop when preset M is hit
- Typically end with a large (overfit) model, so backward delete
 - -- Remove term with smallest increase in RSS
 - -- Choose model based on generalized CV

MARS Forward Stepwise Example

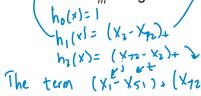


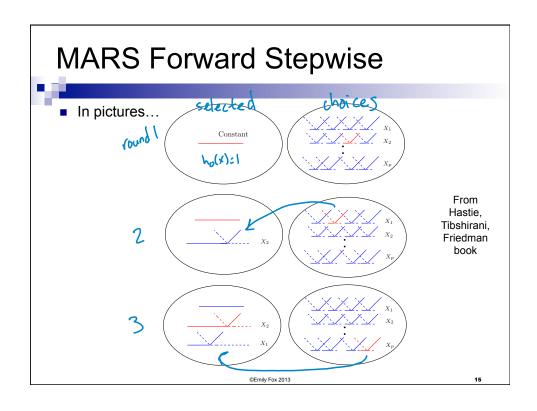
- At the first stage, add term of form $\beta_1(x_j-t)_+ + \beta_2(t-x_j)_+ \text{ with the optimal pair being}$



B, (X2-X72) + B, (X72-X2)+ Add pair to the model and then consider including a pair/like

 $\beta_3 h_m(x)(x_i - t)_+ + \beta_4 h_m(x)(t - x_i)_+$ with choices for h_m being:





Why MARS?

- Why these piecewise linear basis functions?
 - □ Ability to operate locally
 - When multiplied, non-zero only over small part of the input space
 - Resulting regression surface has local components and only where needed (spend parameters carefully in high dims)
 - □ Computations with linear basis are very efficient
 - Naively, we consider fitting n reflected pairs for each input x_j $\rightarrow O(n^2)$ operations
 - Can exploit simple form of piecewise linear function
 - Fit function with rightmost knot. As knot moves, basis functions differ by 0 over the left and by a constant over the right
 → Can try every knot in O(n)

©Emily Fox 2013

Why MARS?

- Why forward stagewise?
 - ☐ Hierarchical in that multiway products are built from terms already in model (e.g., 4-way product exists only if 3-way already existed)
 - ☐ Higher order interactions tend to only exist if some of the lower order interactions exist as well
 - □ Avoids search over exponentially large space

Notes:

- □ Each input can appear at most once in a product…Prevents formation of higher-order powers of an input
- □ Can place limit on order of interaction. That is, one can allow pairwise products, but not 3-way or higher.
- □ Limit of 1 → additive model

©Emily Fox 2013

Connecting MARS and CART

- MARS and CART have lots of similarities
- Take MARS procedure and make following modifications:
 - □ Replace piecewise linear with step functions

When a model term h_m is involved in a multiplication by a candidate term, replace it by the interaction and is not available for further interaction

Then, MARS forward procedure = CART tree-growing algorithm

Multiplying a step function by a pair of reflected step functions
 split node at the step

2nd restriction → node may not be split more than once (binary tree)

T

MARS doesn't force tree structure → can capture additive effects

©Emily Fox 2013

What you need to know

- Regression trees provide an adaptive regression method
- Fit constants (or simple models) to each region of a partition
- Relies on estimating a binary tree partition
 - □ Sequence of decisions of variables to split on and where
 - ☐ Grown in a greedy, forward-wise manner
 - □ Pruned subsequently
- Implicitly performs variable selection
- MARS is a modification to CART allowing linear fits

