Module 3: Bayesian Nonparametrics

Infinite Mixture Models

|st
 finite MM recap

STAT/BIOSTAT 527, University of Washington
Emily Fox
May $7^{\text {th }}, 2013$

Density Estimation

- Estimate a density based on x_{1}, \ldots, x_{N}

Model Summary

- Prior on model parameters
\square E.g., symmetric Dirichlet for π

\quad Normal inverse Wishart prior for $\theta_{k}=\left\{\mu_{k}, \Sigma_{k}\right\}$
$\left\{\begin{array}{l}\{, \ldots, k\}\end{array}\right.$
- Sample observations as

$$
\begin{aligned}
& z_{i} \sim \pi \quad \text { choose a cluster } \\
& x_{i} \mid z_{i} \sim N\left(\mu_{\underline{z_{i}}}, \Sigma_{\underline{z_{i}}}^{=}\right) \quad \text { sim ops. from } \\
& \text { selected }
\end{aligned}
$$

Dirichlet Distributions

- The Dirichlet distribution is defined on the simplex

- Samples are sparse for small values of α_{i}

$\operatorname{Dir}(\pi \mid 0.1,0.1,0.1,0.1,0.1)$ puts mass @ corners

$\operatorname{Dir}(\pi \mid 1.0,1.0,1.0,1.0,1.0)$
uniform

- Iteratively sample

$$
\begin{array}{ll}
z_{i} \mid \pi,\left\{\theta_{k}\right\},\left\{x_{i}\right\} & i=1, \ldots, N \\
\Pi \mid\left\{z_{i}\right\},\{0 \\
\theta_{k} \mid X,\left\{z_{i}\right\},\left\{x_{i}\right\} & k=1, \ldots, K
\end{array}
$$

Standard Finite Mixture Sampler

Given mixture weights $\pi^{(t-1)}$ and cluster parameters $\left\{\theta_{k}^{(t-1)}\right\}_{k=1}^{K}$ from the previous iteration, sample a new set of mixture parameters as follows:

1. Independently assign each of the N data points x_{i} to one of the K clusters by sampling the indicator variables $z=\left\{z_{i}\right\}_{i=1}^{N}$ from the following multinomial distributions:

$$
z_{i}^{(t)} \sim \frac{1}{Z_{i}} \sum_{k=1}^{K} \pi_{k}^{(t-1)} f\left(x_{i} \mid \theta_{k}^{(t-1)}\right) \delta\left(z_{i}, k\right) \quad Z_{i}=\sum_{k=1}^{K} \pi_{k}^{(t-1)} f\left(x_{i} \mid \theta_{k}^{(t-1)}\right)
$$

2. Sample new mixture weights according to the following Dirichlet distribution:

$$
\pi^{(t)} \sim \operatorname{Dir}\left(N_{1}+\alpha / K, \ldots, N_{K}+\alpha / K\right) \quad N_{k}=\sum_{i=1}^{N} \delta\left(z_{i}^{(t)}, k\right)
$$

3. For each of the K clusters, independently sample new parameters from the conditional distribution implied by those observations currently assigned to that cluster:

$$
\theta_{k}^{(t)} \sim p\left(\theta_{k} \mid\left\{x_{i} \mid z_{i}^{(t)}=k\right\}, \lambda\right)
$$

Mixtures Induce Partitions

If our goal is clustering, the output grouping is defined by assignment indicator variables:

$$
z_{i} \sim \pi \quad z_{1}, \ldots, \vec{z}_{N}
$$

- The number of ways of assigning N data points to K mixture components is

$$
K^{N}
$$

- If $K \geq N$ this is much larger than the number of ways of partitioning that data:

$N=3: 5$ partitions versus $3^{3}=27$

Mixtures Induce Partitions

- If our goal is clustering, the output grouping is defined by assignment indicator variables:

$$
z_{i} \sim \pi
$$

- The number of ways of assigning N data points to K mixture components is K^{N}
- If $K \geq N$ this is much larger than the number of ways of partitioning that data:

For any clustering, there is a unique partition, but many ways to label that partition's blocks.
Note: sampler can switch between eq

Module 3: Bayesian Nonparametrics

Infinite Mixture Models
going infinite

STAT/BIOSTAT 527, University of Washington
Emily Fox
May $7^{\text {th }}, 2013$

Motivating Nonparametric GMM

- What if current model doesn't fit new data?
- Bayesian nonparametric approach: $\quad k \rightarrow \infty$
\square Allows infinite \# clusters
\square Uses sparse subset
\square Model complexity adapts to observations

