Module 4: Coping with Multiple Predictors

STAT/BIOSTAT 527, University of Washington
Emily Fox
May $21^{\text {st }}, 2013$

Recursive Binary Partitions

- To simplify the process and interpretability, consider recursive binary partitions
- Described via a rooted tree
\square Every node of the tree corresponds to split -decision
\square Leaves contain a subset of the data that satisfy the conditions
- all conditions on path from root to leaf
- think of pinball falling to leaf

Figures from Andrew Moore kd-tree tutorial

Resulting Model

Basis Expansion Interpretation

- Equivalent to a basis expansion

$$
f(x)=\sum_{m=1}^{M} \beta_{m} h_{m}(x) \underbrace{\text { in regors }}_{i n d i c a t o r s} \text { ons }
$$

- In this example:

$$
\begin{aligned}
& h_{1}\left(x_{1}, x_{2}\right)=I\left(x_{1} \leq t_{1}\right) I\left(x_{2} \leq t_{2}\right) \\
& h_{2}\left(x_{1}, x_{2}\right)\left.=\widetilde{I\left(x_{1} \leq t_{1}\right) I\left(x_{2}>t_{2}\right.}\right) \\
& h_{3}\left(x_{1}, x_{2}\right)=I\left(x_{1}>t_{1}\right) I\left(x_{1} \leq t_{3}\right) \\
& h_{4}\left(x_{1}, x_{2}\right)=I\left(x_{1}>t_{1}\right) I\left(x_{1}>t_{3}\right) I\left(x_{2} \leq t_{4}\right) \\
& h_{5}\left(x_{1}, x_{2}\right)=I\left(x_{1}>t_{1}\right) I\left(x_{1}>t_{3}\right) I\left(x_{2}>t_{4}\right) \\
& r e d u c e d ~ t e n s o r ~ p r o d u c t ~ s p l i n e ~ w / ~ s t e p ~ f e n ~ b a s i s ~ \\
& \text { eemilverox013 }
\end{aligned}
$$

Choosing a Split Decision

- Starting with all of the data, consider splitting on variable j at point s
- Define

$$
\begin{aligned}
& R_{1}(j, s)=\left\{x \mid x_{j} \leq s\right\} \\
& R_{2}(j, s)=\left\{x \mid x_{j}>s\right\}
\end{aligned}
$$

- Our objective is
$\min _{j, S}\left[\min _{\beta_{1}} \sum_{\left.x_{i} \in R_{1}, j, s\right)}\left(y_{i}-\beta_{1}\right)^{2}+\min _{\beta_{2}} \sum\left(y_{i}-\beta_{i} R_{2}\right)^{2}(j, s)\right]$

- For any (j, s), the inner minimization is solved by

$$
\hat{\beta}_{k}=\operatorname{avg}\left(y_{i} \mid x_{i} \in R_{k}(j, s)\right) \quad k=1,2
$$

Cost-Complexity Pruning

- Searching over all subtrees and selecting using AIC or CV is not possible since there is an exponentially large set of subtrees \rightarrow look at penalized RSS instead
- Define a subtree $T \subset T_{0}$ to be any tree obtained by pruning T_{0} prune = collapse an internal node
$\underset{\text { and }}{\text { andic }}|T|=\#$ of leaf nodes
$n_{m}=\left|\left\{x_{i} \in R_{m}\right\}\right|$
$\hat{\beta}_{m}=\frac{1}{n_{m}} \sum_{x_{i} \in R_{m}} y_{i}$
$Q_{m}(T)=\frac{1}{n_{m}} \sum_{x i \in R_{m}}\left(y_{i}-\hat{\beta}_{m}\right)^{2}$
- We examine an complexity criterion

$$
C_{\lambda}(T)=\sum_{m=1}^{|T|} n_{m} Q_{m}(T)+\lambda|T|
$$

Cost-Complexity Pruning

- Can find using weakest link pruning
\square Successively collapse the internal node that produces smallest increase in RSS

$$
\sum_{m} n_{m} Q_{m}(T)
$$

\square Continue until at single-node (root) tree
\square Produces a finite sequence of subtrees, which must contain T_{λ}
\square See Breiman et al. (1984) or Ripley (1996)

- Choose λ via 5 - or 10 -fold $\mathrm{CV} \rightarrow \hat{\lambda}$
- Final tree: $T_{\hat{\lambda}}$

