

Standard Finite Mixture Sampler

Given mixture weights $\pi^{(t-1)}$ and cluster parameters $\{\theta_k^{(t-1)}\}_{k=1}^K$ from the previous iteration, sample a new set of mixture parameters as follows:

1. Independently assign each of the N data points x_i to one of the K clusters by sampling the indicator variables $z = \{z_i\}_{i=1}^N$ from the following multinomial distributions:

$$z_i^{(t)} \sim \frac{1}{Z_i} \sum_{k=1}^K \pi_k^{(t-1)} f(x_i \mid \theta_k^{(t-1)}) \,\delta(z_i, k) \qquad \qquad Z_i = \sum_{k=1}^K \pi_k^{(t-1)} f(x_i \mid \theta_k^{(t-1)})$$

2. Sample new mixture weights according to the following Dirichlet distribution:

$$\pi^{(t)} \sim \operatorname{Dir}(N_1 + \alpha/K, \dots, N_K + \alpha/K) \qquad \qquad N_k = \sum_{i=1}^N \delta(z_i^{(t)}, k)$$

3. For each of the K clusters, independently sample new parameters from the conditional distribution implied by those observations currently assigned to that cluster:

$$\boldsymbol{\theta}_{k}^{(t)} \sim p(\boldsymbol{\theta}_{k} \mid \left\{ \boldsymbol{x}_{i} \mid \boldsymbol{z}_{i}^{(t)} = \boldsymbol{k} \right\}, \boldsymbol{\lambda}) \\ \text{ Be mily Fox 2013}$$

Collapsed DP Mixture Sampler

1. Sample a random permutation $\tau(\cdot)$ of the integers $\{1, \ldots, N\}$.

 f_k

- 2. Set $\alpha = \alpha^{(t-1)}$ and $z = z^{(t-1)}$. For each $i \in \{\tau(1), \ldots, \tau(N)\}$, resample z_i as follows:
 - (a) For each of the K existing clusters, determine the predictive likelihood

$$(x_i) = p(x_i \mid \{x_j \mid z_j = k, j \neq i\}, \lambda)$$

Also determine the likelihood $f_{\bar{k}}(x_i)$ of a potential new cluster \bar{k}

$$p(x_i \mid \lambda) = \int_{\Theta} f(x_i \mid \theta) h(\theta \mid \lambda) d\theta$$

(b) Sample a new cluster assignment z_i from the following (K + 1)-dim. multinomial:

$$z_{i} \sim \frac{1}{Z_{i}} \left(\alpha f_{\bar{k}}(x_{i}) \delta(z_{i}, \bar{k}) + \sum_{k=1}^{K} N_{k}^{-i} f_{k}(x_{i}) \delta(z_{i}, k) \right) \qquad Z_{i} = \alpha f_{\bar{k}}(x_{i}) + \sum_{k=1}^{K} N_{k}^{-i} f_{k}(x_{i})$$

 N_k^{-i} is the number of other observations currently assigned to cluster k.

- (c) Update cached sufficient statistics to reflect the assignment of x_i to cluster z_i . If $z_i = \bar{k}$, create a new cluster and increment K.
- 3. Set $z^{(t)} = z$.
- 4. If any current clusters are empty $(N_k = 0)$, remove them and decrement K accordingly.

Acknowledgements

Slides based on parts of the lecture notes of Erik Sudderth for "Applied Bayesian Nonparametrics" at Brown University

©Emily Fox 2013