Mixture of Gaussian \leftarrow allows us to add in $\begin{array}{lllllllllll}\theta_{1} & \theta_{2} & \theta_{3} & \theta_{4} & \theta_{5} & \theta_{6} & \theta_{7} & \cdots & \begin{array}{c}\text { new mom pl } \\ \text { comp. }\end{array}\end{array}$

Nonparam. Model In Pictures

- Mixture weights

$$
\left\{\theta_{k}\right\} \quad k=1,2, \ldots
$$

- For each observation, draw

$$
\begin{aligned}
& z_{i} \sim \pi \\
& x_{i} \mid z_{i} \sim N\left(\mu_{z_{i}}, \Sigma_{z_{i}}\right) \\
& \text { How to define } \pi ?
\end{aligned}
$$

Stick-Breaking Process Summary

Stick Breaks + Dirichlet Process

Dirichlet Process Mixture Model

- Place Dirichlet process prior on weights and mixture parameters:

$$
G \sim \mathrm{DP}(\alpha, H)
$$

- For each observation, draw

$$
\begin{aligned}
z_{i} & \sim \pi \\
x_{i} \mid z_{i} & \sim N\left(\mu_{z_{i}}, \Sigma_{z_{i}}\right)
\end{aligned}
$$

Finite versus DP Mixtures

Finite Mixture DP Mixture
$\pi \sim \operatorname{Dir}\left(\frac{\alpha}{K}, \ldots, \frac{\alpha}{K}\right) \quad \pi \sim \operatorname{Stick}(\alpha)$

$$
\begin{array}{ll}
\text { sym. } & z_{i} \sim \pi \\
x_{i} \sim F\left(\theta_{z_{i}}\right)
\end{array} \text { e.g. } N\left(\mu_{z_{i}}, \Sigma_{z_{i}}\right)
$$

THEOREM: For any measureable function f, as $K \rightarrow \infty$

$$
\begin{aligned}
& \quad \int_{\Theta} f(\theta) d G^{K}(\theta) \xrightarrow[k-\infty]{\mathcal{D}} \int_{\Theta} f(\theta) d G(\theta) \\
& G^{K}(\theta)=\sum_{k=1}^{K} \pi_{k}^{K} \delta_{\theta_{k}}(\theta) \\
& \Pi^{k} \sim \operatorname{sir}\left(\frac{\alpha}{k}, \cdots, \frac{\alpha}{k}\right)
\end{aligned}
$$

Induced Partitions

- Recall that mixture models induce partitions of the data

$$
z_{i} \sim \pi
$$

- For a given prior on mixture weights, some partitions are more likely than others apriori
\square Example 1: $\pi \sim \operatorname{Dir}(1, \ldots, 1)$

Example 2: $\pi \sim \operatorname{Dir}(0.01, \ldots, 0.01)$

Induced Partitions

- Recall that mixture models induce partitions of the data

$$
z_{i} \sim \pi
$$

- For a given prior on mixture weights, some partitions are more likely than others aprioriExample 3 (DP mix): $\pi \sim \operatorname{Stick}(\alpha)$
-

- What is the induced distribution on z_{1}, \ldots, z_{N} ? Answer:

Do we expect many unique clusters?
Chinese restaurant process

Chinese Restaurant Process (CRP)

- Distribution on induced partitions described via the CRP
- Visualize clustering as a sequential process of customers sitting at tables in an (infinitely large) restaurant:
 randomly select a table according to:0in. \# of unique clustass in $\boldsymbol{i}_{1 \mathrm{~N}}$

Chinese Restaurant Process (CRP)

After
customer 1

clustering/reinforcement induced by DP "rich get richer"

CRTs \& Exchangeable Partitions

$p\left(z_{N+1}=z \mid z_{1}, \ldots, z_{N}, \alpha\right)=\frac{1}{\alpha+N}\left(\sum_{k=1}^{K} N_{k} \delta(z, k)+\alpha \delta(z, \bar{k})\right)$

- The probability of a seating arrangement of N customers is independent of the order they enter the restaurant:

CRTs \& Exchangeable Partitions

$p\left(z_{N+1}=z \mid z_{1}, \ldots, z_{N}, \alpha\right)=\frac{1}{\alpha+N}\left(\sum_{k=1}^{K} N_{k} \delta(z, k)+\alpha \delta(z, \bar{k})\right)$

- The probability of a seating arrangement of N customers is independent of the order they enter the restaurant:

\square Denominator terms: $\quad \frac{1}{1+\alpha} \cdot \frac{1}{2+\alpha} \cdots \frac{1}{N-1+\alpha}=\frac{\Gamma(\alpha)}{\Gamma(N+\alpha)}$
\square Number of new tables: K
Numerator term for each new table: $\mathcal{\alpha}$
Combined:

CRPs \& Exchangeable Partitions

$p\left(z_{N+1}=z \mid z_{1}, \ldots, z_{N}, \alpha\right)=\frac{1}{\alpha+N}\left(\sum_{k=1}^{K} N_{k} \delta(z, k)+\alpha \delta(z, \bar{k})\right)$

- The probability of a seating arrangement of N customers is independent of the order they enter the restaurant:

\square Denominator terms: $\frac{1}{1+\alpha} \cdot \frac{1}{2+\alpha} \cdots \frac{1}{N-1+\alpha}=\frac{\Gamma(\alpha)}{\Gamma(N+\alpha)}$
\square New table numerator terms: α^{K}
\square Customers joining $k^{\text {th }}$ occupied table:
$\left.1.2 \cdots\left(N_{k}-1\right)=\left(N_{k}-1\right)!=\int N_{N_{k}}\right)$ $\uparrow_{\text {already }} 1$ person sitting © ${ }_{\text {gable }}^{\text {th }}$

CRPs \& Exchangeable Partitions

$p\left(z_{N+1}=z \mid z_{1}, \ldots, z_{N}, \alpha\right)=\frac{1}{\alpha+N}\left(\sum_{k=1}^{K} N_{k} \delta(z, k)+\alpha \delta(z, \bar{k})\right)$

- The probability of a seating arrangement of N customers is independent of the order they enter the restaurant:

\square Denominator terms: $\quad \frac{1}{1+\alpha} \cdot \frac{1}{2+\alpha} \cdots \frac{1}{N-1+\alpha}=\frac{\Gamma(\alpha)}{\Gamma(N+\alpha)}$
\square New table numerator terms: α^{K}
\square Customers joining $k^{\text {th }}$ occupied table:

$$
1 \cdot 2 \cdots\left(N_{k}-1\right)=\left(N_{k}-1\right)!=\Gamma\left(N_{k}\right)
$$

CRPs \& Exchangeable Partitions

$p\left(z_{N+1}=z \mid z_{1}, \ldots, z_{N}, \alpha\right)=\frac{1}{\alpha+N}\left(\sum_{k=1}^{K} N_{k} \delta(z, k)+\alpha \delta(z, \bar{k})\right)$

- The probability of a seating arrangement of N customers is independent of the order they enter the restaurant:

- Thus, the CRP is a prior on an infinitely exchangeable sequence

Samples from DP Mixture Priors

$N=1000$

Finite GMM Sampler

Recall model
\square Observations: x_{1}, \ldots, x_{N}

want $\left\{\square\right.$ Cluster indicators: z_{1}, \ldots, z_{N}
\square Parameters: $\pi, \theta_{k} \longrightarrow \pi=\left[\pi_{1}, \ldots, \pi_{K}\right]$
\square Generative model:

$$
\begin{aligned}
\pi & \sim \operatorname{Dir}\left(\alpha_{1}, \ldots, \alpha_{K}\right) & z_{i} & \sim \pi \\
\left\{\mu_{k}, \Sigma_{k}\right\} & \sim \operatorname{NIW}(\lambda) & x_{i} \mid z_{i},\left\{\theta_{k}\right\} & \sim N\left(\mu_{z_{i}}, \Sigma_{z_{i}}\right)
\end{aligned}
$$

- Iteratively sample

$$
\begin{array}{ll}
z_{i} \mid \pi,\left\{\theta_{k}\right\},\left\{x_{i}\right\} & i=1, \ldots, N \\
\pi \mid\left\{z_{i} \xi, \xi 0_{k}, \xi x /\right\} & \\
\theta_{k} \mid X X\left\{z_{i}\right\},\left\{x_{i}\right\} & k=1, \ldots K
\end{array}
$$

Collapsed DP Mixture Sampler

- Cant sample π directly
- Integrate out all infinite-dimensional prams $\left.\pi, 3 \sigma_{k}\right\}$

- Iteratively sample therciuster indicators "likelihood"

$$
\begin{aligned}
& z_{i}^{(t)} \sim \frac{p\left(z_{i}^{r}=k \mid z_{i-1}^{(\alpha-1)}, \alpha\right)}{T} p\left(x_{i}^{\text {treat } \left.\mid\left\{x_{j} ; z_{j}=k, i \neq j\right\}\right)}\right. \\
& \text { "prior" allotter } \begin{array}{c}
T \text { indicators } \\
T_{\text {allotter lbs. assigns }}^{\text {no }} k \\
k^{\text {th }} \text { cluster }
\end{array}
\end{aligned}
$$