Issues

- Unordered categorical predictors
\square With unordered categorical predictors with q possible values, there are $2^{q-1}-1$ possible choices of partition points to consider for each variableProhibitive for large q
\square Can deal with this for binary $y \ldots$ will come back to this in "classification"
- Missing predictor values...how to cope?
\square Can discard
\square Can fill in, e.g., with mean of other variables
\square With trees, there are better approaches
-- Categorical predictors: make new category "missing"
-- Split on observed data. For every split, create an ordered list of "surrogate" splits (predictor/value) that create similar divides of the data. When examining observation with a missing predictor, when splitting on that dimension, use top-most surrogate that is available instead

Issues

- Binary splits
\square Could split into more regions at every node
\square However, this more rapidly fragments the data leaving insufficient data and subsequent levels
\square Multiway splits can be achieved via a sequence of binary splits, so binary splits are generally preferred
- Instability
\square Can exhibit high variance
\square Small changes in the data \rightarrow big changes in the tree
\square Errors in the top split propagates all the way down
\square Bagging averages many trees to reduce variance
- Inference
\square Hard...need to account for stepwise search algorithm

Issues

- Lack of smoothness
\square Fits piecewise constant models...unlikely to believe this structure
\square MARS address this issue (can view as modification to CART)
- Difficulty in capturing additive structure
\square Imagine true structure is

$$
y=\beta_{1} I\left(x_{1}<t_{1}\right)+\beta_{2} I\left(x_{2}<t_{2}\right)+\epsilon
$$

\square No encouragement to find this structure

Multiple Adaptive Regression Splines

- MARS is an adaptive procedure for regression
\square Well-suited to high-dimensional covariate spaces
- Can be viewed as:
\square Generalization of step-wise linear regression
\square Modification of CART
- Consider a basis expansion in terms of piecewise linear basis functions (linear splines)

Multiple Adaptive Regression Splines

- Take knots at all observed $x_{i j}$

$$
\mathcal{C}=\left\{\left(x_{j}-t\right)_{+},\left(t-x_{j}\right)_{+}\right\}
$$

\square If all locations are unique, then $2^{*} n^{*} d$ basis functions
\square Treat each basis function as a function on x, just varying with x_{j}

$$
h_{m}(x)=
$$

- The resulting model has the form

$$
f(x)=\beta_{0}+\sum_{m=1}^{M} \beta_{m} h_{m}(x)
$$

- Built in a forward stepwise manner in terms of this basis

MARS Forward Stepwise

- Given a set of h_{m}, estimation of β_{m} proceeds as with any linear basis expansion (i.e., minimizing the RSS)
- How do we choose the set of h_{m} ?

1. Start with $h_{0}(x)=1$ and $M=0$
2. Consider product of all h_{m} in current model with reflected pairs in C
-- Add terms of the form

$$
\hat{\beta}_{M+1} h_{\ell}(x)\left(x_{j}-t\right)_{+}+\hat{\beta}_{M+2} h_{\ell}(x)\left(t-x_{j}\right)_{+}
$$

-- Select the one that decreases the training error most
3. Increment M and repeat
4. Stop when preset M is hit
5. Typically end with a large (overfit) model, so backward delete
-- Remove term with smallest increase in RSS
-- Choose model based on generalized CV

MARS Forward Stepwise Example

$$
\hat{\beta}_{M+1} h_{\ell}(x)\left(x_{j}-t\right)_{+}+\hat{\beta}_{M+2} h_{\ell}(x)\left(t-x_{j}\right)_{+}
$$

- At the first stage, add term of form
$\beta_{1}\left(x_{j}-t\right)_{+}+\beta_{2}\left(t-x_{j}\right)_{+}$
with the optimal pair being

- Add pair to the model and then consider including a pair like

$$
\beta_{3} h_{m}(x)\left(x_{j}-t\right)_{+}+\beta_{4} h_{m}(x)\left(t-x_{j}\right)_{+}
$$

with choices for h_{m} being:

Why MARS?

- Why these piecewise linear basis functions?
\square Ability to operate locally
- When multiplied, non-zero only over small part of the input space
- Resulting regression surface has local components and only where needed (spend parameters carefully in high dims)
\square Computations with linear basis are very efficient
- Naively, we consider fitting n reflected pairs for each input x_{j} $\rightarrow O\left(n^{2}\right)$ operations
- Can exploit simple form of piecewise linear function
- Fit function with rightmost knot. As knot moves, basis functions differ by 0 over the left and by a constant over the right \rightarrow Can try every knot in $O(n)$

Why MARS?

