Module 4: Coping with Multiple Predictors

Multidimensional Kernel Methods

STAT/BIOSTAT 527, University of Washington
Emily Fox
May $16^{\text {th }}, 2013$

Kernel Density Estimation

- Kernel methods are often used for density estimation (actually, classical origin)
- Assume random sample

- Choice \#1: empirical estimate?

$$
\hat{p}=\frac{1}{n} \sum \delta_{x_{i}}
$$ \hat{p}

- Choice \#2: as before, maybe we should use an estimator

- Choice \#3: again, consider kernel weightings instead

$$
\hat{p}\left(x_{0}\right)=\frac{1}{n \lambda} \sum K_{\lambda}\left(x_{0}, x_{i}\right) \quad \begin{gathered}
\text { parzen } \\
\text { est. }
\end{gathered}
$$

Kernel Density Estimation

- Popular choice $=$ Gaussian kernel \rightarrow Gaussian KDE

$$
\begin{aligned}
\hat{p} & =\frac{1}{n} \sum_{i=1}^{n} \phi_{\lambda}\left(x-x_{i}\right) \\
& =\left(\hat{p}_{\lambda}\right.
\end{aligned}
$$

Multivariate KDE

- In 1d

$$
\hat{p}\left(x_{0}\right)=\frac{1}{n \lambda} \sum_{i=1}^{n} K_{\lambda}\left(x_{0}, x_{i}\right)
$$

- In R^{d}, assuming a product kernel,

$$
\hat{p}\left(x_{0}\right)=\frac{1}{n \lambda_{1} \cdots \lambda_{d}} \sum_{i=1}^{n}\left\{\prod_{j=1}^{d} K_{\lambda_{j}}\left(x_{0 j}, x_{i j}\right)\right\}
$$

- Typical choice $=$ Gaussian RBF

Multivariate KDE

$$
\hat{p}\left(x_{0}\right)=\frac{1}{n \lambda_{1} \cdots \lambda_{d}} \sum_{i=1}^{n}\left\{\prod_{j=1}^{d} K_{\lambda_{j}}\left(x_{0 j}, x_{i j}\right)\right\}
$$

- Risk grows as $O\left(n^{-4 /(4+\mathrm{d})}\right)$
- Example: To ensure relative MSE <0.1 at 0 when the density is a multivariate norm and optimal bandwidth is chosen
- Always report confidence bands, which get wide with d

Multivariate KDE Example

- Data on 6 characteristics of aircraft (Bowman and Azzalini 1998)
- Examine first 2 principle components of the data
- Perform KDE with independent kernels

Multivariate KDE Example

- Data on 6 characteristics of aircraft (Bowman and Azzalini 1998)
- Examine first 2 principle components of the data
- Perform KDE with independent kernels

Module 4: Coping with Multiple Predictors

Regression Trees

STAT/BIOSTAT 527, University of Washington Emily Fox
May $16^{\text {th }}, 2013$

Regression Trees Overview

- An alternative adaptive regression technique
\square Conceptually simple
\square Powerful
- Partition the covariate space into regions and then fit a simple model in each (e.g., constant)
- How to partition?

X_{1}

x_{1}

Recursive Binary Partitions

- To simplify the process and interpretability, consider recursive binary partitions
- Described via a rooted tree
\square Every node of the tree corresponds to split decision
\square Leaves contain a subset of the data that satisfy the conditions

Recursive Binary Partitions

Pt	x_{1}	x_{2}
1	0.00	0.00
2	1.00	4.31
3	0.13	2.85
\ldots	\ldots	\ldots

- Start with a list of d-dimensional points.

Recursive Binary Partitions

- Split the points into 2 groups by:
\square Choosing dimension d_{j} and value t_{j} (methods to be discussed...)
\square Separating the points into $x_{i d_{j}}>t_{j}$ and $x_{i d_{j}}<=t_{j}$.

Recursive Binary Partitions

- Consider each group separately and possibly split again (along same/different dimension).
\square Stopping criterion to be discussed...

Recursive Binary Partitions

- Consider each group separately and possibly split again (along same/different dimension).

Stopping criterion to be discussed...