Collapsed Sampler Intuition

- Previously, $p\left(z_{i}=k \mid x_{i}, \pi, \theta\right) \propto \pi_{k} p\left(x_{i} \mid \theta_{k}\right)$
- If you're not told π, θ_{k}

Approx π by CRP
\rightarrow "prior" is based on
cluster occupancy
Approx θ_{k}
\rightarrow "likelihood" based on obs. already assigned to cluster

Predictive Likelihood Term

- Recall NIW prior...Let's consider 1D example \rightarrow N-IG

$$
\mu_{k} \left\lvert\, \sigma_{k}^{2} \sim N\left(0, \gamma \sigma_{k}^{2}\right) \quad \sigma_{k}^{2} \sim \operatorname{IG}\left(\frac{\nu_{0}}{2}, \frac{\nu_{0} S_{0}}{2}\right)\right. \text { elinood }
$$

- Normal inverse gamma posterior \rightarrow Student t predictive likelihood $p\left(x_{i} \mid\left\{x_{j} ; z_{j}=k, j \neq j\right\}\right)=\int p\left(x_{i} \mid \theta_{k}\right) p\left(\theta_{k} \mid\left\{x_{j}: z_{j} j k, j \neq i\right\}\right) d \theta_{k}$ $p\left(x \mid\left\{x_{j} \mid z_{j}=k, j \neq i\right\}\right)=t_{\nu_{0}+N_{k}^{-i}}\left(\frac{1}{\gamma^{-1}+N_{k}^{-i}} \sum_{j: z_{j}=k, j \neq i} x_{j}\right.$,
$\left.\frac{N_{k}^{-i}+\gamma^{-1}+1}{\left(N_{k}^{-i}+\gamma^{-1}\right)\left(\nu_{0}+N_{k}^{-i}\right)}\left(\nu_{0} S_{0}+\sum_{j: z_{j}=k, j \neq i} x_{j}^{2}-\left(N_{k}+\gamma^{-1}\right)^{-1}\left(\sum_{j: z_{j}=k, j \neq i} x_{j}\right)^{2}\right)\right)$
\square Conjugacy: This integral is tractable

Collapsed DP Mixture Sampler

1. Sample a random permutation $\tau(\cdot)$ of the integers $\{1, \ldots, N\}$.
2. Set $\alpha=\alpha^{(t-1)}$ and $z=z^{(t-1)}$. For each $i \in\{\tau(1), \ldots, \tau(N)\}$, resample z_{i} as follows:
(a) For each of the K existing clusters, determine the predictive likelihood

$$
f_{k}\left(x_{i}\right)=p\left(x_{i} \mid\left\{x_{j} \mid z_{j}=k, j \neq i\right\}, \lambda\right)
$$

Also determine the likelihood $f_{\bar{k}}\left(x_{i}\right)$ of a potential new cluster \bar{k}

$$
p\left(x_{i} \mid \lambda\right)=\int_{\Theta} f\left(x_{i} \mid \theta\right) h(\theta \mid \lambda) d \theta
$$

(b) Sample a new cluster assignment z_{i} from the following $(K+1)$-dim. multinomial: $z_{i} \sim \frac{1}{Z_{i}}\left(\alpha f_{\bar{k}}\left(x_{i}\right) \delta\left(z_{i}, \bar{k}\right)+\sum_{k=1}^{K} N_{k}^{-i} f_{k}\left(x_{i}\right) \delta\left(z_{i}, k\right)\right) \quad Z_{i}=\alpha f_{\bar{k}}\left(x_{i}\right)+\sum_{k=1}^{K} N_{k}^{-i} f_{k}\left(x_{i}\right)$ N_{k}^{-i} is the number of other observations currently assigned to cluster k.
(c) Update cached sufficient statistics to reflect the assignment of x_{i} to cluster z_{i}. If $z_{i}=\bar{k}$, create a new cluster and increment K.
3. Set $z^{(t)}=z$.
4. If any current clusters are empty $\left(N_{k}=0\right)$, remove them and decrement K accordingly.

Collapsed DP Sampler: 10 Iterations

$\log p(x \mid \pi, \theta)=-398.32$

$\log p(x \mid \pi, \theta)=-399.08$

Collapsed DP Sampler: 50 Iterations

$\log p(x \mid \pi, \theta)=-397.67$

$\log p(x \mid \pi, \theta)=-396.71$

Poisson Integer-Valued Autoregressions

Acknowledgements

Slides based on parts of the lecture notes of Erik Sudderth for "Applied Bayesian Nonparametrics" at Brown University

