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Module 3: Bayesian Nonparametrics 

n  Estimate a density based on x1,…,xN 

Density Estimation 

©Emily Fox 2013 
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Density as Mixture of Gaussians 

n  Approximate density with a mixture of Gaussians 

Mixture of 3 Gaussians 
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Model Summary 

n  Prior on model parameters 
¨  E.g., symmetric Dirichlet for 

 
¨  Normal inverse Wishart prior for    

n  Sample observations as  
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Dirichlet Distributions 
n  The Dirichlet distribution is defined on the simplex 
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Dirichlet Samples 

n  Samples are sparse for small values of  

Dir(✓ | 0.1, 0.1, 0.1, 0.1, 0.1)⇡

↵i

Dir(✓ | 1.0, 1.0, 1.0, 1.0, 1.0)⇡
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Model In Pictures 

n  Mixture weights 

n  For each observation, (a)

0 0.5 1

0

0.5

1

zi ⇠ ⇡

xi | zi ⇠ N(µzi ,⌃zi)

⇡

©Emily Fox 2013 

©Emily Fox 2013 

n  Recall model 
¨  Observations: 
¨  Cluster indicators:  
¨  Parameters: 

¨  Generative model:  

n  Iteratively sample 

GMM Sampler 

⇡ = [⇡1, . . . ,⇡K ]

⇡ ⇠ Dir(↵1, . . . ,↵K)

x1, . . . , xN
z1, . . . , zN

⇡, ✓k
✓k = {µk,⌃k}

{µk,⌃k} ⇠ NIW(�)

zi ⇠ ⇡

xi | zi, {✓k} ⇠ N(µzi ,⌃zi)
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Standard Finite Mixture Sampler 
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Mixtures Induce Partitions 
n  If our goal is clustering, the output grouping 

is defined by assignment indicator variables: 

n  The number of ways of assigning N data 
points to K mixture components is 

n  If                this is much larger than the 
number of ways of partitioning that data:  

KN

K � N

33 = 27N=3:  5 partitions versus 

zi ⇠ ⇡

(a)
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Mixtures Induce Partitions 
n  If our goal is clustering, the output grouping 

is defined by assignment indicator variables: 

n  The number of ways of assigning N data 
points to K mixture components is 

n  If                this is much larger than the 
number of ways of partitioning that data:  

KN

K � N

zi ⇠ ⇡

Courtesy 
Wikipedia 

N=5:  52 partitions versus 55 = 3125

For any clustering, there is a 
unique partition, but many ways to 
label that partition’s blocks. 
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Motivating Nonparametric GMM 

n  What	  if	  current	  model	  
doesn’t	  fit	  new	  data?	  

n  Bayesian	  nonparametric	  
approach:	  
¨ Allows	  infinite	  #	  clusters	  
¨ Uses	  sparse	  subset	  
¨ Model	  complexity	  
adapts	  to	  observa@ons	  

Mixture of Gaussians 

✓1 ✓2 ✓3 ✓4 ✓5 ✓6 ✓7 . . .

Nonparam. Model In Pictures 

n  Mixture weights 

n  For each observation, draw 

zi ⇠ ⇡

xi | zi ⇠ N(µzi ,⌃zi)

⇡

©Emily Fox 2013 
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Stick-Breaking Process 
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n  Start with stick of unit 
probability mass 

n  Repeatedly break 
portions of the 
remaining stick 

Stick-Breaking Process Summary 
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Stick Breaks + Dirichlet Process 

G

✓1 ✓2 ✓3 ✓4 ⇥

Dirichlet Process Mixture Model 
n  Place Dirichlet process prior on 

weights and mixture parameters: 

 
 
 
 
n  For each observation, draw 

zi ⇠ ⇡

xi | zi ⇠ N(µzi ,⌃zi)

⇡

©Emily Fox 2013 

G ⇠ DP(↵, H)

G =
1X

k=1

⇡k�✓k
✓k
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Finite versus DP Mixtures 

⇡ ⇠ Stick(↵)

xi ⇠ F (✓zi)

Finite Mixture DP Mixture 

GK(✓) =
KX

k=1

⇡k�✓k(✓)

THEOREM:  For any measureable function f, as  K ! 1

G ⇠ DP(↵, H)

zi ⇠ ⇡

Induced Partitions 

n  Recall that mixture models induce partitions of the data 

n  For a given prior on mixture weights, some partitions are more 
likely than others apriori 
¨  Example 1: 

¨  Example 2: 

zi ⇠ ⇡

⇡ ⇠ Dir(1, . . . , 1)

⇡ ⇠ Dir(0.01, . . . , 0.01)
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Induced Partitions 

n  Recall that mixture models induce partitions of the data 

n  For a given prior on mixture weights, some partitions are more 
likely than others apriori 
¨  Example 3 (DP mix): 

 
 
n  What is the induced distribution on z1, … , zN? 

