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Kernel Density Estimation
* JEE

m Kernel methods are often used for density estimation
(actually, classical origin)

m Assume random sample X\,m) )(n ~ V A

?
m Choice #1: empirical estimate? '?’ Ln Z gx‘; ] ” ml | | |
m Choice #2: as before, maybe we should use an estimatoL A
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m Choice #3: again, consider kernel weightings instead
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Kernel Density Estimation
" JEEE

m Popular choice = Gaussian kernel - Gaussian KDE
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From Hastie, Tibshirani, Friedman book
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Multivariate KDE
* JE—
= In1d plwo) = %ZKA(@"O,%)

m In RY assuming a product kernel,

n d
. 1
p(zo0) = m Z H Ky, (zoj, Tij)

i=1 | j=1

m Typical choice = Gaussian RBF
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Multivariate KDE
" SN

n

d
. 1
p(wo) = m; jl;[lKAj (fvoMij)}

m Risk grows as O(n#/(4+d))

m Example: To ensure relative MSE < 0.1 at 0 when the density is
a multivariate norm and optimal bandwidth is chosen

m Always report confidence bands, which get wide with d
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Multivariate KDE Example
" S

m Data on 6 characteristics of aircraft (Bowman and Azzalini 1998)
m Examine first 2 principle components of the data

m Perform KDE with independent kernels

4
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Multivariate KDE Example

* JEE
m Data on 6 characteristics of aircraft (Bowman and Azzalini 1998)

Examine first 2 principle components of the data
Perform KDE with independent kernels
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Regression Trees Overview
" JE
m An alternative adaptive regression technique

Conceptually simple
Powerful

m Partition the covariate space into regions and then fit a simple
model in each (e.g., constant)

m How to partition?

X2
X2

X1 X1
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Recursive Binary Partitions
* JEE—
m To simplify the process and

interpretability, consider
recursive binary partitions .

m Described via a rooted tree .

Every node of the tree ° ° i
corresponds to split decision

Leaves contain a subset of the

data that satisfy the conditions / \
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Recursive Binary Partitions

Pt | x, Xy

1 | 0.00 | 0.00
2 [1.00 | 4.31
3 |013 | 2.85

m Start with a list of d-dimensional points.
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Recursive Binary Partitions

m Split the points into 2 groups by:

©Emily Fox 2013

NO / \YES
Pt X4 X, Pt | x, | x,
1 10.000.00 2 [1.00|4.31
3 013|285

Choosing dimension d; and value {; (methods to be discussed...)
Separating the points into T;q; >t and Zid<=1{;




Recursive Binary Partitions

NO / \YES
Pt X4 Xy Pt | x; | X,
1 |0.00 | 0.00 2 [1.00|4.31
3 (013|285

m Consider each group separately and possibly split again
(along same/different dimension).

Stopping criterion to be discussed...
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Recursive Binary Partitions

NO \YES
Pt | x, | X,
2 [1.00|4.31
NO YE
Pt X4 Xy Pt X4 Xy
3 013|285 1 0.00 | 0.00

m Consider each group separately and possibly split again
(along same/different dimension).

Stopping criterion to be discussed...
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Recursive Binary Partitions
" I

/\
SN

ARe o,cs’\b\b dp’\b\b o] d’\b\b

m Continue splitting points in each set
creates a binary tree structure

m Each leaf node contains a list of points
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o

<4
Rl Ry Rs (W

Ry Rs X

m Model the response as constant within each region
M
=) Bml(z € Ry)
m=1

ooooooooooooo




Basis Expansion Interpretation
* JEE—

m Equivalent to a basis expansion Xi<u

- Z Bmhm(x) X2 <12 X; <tg
m=1

m |n this example:

hl(:vl,xz) e <)@ <t) (W
ho(z1,x0) = I(x1 < t1)I(x2 > t3) Ri  Rs

hs(x1,x0) = I(x1 > t1)I(x1 < t3)

ha(z1,x0) = I(x1 > t1)I(x1 > t3)[ (29 < t4)

hs(x1,xe) = I(x1 > t1)I(x1 > t3)I (22 > t4)
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Questions on Building the Tree
* JEE——
m Which variable should we split on?

m What threshold value should we consider?
m When should we stop the process?
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Building the Tree
* JEE—
f@) =" Bml(z € Ry)

m Assume the partition (R,,...R)) is given
m [f criterion is to minimize RSS, then

Bm -
m How do we find the partition (R,,...Ry) ?