©Emily Fox 2013

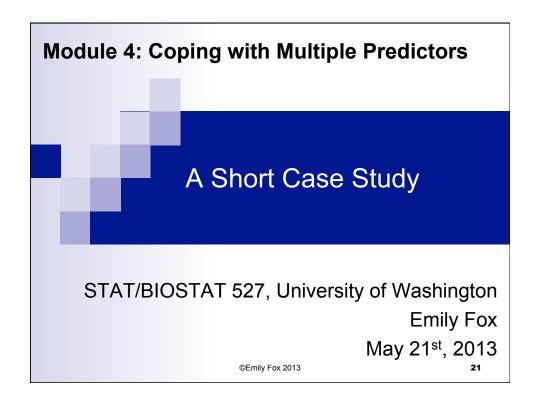
19

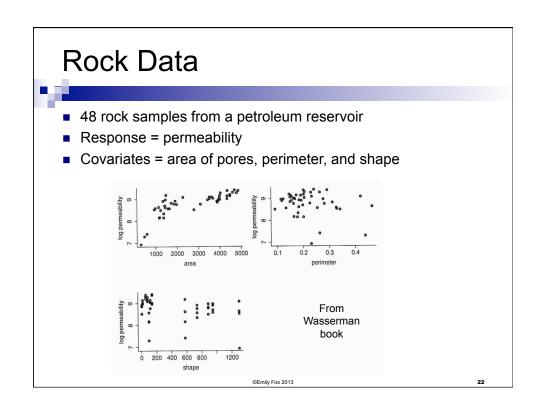
Readings

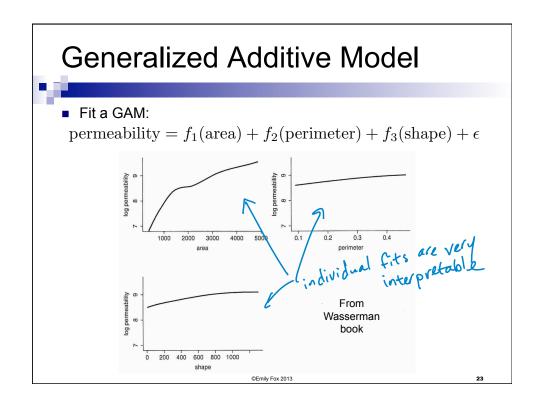
- Wakefield 12.7
- Hastie, Tibshirani, Friedman 9.2.1-9.2.2, 9.2.4, 9.4
- Wasserman 5.12