- Why forward stagewise?
\square Hierarchical in that multiway products are built from terms already in model (e.g., 4-way product exists only if 3-way already existed)
\square Higher order interactions tend to only exist if some of the lower order interactions exist as well
\square Avoids search over exponentially large space
- Notes:
\square Each input can appear at most once in a product...Prevents formation of higher-order powers of an input
\square Can place limit on order of interaction. That is, one can allow pairwise products, but not 3-way or higher.
\square Limit of $1 \rightarrow$ additive model

Connecting MARS and CART

- MARS and CART have lots of similarities
- Take MARS procedure and make following modifications:
\square Replace piecewise linear with step functions
\square When a model term h_{m} is involved in a multiplication by a candidate term, replace it by the interaction and is not available for further interaction
- Then, MARS forward procedure = CART tree-growing algorithm
\square Multiplying a step function by a pair of reflected step functions
= split node at the step
$\square 2^{\text {nd }}$ restriction \rightarrow node may not be split more than once (binary tree)
- MARS doesn't force tree structure \rightarrow can capture additive effects

What you need to know

- Regression trees provide an adaptive regression method
- Fit constants (or simple models) to each region of a partition
- Relies on estimating a binary tree partition
\square Sequence of decisions of variables to split on and where
\square Grown in a greedy, forward-wise manner
\square Pruned subsequently
- Implicitly performs variable selection
- MARS is a modification to CART allowing linear fits

Readings

- Wakefield - 12.7

■ Hastie, Tibshirani, Friedman - 9.2.1-9.2.2, 9.2.4, 9.4
■ Wasserman - 5.12

Module 4: Coping with Multiple Predictors

A Short Case Study

STAT/BIOSTAT 527, University of Washington Emily Fox
May 21 ${ }^{\text {st }}, 2013$

Rock Data

- 48 rock samples from a petroleum reservoir
- Response = permeability
- Covariates = area of pores, perimeter, and shape

Generalized Additive Model

- Fit a GAM:
permeability $=f_{1}($ area $)+f_{2}($ perimeter $)+f_{3}($ shape $)+\epsilon$

From
Wasserman book

GAM vs. Local Linear Fits

- Comparison to a 3-dimensional local linear fit

From Wasserman
book

Projection Pursuit

$$
f\left(x_{1}, \ldots, x_{d}\right)=\alpha+\sum_{m=1}^{M} f_{m}\left(w_{m}^{T} x\right)
$$

- Applying projection pursuit with $M=3$ yields $w_{1}=(.99, .07, .08)^{T}, w_{2}=(.43, .35, .83)^{T}, w_{3}=(.74,-.28,-.61)^{T}$

From Wasserman book

Regression Trees

- Fit a regression tree to the rock data
- Note that the variable "shape" does not appear in the tree

Module 5: Classification

A First Look at Classification: CART

STAT/BIOSTAT 527, University of Washington Emily Fox
May $21^{\text {st }}, 2013$

Regression Trees

- So far, we have assumed continuous responses y and looked at regression tree models:

$$
f(x)=\sum_{m=1}^{M} \beta_{m} I\left(x \in R_{m}\right)
$$

Classification Trees

- What if our response y is categorical and our goal is classification?
- Can we still use these tree structures?
- Recall our node impurity measure

$$
Q_{m}(T)=\frac{1}{n_{m}} \sum_{x_{i} \in R_{m}}\left(y_{i}-\hat{\beta}_{m}\right)^{2}
$$

\square Used this for growing the tree

$$
\min _{j, s}\left[\sum_{x_{i} \in R_{1}(j, s)}\left(y_{i}-\hat{\beta}_{1}\right)^{2}+\sum_{x_{i} \in R_{2}(j, s)}\left(y_{i}-\hat{\beta}_{2}\right)^{2}\right]
$$

\square As well as pruning $C_{\lambda}(T)=\sum_{m=1}^{|T|} n_{m} Q_{m}(T)+\lambda|T|$

- Clearly, squared-error is not the right metric for classification

Classification Trees

- First, what is our decision rule at each leaf?
\square Estimate probability of each class given data at leaf node:

$$
\hat{p}_{m k}=
$$

\square Majority vote:
$k(m)=$

Classification Trees

- How do we measure node impurity for this fit/decision rule?
\square Misclassification error:Gini index:Cross-entropy or deviance:

Classification Trees

- How do we measure node impurity for this fit/decision rule?
\square Misclassification error ($\mathrm{K}=2$):
\square Gini index $(\mathrm{K}=2)$:
\square Cross-entropy or deviance (K=2):

Notes on Impurity Measures

- Impurity measures
\square Misclassification error: $1-\hat{p}_{m k(m)}$
\square Gini index:

$$
\sum_{k=1}^{K} \hat{p}_{m k}\left(1-\hat{p}_{m k}\right)
$$

\square Cross-entropy or deviance: $-\sum_{k=1}^{K} \hat{p}_{m k} \log \hat{p}_{m k}$ Friedman book

- Comments:
\square Differentiability
\square Sensitivity to changes in node probabilities
\square Often use Gini or cross-entropy for growing tree, and misclass. for pruning

Notes on Impurity Measures

- Impurity measures
\square Misclassification error: $1-\hat{p}_{m k(m)}$
\square Gini index:

\square Cross-entropy or deviance: $-\sum_{k=1}^{K} \hat{p}_{m k} \log \hat{p}_{m k}$
From Hastie, Tibshirani, Friedman book
- Other interpretations of Gini index:
\square Instead of majority vote, classify observations to class k with prob. $\hat{p}_{m k}$
\square Code each observation as 1 for class k and 0 otherwise
- Variance:
- Summing over k gives the Gini index

Classification Tree Issues

- Unordered categorical predictors
\square With unordered categorical predictors with q possible values, there are $2^{q-1}-1$ possible choices of partition points to consider for each variable
\square For binary (0-1) outcomes, can order predictor classes according to proportion falling in outcome class 1 and then treat as ordered predictor
- Gives optimal split in terms of cross-entropy or Gini index
\square Also holds for quantitative outcomes and square-error loss...order predictors by increasing mean of the outcome
\square No results for multi-category outcomes
- Loss matrix
\square In some cases, certain misclassifications are worse than others
\square Introduce loss matrix ...more on this soon
\square See Tibshirani, Hastie and Friedman for how to incorporate into CART

Classification Tree Spam Example

- Example: predicting spam
- Data from UCI repository
- Response variable: email or spam
- 57 predictors:
$\square 48$ quantitative - percentage of words in email that match a give word such as "business", "address", "internet",...
$\square 6$ quantitative - percentage of characters in the email that match a given character (; , [!\$\#)
\square The average length of uninterrupted capital letters: CAPAVE
\square The length of the longest uninterrupted sequence of capital letters: CAPMAX
\square The sum of the length of uninterrupted sequences of capital letters: CAPTOT

Classification Tree Spam Example

- Used cross-entropy to grow tree and misclassification to prune
- 10-fold CV to choose tree size
$\square \mathrm{CV}$ indexed by λ
\square Sizes refer to $\left|T_{\lambda}\right|$
\square Error rate flattens out around a tree of size 17

From Hastie, Tibshirani, Friedman book ©Emily Fox 2013

Classification Tree Spam Example

- Resulting tree of size 17
- Note that there are 13 distinct covariates split on by the tree
$\square 11$ of these overlap with the 16 significant predictors from the additive model previously explored

Classification Tree Spam Example

- Resulting tree of size 17
- Note that there are 13 distinct covariates split on by the tree
$\square 11$ of these overlap with the 16 significant predictors from the additive model previously explored
- Overall error rate (9.3\%) is higher than for additive model

	Predicted	
True	email	spam
email	57.3%	4.0%
spam	5.3%	33.4%

What you need to know

- Classification trees are a straightforward modification to the regression tree setup
- Just need new definition of node impurity for growing and pruning tree
- Decision at the leaves is a simple majority-vote rule

Module 5: Classification

Basic Concepts: Risk and Measures of Predictive Accuracy

STAT/BIOSTAT 527, University of Washington
Emily Fox
May 21 ${ }^{\text {st }}, 2013$

The Optimal Prediction

- Assume we know the data-generating mechanism
- If our task is prediction, which summary of the distribution $Y \mid x$ should we report?
For x, what f en $f(x)$ should we choose to predict Y if we can choose any $f($.
- Taking a decision-theoretic framework, consider the expected loss

Continuous Responses

- Expected loss $E_{X}\left\{E_{Y \mid X}[L(Y, f(x)) \mid X=x]\right\}$
- Example: $L_{2} \quad L(Y, f(x))=(y-f(x))^{2}$

