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Kernel Density Estimation 
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n  Kernel methods are often used for density estimation 
(actually, classical origin) 

n  Assume random sample 

n  Choice #1: empirical estimate? 

n  Choice #2: as before, maybe we should use an estimator 

n  Choice #3: again, consider kernel weightings instead 
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Kernel Density Estimation 
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n  Popular choice = Gaussian kernel  à Gaussian KDE 
208 6. Kernel Smoothing Methods

Systolic Blood Pressure (for CHD group)
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FIGURE 6.13. A kernel density estimate for systolic blood pressure (for the
CHD group). The density estimate at each point is the average contribution from
each of the kernels at that point. We have scaled the kernels down by a factor of
10 to make the graph readable.

we can produce, as shown in the plot, estimated pointwise standard-error
bands about our fitted prevalence.

6.6 Kernel Density Estimation and Classification

Kernel density estimation is an unsupervised learning procedure, which
historically precedes kernel regression. It also leads naturally to a simple
family of procedures for nonparametric classification.

6.6.1 Kernel Density Estimation

Suppose we have a random sample x1, . . . , xN drawn from a probability
density fX(x), and we wish to estimate fX at a point x0. For simplicity we
assume for now that X ∈ IR. Arguing as before, a natural local estimate
has the form

f̂X(x0) =
#xi ∈ N (x0)

Nλ
, (6.21)

where N (x0) is a small metric neighborhood around x0 of width λ. This
estimate is bumpy, and the smooth Parzen estimate is preferred

f̂X(x0) =
1

Nλ

N∑

i=1

Kλ(x0, xi), (6.22)

From Hastie, Tibshirani, Friedman book 

Multivariate KDE 
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n  In 1d  

n  In Rd, assuming a product kernel, 

n  Typical choice = Gaussian RBF 

p̂(x0) =
1

n�

nX

i=1

K�(x0, xi)

p̂(x0) =
1

n�1 · · ·�d

nX

i=1

8
<

:

dY

j=1

K�j (x0j , xij)

9
=

;
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Multivariate KDE 
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n  Risk grows as O(n-4/(4+d)) 
n  Example: To ensure relative MSE < 0.1 at 0 when the density is 

a multivariate norm and optimal bandwidth is chosen 

n  Always report confidence bands, which get wide with d 

p̂(x0) =
1

n�1 · · ·�d

nX

i=1

8
<

:

dY

j=1

K�j (x0j , xij)

9
=

;

Multivariate KDE Example 
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n  Data on 6 characteristics of aircraft (Bowman and Azzalini 1998) 
n  Examine first 2 principle components of the data 
n  Perform KDE with independent kernels 

2012 Jon Wakefield, Stat/Biostat 527

library(sm)

library(rpanel)

library(rgl)

provide.data(airpc)

pc3 <- cbind(Comp.1[Period==3],Comp.2[Period==3])

par(mfrow=c(1,2))

sm.density(pc3,display="slice")

points(pc3[,1],pc3[,2])

sm.density(pc3,display="image")

#

par(mfrow=c(1,1))

sm.density(pc3)

sm.density(pc3,hmult=0.5)

sm.density(pc3,hmult=2)
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Figure 80: Two-dimensional estimate for the aircraft data.
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Multivariate KDE Example 
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n  Data on 6 characteristics of aircraft (Bowman and Azzalini 1998) 
n  Examine first 2 principle components of the data 
n  Perform KDE with independent kernels 2012 Jon Wakefield, Stat/Biostat 527
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Figure 81: Two-dimensional estimate for the aircraft data.
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Figure 82: Two-dimensional estimate for the aircraft data.
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Figure 81: Two-dimensional estimate for the aircraft data.
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Figure 82: Two-dimensional estimate for the aircraft data.
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Figure 83: Two-dimensional estimate for the aircraft data.
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Classification and Regression Trees

If the aim is classification the only changes in the algorithm

concern the criteria for splitting nodes and pruning the tree.

For regression we used the residual sum of squares within each

node as the impurity measure Qj(T ), defined in (112), within

(113), but this is not suitable for classification.