Finding the optimal tree that minimizes RSS is generally computationally
infeasible

Consider a greedy algorithm instead
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Choosing a Split Decision
* JEE——

m Starting with all of the data, consider
splitting on variable j at point s

m Define
Ri(j,s) ={z | z; < s} °®e ° ) .
Roljis) = {o | 25 > 5}
m Our objective is oo o o’ *

m Forany (j, s), the inner minimization is solved by
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Choosing a Split Decision

min | > (wi—B)+ D (yi— )

J»s
z;€ER1(4,8) x;E€R2(4,8)
B = avg(y: | z; € Ri(j, s)) °Ce *
32 = avg(y; | z; € Ra2(4,8)) ."..
m For each splitting variable j, finding |ee o o’
the optimal s can be done efficiently o .
Why? L’
[ ] .. [ ]

m Max of d(n-1) partitions to consider
m So, determining (j,s) is feasible
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Choosing a Split Decision
* JEE——
m Conditioning on the best split just found, we recurse on
each of the two regions

m Repeat on all resulting regions %o .
m When do we stop recursing? . *T
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How Large of a Tree?
" JEE
m Large tree, like partitioning until each node has one observation
9

m Small tree >

m Tree size is a tuning parameter that governs model complexity
Optimal tree size should be chosen adaptively from the data

m Stopping criterion
Stop when decrease in RSS due to a split falls below some threshold

Stop when a minimum node size (e.g., 5) is reached. Go back and prune.
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Cost-Complexity Pruning
" S

m Searching over all subtrees and selecting using AIC or CV is not
possible since there is an exponentially large set of subtrees
9

m Define a subtree 1" C Iy to be any tree obtained by pruning 7,

and \T’ = X1<h
Tfm - Xo <t2 X < tg
/Bm —
Qm (T) = Xo <ty
m We examine a complexity criterion B Ry R (W
|T'|
CA(T) = D 1 Qu(T) + AT "o
m=1
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Cost-Complexity Pruning
= JEE
|T|
CA(T) = ) nnQum(T) + A[T|

m Foragiven A\, wantto find T C Ty to minimize C(T)

m Tuning parameter A governs tradeoff between X < f,
tree size and goodness of fit to the data
Large A >
A=0-

X2 < ta X1 < tg]

m For each A, can show that there is a

unique smallest subtree T’ fofe T (W

©Emily Fox 2013 25

Cost-Complexity Pruning
" S
T

m Can find using weakest link pruning

Successively collapse the internal node that
produces smallest increase in RSS X1 <t

Continue until at single-node (root) tree Xo<tz Xi<ts
Produces a finite sequence of subtrees,
which must contain T’

See Breiman et al. (1984) or Ripley (1996) R R»  Rs (W

m Choose A via 5- or 10-fold CV
m Final tree:

©Emily Fox 2013 26
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Comments on Regression Trees
" JEE

Partition is not specified apriori, so regression trees provide a
locally adaptive technique

Effectively performs variable selection by discovering the
relevant interaction terms
Implicit in the process

In the construction, we are assuming that
Error terms are uncorrelated
Constant variance

©Emily Fox 2013 27

Example: Prostate Cancer
" JEE——

Fit binary regression tree to log PSA with splits based on
eight covariates

Grow tree with condition of at least 3 observation per leaf
Results in a tree with 27 splits

Run weakest-link pruning for each candidate A, with A chosen
according to CV

©Emily Fox 2013 28
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Example: Prostate Cancer
* JEE