Solution: $\hat{f}(x)=E[Y \mid x]$

- Example: $L_{1} \quad L(Y, f(x))=|Y-f(x)|$

Solution: $\hat{f}(x)=$ median $(Y \mid x)$

- More generally: $L_{p} \quad L(Y, f(x))=\left\{\int|Y-F(x)|^{p}\right\}^{1 / p}$

Categorical Responses

- Expected loss $E_{X}\left\{E_{Y \mid X}[L(Y, g(x)) \mid X=x]\right\}$
- Response:
- Same setup, but need new loss function
- Can always represent loss function with $K \times K$ matrix
- L is zeros on the diagonal and non-negative elsewhere
- Typical loss function:

Optimal Prediction

- Expected loss
$E_{X}\left\{E_{Y \mid X}[L(Y, g(x)) \mid X=x]\right\}=$
- Again, can minimize pointwise

$$
\hat{g}(x)=
$$

\square Example: $K=2$

Optimal Prediction

$$
\hat{g}(x)=\arg \min _{g} \sum_{k=1}^{K} L\left(\mathcal{G}_{k}, g\right) \operatorname{Pr}\left(\mathcal{G}_{k} \mid X=x\right)
$$

- With 0-1 loss, we straightforwardly get the Bayes classifier

$$
\hat{g}(x)=
$$

Optimal Prediction

$$
\hat{g}(x)=\mathcal{G}_{k} \quad \text { if } \quad \operatorname{Pr}\left(\mathcal{G}_{k} \mid X=x\right)=\max _{g} \operatorname{Pr}(g \mid X=x)
$$

- How to approximate the optimal prediction?
\square Don't actually have $p(Y \mid X=x)$
- Nearest neighbor approach
\square Look at k-nearest neighbors with majority vote to estimate

Optimal Prediction

$\hat{g}(x)=\mathcal{G}_{k} \quad$ if $\quad \operatorname{Pr}\left(\mathcal{G}_{k} \mid X=x\right)=\max _{g} \operatorname{Pr}(g \mid X=x)$

- How to approximate the optimal prediction?
\square Don't actually have $p(Y \mid X=x)$
- Model-based approach
\square Introduce indicators for each class:
\square Consider squared-error loss: $\hat{f}(X)=E[Y \mid X]$

Bayes classifier is equivalent to standard regression and L_{2} loss,
followed by classification to largest fitted value
\square Works in theory, but not in practice...Will look at many other approaches (e.g., logistic regression)

Measuring Accuracy of Classifier

- For a given classifier, how do we assess how well it performs?
- For 0-1 loss, the generalization error is
with empirical estimate
- Consider binary response and some useful summaries

Measuring Accuracy of Classifier

- Sensitivity:
- Specificity:
- False positive rate:
- True positive rate:
- Connections:

Classification Tree Spam Example

- Resulting tree of size 17
- Note that there are 13 distinct covariates split on by the tree
$\square 11$ of these overlap with the 16 significant predictors from the additive model previously explored
- Overall error rate (9.3\%) is higher than for additive model

	Predicted	
True	email	spam
email	57.3%	4.0%
spam	5.3%	33.4%

Classification Tree Spam Example

- Think of spam and email as presence and absence of disease
- Using equal losses
\square Sensitivity =

	Predicted	
True	email	spam
email	57.3%	4.0%
spam	5.3%	33.4%

From Hastie, Tibshirani, Friedman book

- By varying L_{01} and L_{10}, can increase/decrease sensitivity and decrease/increase specificity of rule
- Which do we want here?
- How?
- Change in rule at leaf:

ROC Curves

Receiver operating characteristic (ROC) curve summarizes tradeoff between sensitivity and specificity
\square Plot of sensitivity vs. specificity as a function of params of classification rule

- Example: vary L_{01} in $[0.1,10]$
\square Want specificity near 100%, but in this case sensitivity drops to about 50%
- Summary = area under the curve
\square Tree $=0.95$
$\square \mathrm{GAM}=0.98$
- Instead of Bayes rule at leaf, better to account for unequal losses in constructing tree

From Hastie, Tibshirani, Friedman book

What you need to know

Again, goal framed as minimizing expected loss

- Loss here is summarized by $K \times K$ matrix L
\square Common choice $=0-1$ loss
- Bayes classifier chooses most probable class
- Measures of predictive performance:
\square Sensitivity, specificity, true positive rate, false positive rate
\square ROC curve and area under the curve

Readings

- Wakefield - 10.3.2, 10.4.2, 12.8.4
- Hastie, Tibshirani, Friedman - 9.2.3, 9.2.5, 2.4