For a node j, j = 1, ..., J , representing a region Rj with nj

observations estimate the node specific probabilities as

p̂jk =
1

nj

∑

i:xi∈Rj

I(yi = k)

for k = 0, 1, ..., K − 1. This is simply the proportion of class k

observations in node j. Any observations that fall into node j are

classified to class

k(j) = arg maxk p̂jk,

the majority class in node j.
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Regression Trees Overview 
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n  An alternative adaptive regression technique 
¨  Conceptually simple 
¨  Powerful 

n  Partition the covariate space into regions and then fit a simple 
model in each (e.g., constant) 

n  How to partition? 

12.7 Regression Trees 617
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Fig. 12.6 Examples of flexible partitions of the Œx
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Fig. 12.7 Hierarchical binary tree partition of the Œx
1

; x
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ç space.

difficulty. The partition in Figure 12.7 is generated by the algorithm illustrated in the
form of a “tree” in Figure 12.8 (notice that trees are usually shown as growing down
the page). We describe in detail how this partition is arrived upon.

The terminology we use is graphical. Decisions are taken at nodes and the root
of the tree is the top node. The terminal nodes are the leaves and covariate points

Recursive Binary Partitions 
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n  To simplify the process and 
interpretability, consider 
recursive binary partitions 

n  Described via a rooted tree 
¨  Every node of the tree 

corresponds to split decision 
¨  Leaves contain a subset of the 

data that satisfy the conditions 
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Recursive Binary Partitions 

Pt x1 x2 

1 0.00 0.00 
2 1.00 4.31 
3 0.13 2.85 
… … … 

n  Start with a list of d-dimensional points. 

11 ©Emily Fox 2013 

Recursive Binary Partitions 

Pt x1 x2 
1 0.00 0.00 
3 0.13 2.85 
… … … 

x1 >.5	



Pt x1 x2 
2 1.00 4.31 
… … … 

YES	

NO	



n  Split the points into 2 groups by: 
¨  Choosing dimension dj and value tj (methods to be discussed…) 

¨  Separating the points into         > tj and         <= tj. 

12 ©Emily Fox 2013 

xidj
xidj
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Recursive Binary Partitions 

x1 >.5	



Pt x1 x2 
2 1.00 4.31 
… … … 

YES	

NO	



n  Consider each group separately and possibly split again 
(along same/different dimension). 
¨  Stopping criterion to be discussed… 

Pt x1 x2 
1 0.00 0.00 
3 0.13 2.85 
… … … 

13 ©Emily Fox 2013 

Recursive Binary Partitions 

Pt x1 x2 
3 0.13 2.85 
… … … 

x1 >.5	



Pt x1 x2 
2 1.00 4.31 
… … … 

YES	

NO	



Pt x1 x2 
1 0.00 0.00 
… … … 

x2 >.1	



NO	

 YES	



n  Consider each group separately and possibly split again 
(along same/different dimension). 
¨  Stopping criterion to be discussed… 

14 ©Emily Fox 2013 
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Recursive Binary Partitions 

n  Continue splitting points in each set  
¨  creates a binary tree structure 

n  Each leaf node contains a list of points 

15 ©Emily Fox 2013 

Resulting Model 

n  Model the response as constant within each region 

16 ©Emily Fox 2013 

306 9. Additive Models, Trees, and Related Methods
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FIGURE 9.2. Partitions and CART. Top right panel shows a partition of a
two-dimensional feature space by recursive binary splitting, as used in CART,
applied to some fake data. Top left panel shows a general partition that cannot
be obtained from recursive binary splitting. Bottom left panel shows the tree cor-
responding to the partition in the top right panel, and a perspective plot of the
prediction surface appears in the bottom right panel.
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f(x) =
MX

m=1

�mI(x 2 Rm)
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Basis Expansion Interpretation 

n  Equivalent to a basis expansion 

n  In this example: 

17 ©Emily Fox 2013 
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f(x) =
MX

m=1

�mhm(x)

h1(x1, x2) = I(x1  t1)I(x2  t2)

h2(x1, x2) = I(x1  t1)I(x2 > t2)

h3(x1, x2) = I(x1 > t1)I(x1  t3)

h4(x1, x2) = I(x1 > t1)I(x1 > t3)I(x2  t4)

h5(x1, x2) = I(x1 > t1)I(x1 > t3)I(x2 > t4)

Questions on Building the Tree 

n  Which variable should we split on? 
n  What threshold value should we consider? 
n  When should we stop the process? 