Icavolg 2.462

m Compare results to LASSO
Icavol most “important”
. . Icavol< +-0.4786 3.765
Then lweight and svi n=21
hi(x) = I(lcavol < —0.4786) 0.6b17 Iweightic 3.689
ha(x) = I(lcavol < —0.4786) x I(Iweight < 3.689) x I(svi < 0.5) n=9
h3(x) = I(Icavol < —0.4786) x I(lweight < 3.689) x I(svi > 0.5) svi40.5 212
ha(x) = I(lcavol < —0.4786) x I(lweight > 3.689) n=29
hs(x) = I(lcavol > 2.462).
07 . 1.927 3.267
—e— lcavol n=35 n=3
06 —e— Iweight
—— age
05 —e—:ﬁh
04 —.—;Zason
—8— pggés
03
02
0.1
0
-0.1
o2 :
5 10 15 20 25
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Issues
* JEE—
m Unordered categorical predictors

With unordered categorical predictors with q possible values, there are
29-1-1 possible choices of partition points to consider for each variable

Prohibitive for large g
Can deal with this for binary y...will come back to this in “classification”

m Missing predictor values...how to cope?
Can discard
Canfill in, e.g., with mean of other variables
With trees, there are better approaches
-- Categorical predictors: make new category “missing”
-- Split on observed data. For every split, create an ordered list of
“surrogate” splits (predictor/value) that create similar divides of the data.
When examining observation with a missing predictor, when splitting on
that dimension, use top-most surrogate that is available instead

©Emily Fox 2013 30
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Issues
= JEE

m Binary splits
Could split into more regions at every node
However, this more rapidly fragments the data leaving insufficient data and
subsequent levels

Multiway splits can be achieved via a sequence of binary splits, so binary
splits are generally preferred

m [nstability
Can exhibit high variance
Small changes in the data = big changes in the tree
Errors in the top split propagates all the way down
Bagging averages many trees to reduce variance

m Inference
Hard...need to account for stepwise search algorithm

©Emily Fox 2013 31

Issues
= JEEE

m Lack of smoothness

Fits piecewise constant models...unlikely to believe this structure
MARS address this issue (can view as modification to CART)

m Difficulty in capturing additive structure
Imagine true structure is

y=Pil(x1 <t1)+ PBal(my < t3) + €

No encouragement to find this structure

©Emily Fox 2013 32
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Multiple Adaptive Regression Splines
* JE
m MARS is an adaptive procedure for regression

Well-suited to high-dimensional covariate spaces

m Can be viewed as:
Generalization of step-wise linear regression
Modification of CART

m Consider a basis expansion in terms of piecewise linear basis
functions (linear splines)

C-or L @ons

Basis Function
0.0 0.1 0.2 0.3 04 05

0.0 0.2 0.4 t 0.6 0.8 1.0

©Emily Fox 2013 33

Multiple Adaptive Regression Splines
" JEE
m Take knots at all observed x;
C={(z; —t)4, (t —2j)4}

If all locations are unique, then 2*n*d basis functions
Treat each basis function as a function on x, just varying with x;

hm(z) =

m The resulting model has the form

F@) =B+ Y B (2)

m Built in a forward stepwise manner in terms of this basis

©Emily Fox 2013 34
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MARS Forward Stepwise

" JEE
m Given a set of h,,, estimation of 3,,, proceeds as with any linear
basis expansion (i.e., minimizing the RSS)

m How do we choose the set of h,,,?

1. Start with ho(z) =1 and M=0

2. Consider product of all h,, in current model with reflected pairs in C
-- Add terms of the form

Barsihe(x)(@j — t)4 + Baryahe(z)(t — z;)+

-- Select the one that decreases the training error most

3. Increment M and repeat

4. Stop when preset M is hit

5. Typically end with a large (overfit) model, so backward delete
-- Remove term with smallest increase in RSS
-- Choose model based on generalized CV

©Emily Fox 2013 35

MARS Forward Stepwise Example
“ J

Brrsihe(a)(wy — )+ + Brrrahe(w)(t — ;)4

m At the first stage, add term of form X

Br(x; —t)4 + Bo(t — xj)4
with the optimal pair being

R

m Add pair to the model and then consider including a pair like

B3hm () (xj — 1)1 + Bahm () ( = 25)+
with choices for h,, being:

©Emily Fox 2013 36
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MARS Forward Stepwise

m n pictures...