Recursive Binary Partitions

- Continue splitting points in each set
\square creates a binary tree structure
- Each leaf node contains a list of points

Resulting Model

- Model the response as constant within each region

$$
f(x)=\sum_{m=1}^{M} \beta_{m} I\left(x \in R_{m}\right)
$$

Basis Expansion Interpretation

- Equivalent to a basis expansion

$$
f(x)=\sum_{m=1}^{M} \beta_{m} h_{m}(x)
$$

- In this example:

$$
\begin{aligned}
h_{1}\left(x_{1}, x_{2}\right) & =I\left(x_{1} \leq t_{1}\right) I\left(x_{2} \leq t_{2}\right) \\
h_{2}\left(x_{1}, x_{2}\right) & =I\left(x_{1} \leq t_{1}\right) I\left(x_{2}>t_{2}\right) \\
h_{3}\left(x_{1}, x_{2}\right) & =I\left(x_{1}>t_{1}\right) I\left(x_{1} \leq t_{3}\right) \\
h_{4}\left(x_{1}, x_{2}\right) & =I\left(x_{1}>t_{1}\right) I\left(x_{1}>t_{3}\right) I\left(x_{2} \leq t_{4}\right) \\
h_{5}\left(x_{1}, x_{2}\right) & =I\left(x_{1}>t_{1}\right) I\left(x_{1}>t_{3}\right) I\left(x_{2}>t_{4}\right)
\end{aligned}
$$

Questions on Building the Tree

- Which variable should we split on?
- What threshold value should we consider?
- When should we stop the process?

Building the Tree

$$
f(x)=\sum_{m=1}^{M} \beta_{m} I\left(x \in R_{m}\right)
$$

- Assume the partition $\left(R_{1}, \ldots R_{M}\right)$ is given
- If criterion is to minimize RSS, then

$$
\hat{\beta}_{m}=
$$

- How do we find the partition $\left(R_{1}, \ldots R_{M}\right)$?
\square Finding the optimal tree that minimizes RSS is generally computationally infeasible
Consider a greedy algorithm instead

Choosing a Split Decision

- Starting with all of the data, consider splitting on variable j at point s
- Define

$$
\begin{aligned}
& R_{1}(j, s)=\left\{x \mid x_{j} \leq s\right\} \\
& R_{2}(j, s)=\left\{x \mid x_{j}>s\right\}
\end{aligned}
$$

- Our objective is

- For any (j, s), the inner minimization is solved by

Choosing a Split Decision

- Max of $d(n-1)$ partitions to consider
- So, determining (j, s) is feasible

Choosing a Split Decision

- Conditioning on the best split just found, we recurse on each of the two regions
- Repeat on all resulting regions
- When do we stop recursing?

How Large of a Tree?

- Large tree, like partitioning until each node has one observation \rightarrow
- Small tree \rightarrow
- Tree size is a tuning parameter that governs model complexity
\square Optimal tree size should be chosen adaptively from the data
- Stopping criterion
\square Stop when decrease in RSS due to a split falls below some threshold

Stop when a minimum node size (e.g., 5) is reached. Go back and prune.

Cost-Complexity Pruning

- Searching over all subtrees and selecting using AIC or CV is not possible since there is an exponentially large set of subtrees \rightarrow
- Define a subtree $T \subset T_{0}$ to be any tree obtained by pruning T_{0}
and $|T|=$
$n_{m}=$
$\hat{\beta}_{m}=$
$Q_{m}(T)=$
- We examine a complexity criterion

$$
C_{\lambda}(T)=\sum_{m=1}^{|T|} n_{m} Q_{m}(T)+\lambda|T|
$$

Cost-Complexity Pruning

$$
C_{\lambda}(T)=\sum_{m=1}^{|T|} n_{m} Q_{m}(T)+\lambda|T|
$$

- For a given λ, want to find $T_{\lambda} \subset T_{0}$ to minimize $C_{\lambda}(T)$
- Tuning parameter λ governs tradeoff between $x_{1} \leq t_{1}$, tree size and goodness of fit to the data
\square Large $\lambda \rightarrow$
$\square \lambda=0 \rightarrow$
- For each λ, can show that there is a unique smallest subtree T_{λ}

Cost-Complexity Pruning

$$
C_{\lambda}(T)=\sum_{m=1}^{|T|} n_{m} Q_{m}(T)+\lambda|T|
$$

- Can find using weakest link pruning
\square Successively collapse the internal node that produces smallest increase in RSS
\square Continue until at single-node (root) tree
\square Produces a finite sequence of subtrees, which must contain T_{λ}
\square See Breiman et al. (1984) or Ripley (1996)
- Choose λ via 5 - or 10 -fold CV
- Final tree:

Comments on Regression Trees

- Partition is not specified apriori, so regression trees provide a locally adaptive technique
- Effectively performs variable selection by discovering the relevant interaction terms
\square Implicit in the process
- In the construction, we are assuming that
\square Error terms are uncorrelated
\square Constant variance

Example: Prostate Cancer

- Fit binary regression tree to log PSA with splits based on eight covariates
- Grow tree with condition of at least 3 observation per leaf
- Results in a tree with 27 splits
- Run weakest-link pruning for each candidate λ, with λ chosen according to CV

Example: Prostate Cancer

- Compare results to LASSO
\square Icavol most "important"
\square Then Iweight and svi
$h_{1}(x)=I($ lcavol $<-0.4786)$
$h_{2}(x)=I($ lcavol $<-0.4786) \times I($ lweight $<3.689) \times I($ svi $<0.5)$
$h_{3}(x)=I($ lcavol $<-0.4786) \times I($ lweight $<3.689) \times I($ svi $>0.5)$
$h_{4}(x)=I($ lcavol $<-0.4786) \times I($ lweight $\geq 3.689)$
$h_{5}(x)=I($ lcavol $\geq 2.462)$.

Issues

- Unordered categorical predictors
\square With unordered categorical predictors with q possible values, there are $2^{q-1}-1$ possible choices of partition points to consider for each variable
\square Prohibitive for large q
\square Can deal with this for binary $y \ldots$ will come back to this in "classification"
- Missing predictor values...how to cope?
\square Can discard
\square Can fill in, e.g., with mean of other variables
\square With trees, there are better approaches
-- Categorical predictors: make new category "missing"
-- Split on observed data. For every split, create an ordered list of "surrogate" splits (predictor/value) that create similar divides of the data. When examining observation with a missing predictor, when splitting on that dimension, use top-most surrogate that is available instead

Issues

- Binary splits
\square Could split into more regions at every node
\square However, this more rapidly fragments the data leaving insufficient data and subsequent levels
\square Multiway splits can be achieved via a sequence of binary splits, so binary splits are generally preferred
- Instability
\square Can exhibit high variance
\square Small changes in the data \rightarrow big changes in the tree
\square Errors in the top split propagates all the way down
\square Bagging averages many trees to reduce variance
- Inference
\square Hard...need to account for stepwise search algorithm

Issues

- Lack of smoothness
\square Fits piecewise constant models...unlikely to believe this structure
\square MARS address this issue (can view as modification to CART)
- Difficulty in capturing additive structure
\square Imagine true structure is

$$
y=\beta_{1} I\left(x_{1}<t_{1}\right)+\beta_{2} I\left(x_{2}<t_{2}\right)+\epsilon
$$

\square No encouragement to find this structure

Multiple Adaptive Regression Splines

- MARS is an adaptive procedure for regression
\square Well-suited to high-dimensional covariate spaces
- Can be viewed as:
\square Generalization of step-wise linear regression
\square Modification of CART
- Consider a basis expansion in terms of piecewise linear basis functions (linear splines)

Multiple Adaptive Regression Splines

- Take knots at all observed $x_{i j}$

$$
\mathcal{C}=\left\{\left(x_{j}-t\right)_{+},\left(t-x_{j}\right)_{+}\right\}
$$

\square If all locations are unique, then $2^{*} n^{*} d$ basis functions
\square Treat each basis function as a function on x, just varying with x_{j}

$$
h_{m}(x)=
$$

- The resulting model has the form

$$
f(x)=\beta_{0}+\sum_{m=1}^{M} \beta_{m} h_{m}(x)
$$

- Built in a forward stepwise manner in terms of this basis

MARS Forward Stepwise

- Given a set of h_{m}, estimation of β_{m} proceeds as with any linear basis expansion (i.e., minimizing the RSS)
- How do we choose the set of h_{m} ?