18 ©Emily Fox 2013 
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Building the Tree 
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n  Assume the partition (R1,…RM) is given 
n  If criterion is to minimize RSS, then 

n  How do we find the partition (R1,…RM) ? 
¨  Finding the optimal tree that minimizes RSS is generally computationally 

infeasible 
¨  Consider a greedy algorithm instead 

f(x) =
MX

m=1

�mI(x 2 Rm)

�̂m =

Choosing a Split Decision 
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n  Starting with all of the data, consider  
splitting on variable j at point s 

n  Define 

n  Our objective is 

n  For any (j, s), the inner minimization is solved by 

R1(j, s) = {x | xj  s}
R2(j, s) = {x | xj > s}
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Choosing a Split Decision 
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n  For each splitting variable j, finding 
the optimal s can be done efficiently 
¨  Why?  

n  Max of d(n-1) partitions to consider 
n  So, determining (j,s) is feasible 

min
j,s

2

4
X

xi2R1(j,s)

(y
i

� �̂1)
2 +

X

xi2R2(j,s)

(y
i

� �̂2)
2

3

5

�̂1 = avg(yi | xi 2 R1(j, s))

�̂2 = avg(yi | xi 2 R2(j, s))

Choosing a Split Decision 
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n  Conditioning on the best split just found, we recurse on 
each of the two regions 

n  Repeat on all resulting regions 

n  When do we stop recursing? 
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How Large of a Tree? 
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n  Large tree, like partitioning until each node has one observation 
à  

n  Small tree à  

n  Tree size is a tuning parameter that governs model complexity 
¨  Optimal tree size should be chosen adaptively from the data 

n  Stopping criterion 
¨  Stop when decrease in RSS due to a split falls below some threshold 

¨  Stop when a minimum node size (e.g., 5) is reached.  Go back and prune. 

Cost-Complexity Pruning 
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n  Searching over all subtrees and selecting using AIC or CV is not 
possible since there is an exponentially large set of subtrees 
à 

n  Define a subtree   to be any tree obtained by pruning 
 
and 

n  We examine a complexity criterion 

T ⇢ T0 T0
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|T | =
nm =

�̂m =

Qm(T ) =

C�(T ) =

|T |X

m=1

nmQm(T ) + �|T |
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Cost-Complexity Pruning 
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n  For a given λ, want to find        to minimize   

n  Tuning parameter λ governs tradeoff between 
tree size and goodness of fit to the data 
¨  Large λ à  
¨  λ = 0 à  
 

n  For each λ, can show that there is a 
unique smallest subtree   
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C�(T ) =

|T |X

m=1

nmQm(T ) + �|T |

T� ⇢ T0 C�(T )

T�

Cost-Complexity Pruning 
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n  Can find using weakest link pruning 
¨  Successively collapse the internal node that 

produces smallest increase in RSS 

¨  Continue until at single-node (root) tree 
¨  Produces a finite sequence of subtrees, 

which must contain  
¨  See Breiman et al. (1984) or Ripley (1996) 

n  Choose λ via 5- or 10-fold CV 
n  Final tree:  
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Comments on Regression Trees 
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n  Partition is not specified apriori, so regression trees provide a 
locally adaptive technique 

n  Effectively performs variable selection by discovering the 
relevant interaction terms 
¨  Implicit in the process 

n  In the construction, we are assuming that 
¨  Error terms are uncorrelated 
¨  Constant variance 

Example: Prostate Cancer 

©Emily Fox 2013 28 

n  Fit binary regression tree to log PSA with splits based on 
eight covariates 

n  Grow tree with condition of at least 3 observation per leaf 

n  Results in a tree with 27 splits 

n  Run weakest-link pruning for each candidate λ, with λ chosen 
according to CV  
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Example: Prostate Cancer 
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n  Compare results to LASSO 
¨  lcavol most “important” 
¨  Then lweight and svi 

12.7 Regression Trees 625

|lcavol< 2.462

lcavol< −0.4786

lweight< 3.689

svi< 0.5

0.6017
n=9

1.927
n=35

3.267
n=3

2.712
n=29

3.765
n=21

Fig. 12.11 Hierarchical regression tree for the prostate cancer data. At each leaf we give the esti-
mated mean response and the number of observations.