¨  Do we expect many unique clusters? 

zi ⇠ ⇡

⇡ ⇠ Stick(↵)

customers observed data to be clustered 
tables distinct clusters 

Chinese Restaurant Process (CRP) 

n  Distribution on induced partitions described via the CRP 
n  Visualize clustering as a sequential process of customers 

sitting at tables in an (infinitely large) restaurant: 

n  The first customer sits at a table.  Subsequent customers 
randomly select a table according to: 
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Chinese Restaurant Process (CRP) 

CRPs & Exchangeable Partitions 

n  The probability of a seating arrangement of N customers is 
independent of the order they enter the restaurant: 

¨  Denominator terms: 
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CRPs & Exchangeable Partitions 

n  The probability of a seating arrangement of N customers is 
independent of the order they enter the restaurant: 

¨  Denominator terms: 

¨  Number of new tables: 
Numerator term for each new table: 
Combined: 

1

1 + ↵
· 1

2 + ↵
· · · 1

N � 1 + ↵
=

�(↵)

�(N + ↵)

CRPs & Exchangeable Partitions 

n  The probability of a seating arrangement of N customers is 
independent of the order they enter the restaurant: 

¨  Denominator terms: 

¨  New table numerator terms: 
¨  Customers joining kth occupied table: 

1

1 + ↵
· 1

2 + ↵
· · · 1

N � 1 + ↵
=

�(↵)

�(N + ↵)

↵K
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CRPs & Exchangeable Partitions 

n  The probability of a seating arrangement of N customers is 
independent of the order they enter the restaurant: 

¨  Denominator terms: 

¨  New table numerator terms: 
¨  Customers joining kth occupied table: 

1

1 + ↵
· 1

2 + ↵
· · · 1

N � 1 + ↵
=

�(↵)

�(N + ↵)

↵K

1 · 2 · · · (Nk � 1) = (Nk � 1)! = �(Nk)

CRPs & Exchangeable Partitions 

n  The probability of a seating arrangement of N customers is 
independent of the order they enter the restaurant: 

n  Thus, the CRP is a prior on an infinitely exchangeable sequence 

 

p(z1, . . . , zN | ↵) = �(↵)

�(N + ↵)
↵K

KY

k=1

�(Nk)
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Samples from DP Mixture Priors 

N=50 

Samples from DP Mixture Priors 

N=200 
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Samples from DP Mixture Priors 

N=1000 

©Emily Fox 2013 

n  Recall model 
¨  Observations: 
¨  Cluster indicators:  
¨  Parameters: 

¨  Generative model:  

n  Iteratively sample 

Finite GMM Sampler 

⇡ = [⇡1, . . . ,⇡K ]

⇡ ⇠ Dir(↵1, . . . ,↵K)

x1, . . . , xN
z1, . . . , zN

⇡, ✓k
✓k = {µk,⌃k}

{µk,⌃k} ⇠ NIW(�)

zi ⇠ ⇡

xi | zi, {✓k} ⇠ N(µzi ,⌃zi)
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Collapsed DP Mixture Sampler 

n  Can’t sample π directly 
n  Integrate out all infinite-dimensional params 

n  Iteratively sample the cluster indicators 

Collapsed Sampler Intuition 

n  Previously,  
 
n  If you’re not told  

©Emily Fox 2013 

p(zi = k | xi,⇡, ✓) / ⇡kp(xi | ✓k)

⇡, ✓k
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©Emily Fox 2013 

n  Recall NIW prior…Let’s consider 1D example à N-IG 

n  Normal inverse gamma posterior  
à Student t predictive likelihood 

¨  Conjugacy: This integral is tractable 

Predictive Likelihood Term 

µk | �2
k ⇠ N(0, ��2

k) �2
k ⇠ IG

✓
⌫0
2
,
⌫0S0

2

◆

p(x | {xj |zj = k, j 6= i}) = t⌫0+N�i
k

✓
1

� +N

�i
k

X

j:zj=k,j 6=i

xj ,

N

�i
k + �

�1 + 1

(N�i
k + �

�1)(⌫0 +N

�i
k )

0

@
⌫0S0 +

X

j:zj=k,j 6=i

x

2
j � (Nk + �

�1)�1(
X

j:zj=k,j 6=i

xj)
2

1

A
◆

Collapsed DP Mixture Sampler 
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Collapsed DP Sampler: 2 Iterations 

Collapsed DP Sampler: 10 Iterations 



20 

Collapsed DP Sampler: 50 Iterations 

DP vs. Finite Mixture Samplers 
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DP Posterior Number of Clusters 
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DC Violent Crime Data 
n  188	  census	  tracts	  
n  Weekly	  crime	  counts	  from	  

2001-‐2008	  
n  Violent	  crime	  types:	  

¨  ADW,	  arson,	  robbery,	  rape	  

Time	  series	  =	  crime	  counts	  
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DC Violent Crime Data 

Goal:	  Forecast	  next	  week’s	  map	  

Average	  Weekly	  	  
Crime	  Counts	  

DC Violent Crime Data 

Similar	  behavior	  in	  spa5ally	  disjoint	  tracts	  
	  Cluster	  census	  tracts	  

Average	  Weekly	  	  
Crime	  Counts	  

Train 
tracks River 
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Poisson Integer-Valued 
Autoregressions 

yi,t = ↵� yi,t�1 + ✏i,t(�i)

Customers	  in	  
queue	  at	  .me	  t	  

Thinning	  of	  customers	  
previously	  in	  queue	   Rate	  of	  arrivals	  

in	  loca.on	  i	  

✓2�i =

✓3�i =

✓1
�i =

Crime	  counts	  in	  
loca.on	  i	  at	  .me	  t	  

Poisson	  new	  
customers	  

n  Cluster	  regions	  based	  on	  rate	  
of	  arriving	  crimes	  

n  Pool	  info	  within	  clusters	  
n  Unknown	  number	  of	  clusters	  

à	  Dirichlet	  process	  
Aldor-‐Noiman,	  Brown,	  Fox,	  and	  S@ne,	  arXiv:1304.5642, April 2013	  

Prediction Results 
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1.2 

Simple	  Poisson	  
Process	  

Condi@onal	  Least	  
Squares	  PoINAR	  

DP	  PoINAR	  

M
ea
n	  
Sq
ua

re
	  E
rr
or
	  (M

SE
)	  

0.7217 

0.9235 0.97 

Aldor-‐Noiman,	  Brown,	  Fox,	  and	  S@ne,	  arXiv:1304.5642, April 2013	  
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