©Emily Fox 2013 37

Why MARS?
" JEE

m Why these piecewise linear basis functions?

Ability to operate locally
= When multiplied, non-zero only over a small part of the input space
= Resulting regression surface has local components and only where needed

(spend parameters carefully in high dims)

Computations with linear basis are very efficient
= Naively, we consider fitting n reflected pairs for each input x; > O(n?) operations
= Can exploit simple form of piecewise linear function

= Fit function with rightmost knot. As knot moves, the basis functions differ by 0
over the left and by a constant over the right > Can try every knot in O(n)

m Why forward stagewise?
Hierarchical in that multiway products are built from terms already in model
(e.g., 4-way product exists only if 3-way already existed)

Higher order interactions tend to only exist if some of the lower order
interactions exist as well

Avoids search over exponentially large space

©Emily Fox 2013 38
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Why MARS?

= JE
m Notes:

Each input can appear at most once in a product...Prevents formation of
higher-order powers of an input

Can place limit on order of interaction. That is, one can allow pairwise
products, but not 3-way or higher.

Limit of 1 = additive model

©Emily Fox 2013 39

Connecting MARS and CART
" JEE——
m MARS and CART have lots of similarities

m Take MARS procedure and make following modifications:
Replace piecewise linear with step functions

When a model term h,, is involved in a multiplication by a candidate term,
replace it by the interaction and is not available for further interaction

m Then, MARS forward procedure = CART tree-growing algorithm

Multiplying a step function by a pair of reflected step functions
= split node at the step

2nd restriction = node may not be split more than once (binary tree)

m MARS doesn’t force tree structure - can capture additive effects

©Emily Fox 2013 40
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What you need to know
* JEEE

m Regression trees provide an adaptive regression method

Fit constants (or simple models) to each region of a partition

Relies on estimating a binary tree partition
Sequence of decisions of variables to split on and where
Grown in a greedy, forward-wise manner
Pruned subsequently

Implicitly performs variable selection

MARS is a modification to CART allowing linear fits

©Emily Fox 2013 a

Readings
" JE
m Wakefield — 12.7
m Hastie, Tibshirani, Friedman —9.2.1-9.2.2,9.2.4, 9.4
m Wasserman — 5.12
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Module 4: Coping with Multiple Predictors

A Short Case Study

STAT/BIOSTAT 527, University of Washington
Emily Fox
May 16%, 2013
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Rock Data
* JEE
m 48 rock samples from a petroleum reservoir
m Response = permeability
m Covariates = area of pores, perimeter, and shape
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Generalized Additive Model
" JEE
m Fita GAM:
permeability = f;(area) + fo(perimeter) 4+ f3(shape) + €

zo B e
3 3
g g
£ E.
g g
g g

T
7T

T T T T T T T T T
1000 2000 3000 4000 5000 0.1 0.2 0.3 0.4
area perimeter

9

f

log permeability
8

7
L

T T T T T T T
0 200 400 600 800 1000
shape
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GAM vs. Local Linear Fits
" JEE—
m Comparison to a 3-dimensional local linear fit
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Projection Pursuit

M
= — (1, %) = 0+ D fn (W)
m Applying projection pursuit with M = 3 yields m=1
wy = (.99,.07,.08)7 wy = (.43,.35,.83)T, w3 = (.74, —.28, —.61)7

n

b
=]
(=]

0.2

n
o
T

-1.5
-0.2 0.0

0.2

10

-0.2 0.0

—0.4

-3 -‘2 —‘1 é 1 0123 456 78910
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Regression Trees
* JEE—
m Fit a regression tree to the rock data
m Note that the variable “shape” does not appear in the tree

area < 1403

area < 1068 l—— area < 3967 —I

area < 3967 peri < .1949
peri < .1991 I I l
1 I
7.746 8.407 8.678 8.803 8.985 8.099 8.339
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