pair of linear truncated line segments, which we have already seen used as building
blocks for splines in Section 11.2.1. The collection of basis functions is

f .xl � t /C; .t � xl /C; t 2 fx1l ; :::; xnlg; l D 1; :::; k g : (12.19)

If all of the covariates are distinct there are 2nk basis functions in total.
The model is of the form

f .x/ D ˇ0 C
J
X

j D1

ǰ hj .x/

where each hj .x/ is a particular reflected pair from the collection (12.19) or a prod-
uct of two or more pairs. To select bases functions, forward stagewise is used (Sec-
tion 4.8.1). At a particular step suppose we have functions hl .x/, l D 1; :::; L in the
current model. We then add the term of the form

bˇLC1hl .x/ ⇥ .xl 0 � t /C CbˇLC2hl .x/ ⇥ .t � xl 0/C

624 12 Nonparametric Regression with Multiple Predictors
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Fig. 12.10 Cross-validation score versus complexity, as measured by tree size (top axis) and im-
provement in R2 (bottom axis).

h1.x/ D I.lcavol < �0:4786/

h2.x/ D I.lcavol < �0:4786/ ⇥ I.lweight < 3:689/ ⇥ I.svi < 0:5/

h3.x/ D I.lcavol < �0:4786/ ⇥ I.lweight < 3:689/ ⇥ I.svi > 0:5/

h4.x/ D I.lcavol < �0:4786/ ⇥ I.lweight � 3:689/

h5.x/ D I.lcavol � 2:462/:

In terms of assigning a prediction to a new observation with covariates x, we simply
read down the tree in Figure 12.11.

12.7.2 Multiple Adaptive Regression Splines

We briefly describe the multiple adaptive regression splines (MARS) algorithm that
combines stepwise linear regression with a spline/tree model; MARS was intro-
duced in Friedman (1991). MARS overcomes the discreteness of the regression
trees fitted model by using piecewise linear basis functions of the form .xj � t /C
and .t �xj /C for j D 1; :::; k; these are known as a reflected pair. Here, xj refers to
a generic covariate, and t to an observed value of that covariate. Hence, we have a

Issues 
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n  Unordered categorical predictors 
¨  With unordered categorical predictors with q possible values, there are 

2q-1-1 possible choices of partition points to consider for each variable 
¨  Prohibitive for large q 
¨  Can deal with this for binary y…will come back to this in “classification” 

n  Missing predictor values…how to cope? 
¨  Can discard 
¨  Can fill in, e.g., with mean of other variables 
¨  With trees, there are better approaches 

-- Categorical predictors: make new category “missing” 
-- Split on observed data.  For every split, create an ordered list of 
“surrogate” splits (predictor/value) that create similar divides of the data.  
When examining observation with a missing predictor, when splitting on 
that dimension, use top-most surrogate that is available instead 
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Issues 
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n  Binary splits 
¨  Could split into more regions at every node 
¨  However, this more rapidly fragments the data leaving insufficient data and 

subsequent levels 
¨  Multiway splits can be achieved via a sequence of binary splits, so binary 

splits are generally preferred 

n  Instability 
¨  Can exhibit high variance 
¨  Small changes in the data à big changes in the tree 
¨  Errors in the top split propagates all the way down 
¨  Bagging averages many trees to reduce variance 

n  Inference 
¨  Hard…need to account for stepwise search algorithm 

 

Issues 
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n  Lack of smoothness 
¨  Fits piecewise constant models…unlikely to believe this structure 
¨  MARS address this issue (can view as modification to CART) 

n  Difficulty in capturing additive structure 
¨  Imagine true structure is 

¨  No encouragement to find this structure 

y = �1I(x1 < t1) + �2I(x2 < t2) + ✏
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Multiple Adaptive Regression Splines 
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n  MARS is an adaptive procedure for regression 
¨  Well-suited to high-dimensional covariate spaces 

n  Can be viewed as: 
¨  Generalization of step-wise linear regression 
¨  Modification of CART 

n  Consider a basis expansion in terms of piecewise linear basis 
functions (linear splines) 
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FIGURE 9.9. The basis functions (x− t)+ (solid orange) and (t− x)+ (broken
blue) used by MARS.

As an example, the functions (x− 0.5)+ and (0.5− x)+ are shown in Fig-
ure 9.9.