1. Start with $h_{0}(x)=1$ and $M=0$
2. Consider product of all h_{m} in current model with reflected pairs in C
-- Add terms of the form

$$
\hat{\beta}_{M+1} h_{\ell}(x)\left(x_{j}-t\right)_{+}+\hat{\beta}_{M+2} h_{\ell}(x)\left(t-x_{j}\right)_{+}
$$

-- Select the one that decreases the training error most
3. Increment M and repeat
4. Stop when preset M is hit
5. Typically end with a large (overfit) model, so backward delete
-- Remove term with smallest increase in RSS
-- Choose model based on generalized CV

MARS Forward Stepwise Example

$$
\hat{\beta}_{M+1} h_{\ell}(x)\left(x_{j}-t\right)_{+}+\hat{\beta}_{M+2} h_{\ell}(x)\left(t-x_{j}\right)_{+}
$$

- At the first stage, add term of form
$\beta_{1}\left(x_{j}-t\right)_{+}+\beta_{2}\left(t-x_{j}\right)_{+}$
with the optimal pair being

- Add pair to the model and then consider including a pair like

$$
\beta_{3} h_{m}(x)\left(x_{j}-t\right)_{+}+\beta_{4} h_{m}(x)\left(t-x_{j}\right)_{+}
$$

with choices for h_{m} being:

Why MARS?

- Why these piecewise linear basis functions?
\square Ability to operate locally
- When multiplied, non-zero only over a small part of the input space
- Resulting regression surface has local components and only where needed (spend parameters carefully in high dims)
\square Computations with linear basis are very efficient
- Naively, we consider fitting n reflected pairs for each input $x_{j} \rightarrow O\left(n^{2}\right)$ operations
- Can exploit simple form of piecewise linear function
- Fit function with rightmost knot. As knot moves, the basis functions differ by 0 over the left and by a constant over the right \rightarrow Can try every knot in $O(n)$
- Why forward stagewise?
\square Hierarchical in that multiway products are built from terms already in model (e.g., 4-way product exists only if 3-way already existed)
\square Higher order interactions tend to only exist if some of the lower order interactions exist as well
\square Avoids search over exponentially large space

Why MARS?

- Notes:
\square Each input can appear at most once in a product...Prevents formation of higher-order powers of an input
\square Can place limit on order of interaction. That is, one can allow pairwise products, but not 3-way or higher.
\square Limit of $1 \rightarrow$ additive model

Connecting MARS and CART

- MARS and CART have lots of similarities
- Take MARS procedure and make following modifications:
\square Replace piecewise linear with step functions
\square When a model term h_{m} is involved in a multiplication by a candidate term, replace it by the interaction and is not available for further interaction
- Then, MARS forward procedure = CART tree-growing algorithm
\square Multiplying a step function by a pair of reflected step functions = split node at the step
$\square 2^{\text {nd }}$ restriction \rightarrow node may not be split more than once (binary tree)
- MARS doesn't force tree structure \rightarrow can capture additive effects

What you need to know

- Regression trees provide an adaptive regression method
- Fit constants (or simple models) to each region of a partition
- Relies on estimating a binary tree partition
\square Sequence of decisions of variables to split on and where
\square Grown in a greedy, forward-wise manner
\square Pruned subsequently
- Implicitly performs variable selection
- MARS is a modification to CART allowing linear fits

Readings

- Wakefield - 12.7

■ Hastie, Tibshirani, Friedman - 9.2.1-9.2.2, 9.2.4, 9.4
■ Wasserman - 5.12

Module 4: Coping with Multiple Predictors

A Short Case Study

STAT/BIOSTAT 527, University of Washington
Emily Fox
May $16^{\text {th }}, 2013$

Rock Data

- 48 rock samples from a petroleum reservoir
- Response = permeability
- Covariates = area of pores, perimeter, and shape

Generalized Additive Model

- Fit a GAM:
permeability $=f_{1}($ area $)+f_{2}($ perimeter $)+f_{3}($ shape $)+\epsilon$

GAM vs. Local Linear Fits

- Comparison to a 3-dimensional local linear fit

Projection Pursuit

$$
\begin{aligned}
& \left.f\left(x_{1}, \ldots, x_{d}\right)=\alpha+\sum_{m=1}^{M} f_{m}\left(w_{m}^{T} x\right)\right) \\
& \text { with } M=3 \text { vields }
\end{aligned}
$$

- Applying projection pursuit with $M=3$ yields $w_{1}=(.99, .07, .08)^{T}, w_{2}=(.43, .35, .83)^{T}, w_{3}=(.74,-.28,-.61)^{T}$

Regression Trees

- Fit a regression tree to the rock data
- Note that the variable "shape" does not appear in the tree