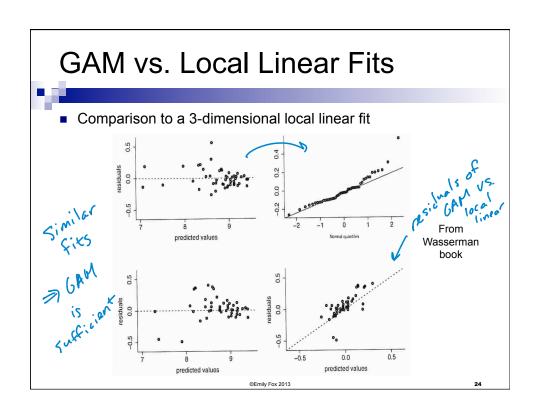
©Emily Fox 2013

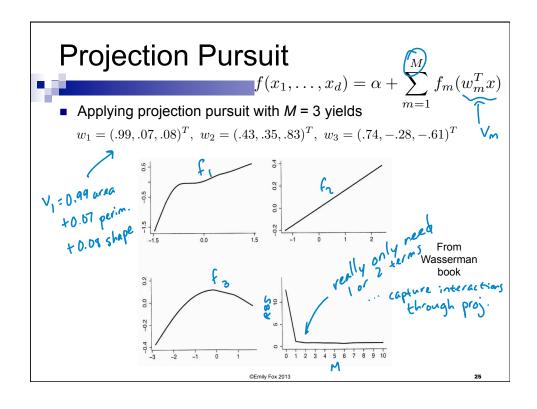
:0

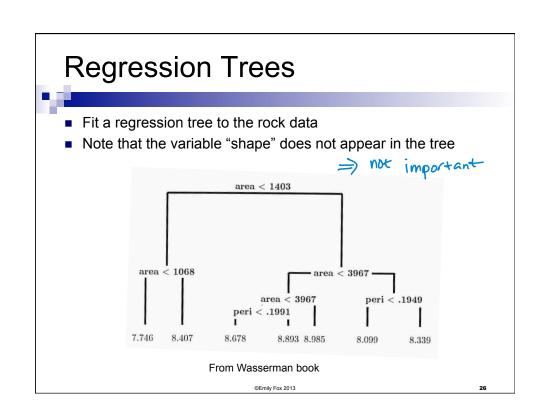


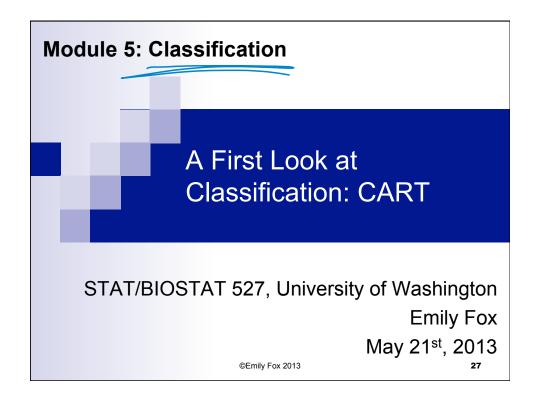


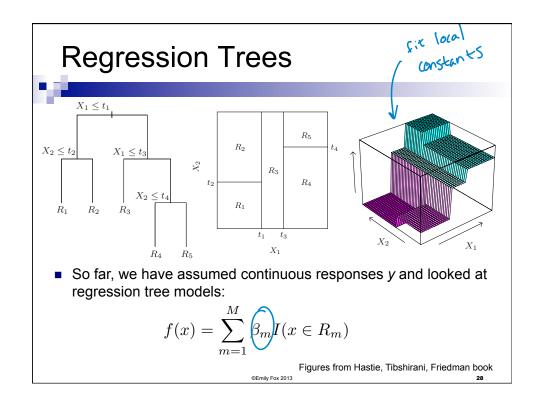












Classification Trees

What if our response y is categorical and our goal is

classification?

YE { 'email', Ispam' } > {0, 15}

**Classe S

**Core generally, y & {6, ..., 6 & } {1, ..., k}

**Can we still use these tree structures? Yes! classification?

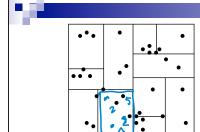
- Recall our node impurity measure

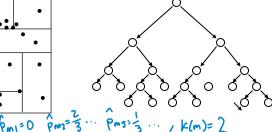
Recall our **node impurity** measure
$$Q_m(T) = \frac{1}{n_m} \sum_{\substack{x_i \in R_m \\ y_i \in R_m}} (y_i - \hat{\beta}_m)^2 \qquad \text{local PSS}$$
 to region of this for growing the tree
$$\prod_{\substack{y_i \in R_1(j,s) \\ y_i \in R_1(j,s)}} (y_i - \hat{\beta}_1)^2 + \sum_{\substack{x_i \in R_2(j,s) \\ x_i \in R_2(j,s)}} (y_i - \hat{\beta}_2)^2 \right]$$
 \square As well as pruning
$$C_{\lambda}(T) = \sum_{m=1}^{|T|} n_m Q_m(T) + \lambda |T|$$

$$\min_{j,s} \left[\sum_{x_i \in R_1(j,s)} (y_i - \hat{\beta}_1)^2 + \sum_{x_i \in R_2(j,s)} (y_i - \hat{\beta}_2)^2 \right]$$

- Clearly, squared-error is not the right metric for classification

Classification Trees





- First, what is our decision rule at each leaf?
 - □ Estimate probability of each class given data at leaf node:

$$\hat{p}_{mk} = \frac{1}{n_m} \sum_{\mathbf{x}_i \in \mathbf{R}_m} \mathbf{1}(\mathbf{y}_i = \mathbf{k})$$

Majority vote:

$$k(m) = \underset{\mathsf{k}}{\operatorname{arg}} \underset{\mathsf{k}}{\operatorname{max}} \hat{\mathsf{p}}_{\mathsf{mk}}$$

Figures from Andrew Moore kd-tree tutorial

Classification Trees

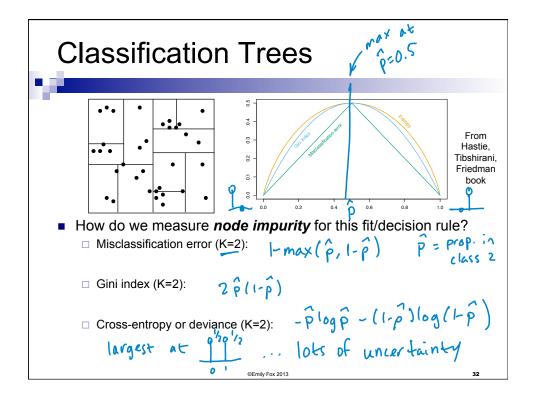
How do we measure node impurity for this fit/decision rule?
$$\mathbb{Q}_{m}(1)$$

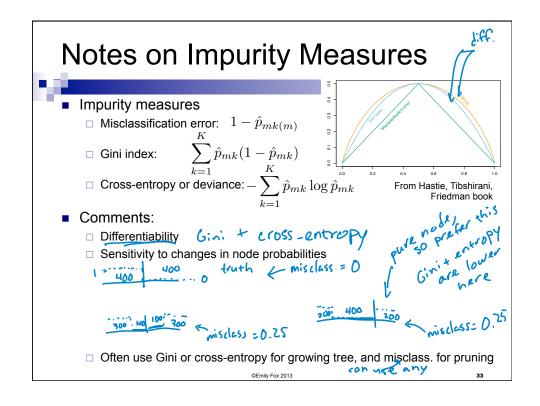
Misclassification error:

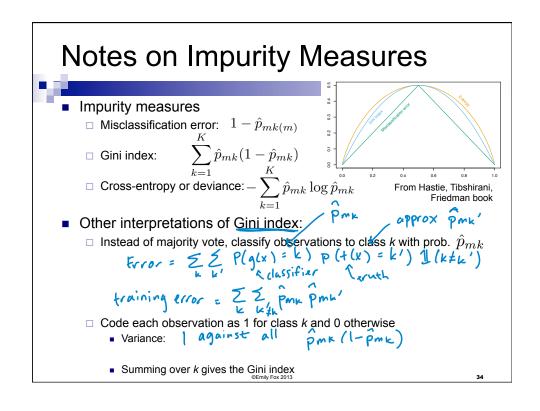
 $\mathbb{Q}_{m}(1)$

Gini index:

 $\mathbb{Q}_{m}(1)$
 $\mathbb{Q$







Classification Tree Issues

Unordered categorical predictors

- □ With unordered categorical predictors with q possible values, there are 2^{q-1} -1 possible choices of partition points to consider for each variable
- □ For binary (0-1) outcomes, can order predictor classes according to proportion falling in outcome class 1 and then treat as ordered predictor
 - Gives optimal split in terms of cross-entropy or Gini index
- Also holds for quantitative outcomes and square-error loss...order predictors by increasing mean of the outcome
- □ No results for multi-category outcomes

Loss matrix

- In some cases, certain misclassifications are worse than others
- ☐ Introduce *loss matrix* ...more on this soon
- □ See Tibshirani, Hastie and Friedman for how to incorporate into CART

©Emily Fox 2013

35

Classification Tree Spam Example

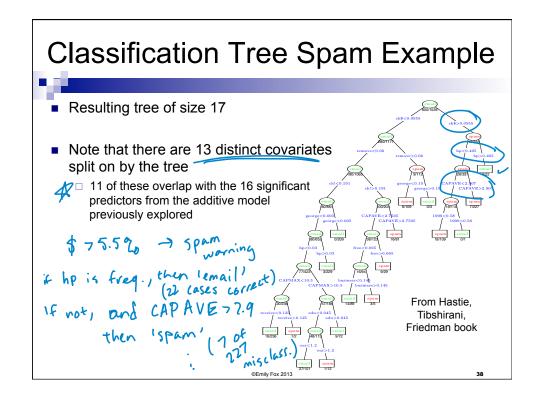
Example: predicting spam

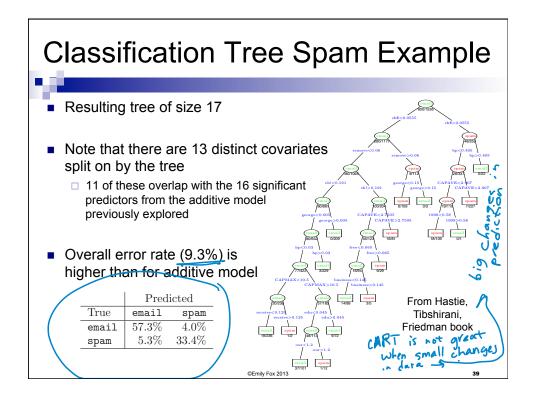
Labked at w/ GAMs

- Data from UCI repository ∂
- Response variable: email or spam
- 57 predictors:
 - □ 48 quantitative percentage of words in email that match a give word such as "business", "address", "internet",...
 - 6 quantitative percentage of characters in the email that match a given character (;, [! \$ #)
 - □ The average length of uninterrupted capital letters: CAPAVE
 - □ The length of the longest uninterrupted sequence of capital letters: CAPMAX
 - ☐ The sum of the length of uninterrupted sequences of capital letters: CAPTOT

©Emily Fox 2013

Classification Tree Spam Example Used cross-entropy to grow tree and misclassification to prune 10-fold CV to choose tree size CV indexed by λ Sizes refer to $|T_{\lambda}|$ Error rate flattens out around a tree of size 17 From Hastie, Tibshiram, Friedman book





What you need to know

- Classification trees are a straightforward modification to the regression tree setup
- Just need new definition of node impurity for growing and pruning tree
- Decision at the leaves is a simple majority-vote rule

©Emily Fox 2013

Readings

- Wakefield 10.3.2, 10.4.2, 12.8.4
- Hastie, Tibshirani, Friedman 9.2.3, 9.2.5, 2.4

©Emily Fox 2013