Each function is piecewise linear, with a knot at the value t. In the
terminology of Chapter 5, these are linear splines. We call the two functions
a reflected pair in the discussion below. The idea is to form reflected pairs
for each input Xj with knots at each observed value xij of that input.
Therefore, the collection of basis functions is

C = {(Xj − t)+, (t−Xj)+} t ∈ {x1j , x2j , . . . , xNj}
j = 1, 2, . . . , p.

(9.18)

If all of the input values are distinct, there are 2Np basis functions alto-
gether. Note that although each basis function depends only on a single
Xj , for example, h(X) = (Xj − t)+, it is considered as a function over the
entire input space IRp.

The model-building strategy is like a forward stepwise linear regression,
but instead of using the original inputs, we are allowed to use functions
from the set C and their products. Thus the model has the form

f(X) = β0 +
M∑

m=1

βmhm(X), (9.19)

where each hm(X) is a function in C, or a product of two or more such
functions.

Given a choice for the hm, the coefficients βm are estimated by minimiz-
ing the residual sum-of-squares, that is, by standard linear regression. The
real art, however, is in the construction of the functions hm(x). We start
with only the constant function h0(X) = 1 in our model, and all functions
in the set C are candidate functions. This is depicted in Figure 9.10.

At each stage we consider as a new basis function pair all products of a
function hm in the model set M with one of the reflected pairs in C. We
add to the model M the term of the form

β̂M+1h!(X) · (Xj − t)+ + β̂M+2h!(X) · (t−Xj)+, h! ∈M,

Multiple Adaptive Regression Splines 
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n  Take knots at all observed xij 

¨  If all locations are unique, then 2*n*d basis functions 
¨  Treat each basis function as a function on x, just varying with xj 

n  The resulting model has the form 

n  Built in a forward stepwise manner in terms of this basis 

C = {(xj � t)+, (t� xj)+}

hm(x) =

f(x) = �0 +
MX

m=1

�mhm(x)
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MARS Forward Stepwise 
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n  Given a set of hm, estimation of       proceeds as with any linear 
basis expansion (i.e., minimizing the RSS) 

n  How do we choose the set of hm? 

�m

1.  Start with                    and M=0 
2.  Consider product of all hm in current model with reflected pairs in C  

 -- Add terms of the form 
 
 

  
 -- Select the one that decreases the training error most 

3.  Increment M and repeat 
4.  Stop when preset M is hit 
5.  Typically end with a large (overfit) model, so backward delete 

 -- Remove term with smallest increase in RSS 
 -- Choose model based on generalized CV 

h0(x) = 1

�̂M+1h`(x)(xj � t)+ + �̂M+2h`(x)(t� xj)+

MARS Forward Stepwise Example 
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n  At the first stage, add term of form 
 

 
with the optimal pair being 

n  Add pair to the model and then consider including a pair like 
 
 
with choices for hm being: 
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X1
X2

h(X1, X2)

FIGURE 9.11. The function h(X1, X2) = (X1 − x51)+ · (x72 −X2)+, resulting
from multiplication of two piecewise linear MARS basis functions.

that produces the largest decrease in training error. Here β̂M+1 and β̂M+2

are coefficients estimated by least squares, along with all the other M + 1
coefficients in the model. Then the winning products are added to the
model and the process is continued until the model set M contains some
preset maximum number of terms.

For example, at the first stage we consider adding to the model a function
of the form β1(Xj − t)+ + β2(t −Xj)+; t ∈ {xij}, since multiplication by
the constant function just produces the function itself. Suppose the best
choice is β̂1(X2 − x72)+ + β̂2(x72 −X2)+. Then this pair of basis functions
is added to the set M, and at the next stage we consider including a pair
of products the form

hm(X) · (Xj − t)+ and hm(X) · (t−Xj)+, t ∈ {xij},

where for hm we have the choices

h0(X) = 1,

h1(X) = (X2 − x72)+, or

h2(X) = (x72 −X2)+.

The third choice produces functions such as (X1 − x51)+ · (x72 − X2)+,
depicted in Figure 9.11.

At the end of this process we have a large model of the form (9.19). This
model typically overfits the data, and so a backward deletion procedure
is applied. The term whose removal causes the smallest increase in resid-
ual squared error is deleted from the model at each stage, producing an
estimated best model f̂λ of each size (number of terms) λ. One could use
cross-validation to estimate the optimal value of λ, but for computational

�1(xj � t)+ + �2(t� xj)+

�̂M+1h`(x)(xj � t)+ + �̂M+2h`(x)(t� xj)+

�3hm(x)(xj � t)+ + �4hm(x)(t� xj)+
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MARS Forward Stepwise 
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n  In pictures… 

9.4 MARS: Multivariate Adaptive Regression Splines 323
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FIGURE 9.10. Schematic of the MARS forward model-building procedure. On
the left are the basis functions currently in the model: initially, this is the constant
function h(X) = 1. On the right are all candidate basis functions to be considered
in building the model. These are pairs of piecewise linear basis functions as in
Figure 9.9, with knots t at all unique observed values xij of each predictor Xj.
At each stage we consider all products of a candidate pair with a basis function
in the model. The product that decreases the residual error the most is added into
the current model. Above we illustrate the first three steps of the procedure, with
the selected functions shown in red.

Why MARS? 
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n  Why these piecewise linear basis functions? 
¨  Ability to operate locally 

n  When multiplied, non-zero only over a small part of the input space 
n  Resulting regression surface has local components and only where needed 

(spend parameters carefully in high dims) 
¨  Computations with linear basis are very efficient 

n  Naively, we consider fitting n reflected pairs for each input xj à O(n2) operations 
n  Can exploit simple form of piecewise linear function 
n  Fit function with rightmost knot.  As knot moves, the basis functions differ by 0 

over the left and by a constant over the right à Can try every knot in O(n) 

n  Why forward stagewise? 
¨  Hierarchical in that multiway products are built from terms already in model 

(e.g., 4-way product exists only if 3-way already existed) 
¨  Higher order interactions tend to only exist if some of the lower order 

interactions exist as well 
¨  Avoids search over exponentially large space 
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Why MARS? 
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n  Notes: 
¨  Each input can appear at most once in a product…Prevents formation of 

higher-order powers of an input 
¨  Can place limit on order of interaction.  That is, one can allow pairwise 

products, but not 3-way or higher.   
¨  Limit of 1 à additive model 

Connecting MARS and CART 
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n  MARS and CART have lots of similarities 

n  Take MARS procedure and make following modifications: 
¨  Replace piecewise linear with step functions 

¨  When a model term hm is involved in a multiplication by a candidate term, 
replace it by the interaction and is not available for further interaction 

n  Then, MARS forward procedure = CART tree-growing algorithm 
¨  Multiplying a step function by a pair of reflected step functions 

= split node at the step 

¨  2nd restriction à node may not be split more than once (binary tree) 

n  MARS doesn’t force tree structure à can capture additive effects 
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What you need to know 

n  Regression trees provide an adaptive regression method 

n  Fit constants (or simple models) to each region of a partition 

n  Relies on estimating a binary tree partition 
¨  Sequence of decisions of variables to split on and where 
¨  Grown in a greedy, forward-wise manner 
¨  Pruned subsequently 

n  Implicitly performs variable selection 

n  MARS is a modification to CART allowing linear fits 

©Emily Fox 2013 41 

Readings 

n  Wakefield – 12.7 
n  Hastie, Tibshirani, Friedman – 9.2.1-9.2.2, 9.2.4, 9.4 
n  Wasserman – 5.12 
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A Short Case Study 

 
STAT/BIOSTAT 527, University of Washington 

Emily Fox 
May 16th, 2013 

©Emily Fox 2013 

Module 4: Coping with Multiple Predictors 

43 

Rock Data 
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n  48 rock samples from a petroleum reservoir 
n  Response = permeability 
n  Covariates = area of pores, perimeter, and shape 
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Generalized Additive Model 
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n  Fit a GAM: 
permeability = f1(area) + f2(perimeter) + f3(shape) + ✏

GAM vs. Local Linear Fits 
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n  Comparison to a 3-dimensional local linear fit 
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f(x1, . . . , xd) = ↵+
MX

m=1

fm(wT
mx)

Projection Pursuit 

n  Applying projection pursuit with M = 3 yields 
w1 = (.99, .07, .08)T , w2 = (.43, .35, .83)T , w3 = (.74,�.28,�.61)T

Regression Trees 
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n  Fit a regression tree to the rock data 
n  Note that the variable “shape” does not appear in the tree 


